JPH0448094A - Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance - Google Patents

Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance

Info

Publication number
JPH0448094A
JPH0448094A JP15669190A JP15669190A JPH0448094A JP H0448094 A JPH0448094 A JP H0448094A JP 15669190 A JP15669190 A JP 15669190A JP 15669190 A JP15669190 A JP 15669190A JP H0448094 A JPH0448094 A JP H0448094A
Authority
JP
Japan
Prior art keywords
plating
layer
bath
amount
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15669190A
Other languages
Japanese (ja)
Inventor
Tomoya Oga
大賀 智也
Shigeru Hirano
茂 平野
Yukinobu Higuchi
樋口 征順
Shunichi Kajiwara
梶原 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15669190A priority Critical patent/JPH0448094A/en
Publication of JPH0448094A publication Critical patent/JPH0448094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To produce a plated steel sheet for a vessel having superior rust resistance at the outside of a can and fine appearance by forming a Zn plating layer of a specified thickness as a lower layer on one side of a steel sheet corresponding to the outside of a can and then forming an Sn plating layer as an upper layer under specified conditions. CONSTITUTION:A Zn plating layer of 1-10g/m<2> thickness is formed as a lower layer on at least one side of a steel sheet corresponding to the outside of a can. An Sn plating layer of 0.1-5g/m<2> thickness is then formed as an upper layer with a pyrophosphate plating bath of pH 5-12 contg. 0.01-5g/l ENSA and 0.01-5g/l amino acid compd. and/or 1-50g/l citrate as an Sn plating bath. The amino acid compd. may be glycine or alanine and the citrate may be sodium or potassium citrate. A plated steel sheet having satisfactory suitability to working into a can and exhibiting superior rust resistance at the outside of the can is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絞りしごき加工(DI)缶および缶蓋の材料と
して使用される、外面の耐錆性と外観に優れた容器用メ
ッキ鋼板の製造法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of plated steel sheets for containers, which are used as materials for drawn and ironed (DI) cans and can lids, and have excellent exterior rust resistance and appearance. It is about law.

〔従来の技術〕[Conventional technology]

近年、飲料缶を中心として絞りしごき加工による製缶方
式(例えばDI加工製缶方式)の発展が著しく、これま
で以上に高性能な容器用表面処理鋼板の要求が非常に強
い。従来より、DI缶用表面処理鋼板としてはDI成形
性の良好なブリキが使用されてきたが、缶外面側の大き
な問題点として、次の2点が挙げられる。
BACKGROUND ART In recent years, there has been a remarkable development in can manufacturing methods using drawing and ironing (for example, DI processing can manufacturing methods), mainly for beverage cans, and there is a strong demand for surface-treated steel sheets for containers with higher performance than ever before. Conventionally, tinplate with good DI formability has been used as a surface-treated steel sheet for DI cans, but there are two major problems with the outer surface of the can:

1)缶外面側において錆が発生しやすく、特に缶を冷や
すために水道水中に浸漬するとボトム部およびウオール
部の傷付き箇所において短時間に錆が発生する。
1) Rust is likely to form on the outer surface of the can, and especially when the can is immersed in tap water to cool it, rust will form in a short period of time at damaged areas on the bottom and wall parts.

2 ) DI成形後、印刷を行うとホワイトインキ等で
インキ本来の白さを示さず、印刷仕上がり性に問題があ
る。
2) When printing is performed after DI molding, white ink or the like does not show the original whiteness of the ink, and there is a problem with the printing finish.

更に、イーシイオーブンエンド(以下EOEと称す)、
通常のエンドなど缶蓋として使用されるブリキおよび電
解クロム酸処理鋼板についても外面側の耐錆性に関して
は、同様の問題を抱えている。
Furthermore, Easy Oven End (hereinafter referred to as EOE),
Tin plates and electrolytically chromic acid-treated steel plates used for can lids such as ordinary ends have similar problems regarding the rust resistance of their outer surfaces.

このように、外面側の耐錆性が問題になるのは地鉄とメ
ッキ層との電位関係で説明ができる。即ち、ブリキ、 
 TFSの場合には地鉄に対してSnメッキ層およびC
rメッキ層が電位的に責であり、地鉄を犠牲防食する作
用はない。
Thus, the problem of rust resistance on the outer surface side can be explained by the potential relationship between the base iron and the plating layer. Namely, tinplate;
In the case of TFS, the Sn plating layer and C
The r plating layer is at fault in terms of potential and has no sacrificial corrosion protection effect on the base steel.

これを解決するため、例えば特開昭62−17199号
公報、特開昭62−13594号公報等で見られるよう
なCr含有鋼板にSnメッキを施した容器用調板の開発
がなされている。これらの容器用鋼板はいずれも、地鉄
に他成分(例えばクロム)を添加して地鉄の電位を責に
コントロールすることによって、メッキ層の犠牲防食能
を発揮させるようにしたものである。また、これらの鋼
板は外面側の耐錆性の向上という効果は大きいが、十分
な効果を発揮させるには他成分が添加が数%程度必要で
あり、経済性の面で問題が残る。
In order to solve this problem, a container adjusting plate in which a Cr-containing steel plate is plated with Sn has been developed, as seen in, for example, Japanese Patent Laid-Open No. 62-17199 and Japanese Patent Laid-Open No. 62-13594. All of these steel plates for containers exhibit the sacrificial anticorrosion ability of the plating layer by adding other components (for example, chromium) to the base metal and controlling the potential of the base metal. Further, although these steel sheets have a great effect of improving the rust resistance on the outer surface side, in order to exhibit a sufficient effect, it is necessary to add several percent of other components, and there remains a problem in terms of economic efficiency.

また、ブリキDI缶の印刷後の外観が暗いという問題に
関しては次のように説明できる。即ち、DI成形のよう
な厳しい加工を受けたSnメッキ層がダメージを受け、
地鉄が露出するのが原因である。
Furthermore, the problem that the tinplate DI cans have a dark appearance after printing can be explained as follows. In other words, the Sn plating layer that has undergone severe processing such as DI molding is damaged,
This is because the underground railway is exposed.

つまりブリキDI缶が暗いのは露出する鉄の分光反射率
が低いことに起因しており、01缶の外観向上には、D
I成形後に極力鉄を露出させないことが重要である。こ
のような原因を考えると、従来の発明では対処できない
ことは明らかである。
In other words, the reason tinplate DI cans are dark is due to the low spectral reflectance of the exposed iron, and to improve the appearance of 01 cans, D
It is important to avoid exposing the iron as much as possible after I-forming. Considering these causes, it is clear that conventional inventions cannot deal with them.

これらの問題を解決するため、Zn金属を活用し、下層
にZnメッキ層、上層にSnメッキ層を施したSn/Z
n二層メッキ鋼板が有効であるが、製造技術的には上層
に施すSnメンキ技術が大きなポイントとなる。即ち、
工業化を実現するためには、次の2つの問題点を解決し
なくてはならない。
In order to solve these problems, we developed a Sn/Z film that utilizes Zn metal and has a Zn plating layer on the bottom layer and a Sn plating layer on the top layer.
An n-double-layer plated steel sheet is effective, but in terms of manufacturing technology, the important point is the Sn coating technique applied to the upper layer. That is,
In order to realize industrialization, the following two problems must be solved.

1)下層のZnメッキ層を溶解させることなく、上層に
Snメッキ層を施すことのできるSnメッキ浴の開発;
下層のZnメッキ層の上にSnメッキを施す場合、従来
工業上使用されている硫酸浴(フェロスタン浴)、塩化
物浴ではSnメッキ時に下層のZn金属の溶解が顕著に
起こり、高価なSnメッキ浴を汚染し連続操業ができな
いという問題がある。
1) Development of a Sn plating bath that can apply a Sn plating layer to the upper layer without dissolving the lower Zn plating layer;
When performing Sn plating on the lower Zn plating layer, the lower layer Zn metal is significantly dissolved during Sn plating in the sulfuric acid bath (ferrostane bath) and chloride bath conventionally used in industry, resulting in expensive Sn plating. There is a problem in that the bath is contaminated and continuous operation is not possible.

2 ) Znメッキ層の溶解がなくSnメッキを行い、
容器用メッキ鋼板として十分な商品価値を有する良好な
外観が得られるSnメッキ浴の開発;下層のZnメッキ
層の溶解を抑制可能なSnメッキ浴としてピロリン酸系
のメッキ浴が効果的であるが、ピロリン酸系メッキ浴か
らのSn金属の析出はメッキ層の光沢性、平滑性に大き
な問題があり、このメッキ外観の問題を解決できないと
Sn/Zn二層メッキ鋼板の商品価値は乏しく工業化は
困難である。
2) Perform Sn plating without dissolving the Zn plating layer,
Development of a Sn plating bath that provides a good appearance with sufficient commercial value as a plated steel sheet for containers; Pyrophosphoric acid-based plating baths are effective as Sn plating baths that can suppress dissolution of the underlying Zn plating layer. The precipitation of Sn metal from a pyrophosphate plating bath poses a major problem in the gloss and smoothness of the plating layer, and unless this plating appearance problem can be resolved, the commercial value of Sn/Zn double-layer plated steel sheets will be poor and industrialization will be difficult. Have difficulty.

つまり、Sn/Zn二層メッキ鋼板製造の連続操業を可
能とし工業化を実現するためには、下層のZnメッキ層
を溶解させることなく、良好なSnメッキ外観が得られ
るSnメッキ浴の提供が不可欠である。
In other words, in order to enable continuous operation and realize industrialization in the production of Sn/Zn double-layer plated steel sheets, it is essential to provide a Sn plating bath that can provide a good Sn plating appearance without dissolving the underlying Zn plating layer. It is.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明はこれらの問題に対処するためになされたもので
、缶外面側で優れた耐錆性を発揮し、良好な製缶加工性
(特にDI成形性)を有し、DI成形後の印刷仕上がり
性も良好であり、かつ経済性にも合致する容器用メッキ
鋼板として、Sn/Zn二層メッキ鋼板の製造法を提供
せんとするものである。
The present invention was made to address these problems, and exhibits excellent rust resistance on the outer surface of the can, has good can forming processability (particularly DI moldability), and prints after DI molding. The present invention aims to provide a method for manufacturing a Sn/Zn double-layer plated steel plate as a plated steel plate for containers that has good finishing properties and is also economically viable.

〔課題を解決するための手段〕 本発明の要旨とするところは、少なくとも、缶外面側に
相当する面の下層に1〜10 g / rdのZnメン
キ層を有する鋼板の上層に、Snメッキ浴として、0.
01〜5g//2のENSAを添加し、かつ、0.01
〜5g/lのアミノ酸化合物あるいは1〜50 g /
 fのクエン酸塩のうち一種または二種を添加したpH
5〜12のピロリン酸系メッキ浴を用いて、0.1〜5
g/rtfのSnメンキ層を施し、あるいはさらにクロ
ム換算付着量で1〜50■/rdのクロメート被膜を施
すことを特徴とする缶外面の耐錆性と外観に優れた容器
用メッキ鋼板の製造法にある。
[Means for Solving the Problems] The gist of the present invention is to apply an Sn plating bath to at least the upper layer of a steel plate having a Zn coating layer of 1 to 10 g/rd on the lower layer of the surface corresponding to the outer surface of the can. As, 0.
01-5g//2 of ENSA added and 0.01
~5 g/l of amino acid compounds or 1-50 g/l
pH when one or two of the citrates of f are added
0.1 to 5 using a pyrophosphate plating bath of 5 to 12
Production of plated steel sheets for containers with excellent rust resistance and appearance on the outer surface of cans, characterized by applying a Sn coated layer of g/rtf or further applying a chromate coating of 1 to 50 μ/rd in terms of chromium deposition amount. It's in the law.

〔作用〕[Effect]

以下に本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明において、メッキ原板としては容器用鋼板として
用途に応した材質を有するメッキ原板を使用する。メッ
キ原板の製造法は特に規制されるものではなく、通常の
鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調
質圧延などの工程を経て製造される。このようにして製
造されたメッキ原板の、缶外面に相当する面の下層に安
定な耐錆性を示すZnメッキ層を施し、次いでその上層
には耐錆性の向上、DI成形加工時の潤滑性機能などの
特性をもつSnメッキ層を施す。缶内面側に相当する面
については特に規制するものではな(、Snメッキ、電
解クロム酸処理あるいはNiメッキを施し、更にはその
上に有機樹脂を施したものでもなんら差し支えない。ま
た、それらの製造法に関しても特に規制するものではな
い。
In the present invention, as the plated original plate, a plated original plate having a material suitable for the purpose of use as a steel plate for containers is used. There are no particular restrictions on the manufacturing method of the plated original plate, and it is manufactured through a normal steel billet manufacturing process such as hot rolling, pickling, cold rolling, annealing, and temper rolling. A Zn plating layer that exhibits stable rust resistance is applied to the lower layer of the surface corresponding to the outer surface of the can on the plated original sheet manufactured in this way, and then the upper layer is applied to improve rust resistance and provide lubrication during DI molding. A Sn plating layer with properties such as sexual function is applied. There are no particular restrictions on the surface corresponding to the inner surface of the can (it may be Sn-plated, electrolytically chromic acid treated, or Ni-plated, and even coated with organic resin. There are no particular regulations regarding manufacturing methods.

次に、本発明の特徴である外面側に施すメッキ層の作用
効果およびその製造法について述べる。
Next, the effects of the plating layer applied to the outer surface, which is a feature of the present invention, and the manufacturing method thereof will be described.

外面側の下層にZnメッキ層を施し、上層にSnメッキ
層を施す目的は、■外面側の印刷外観の向上、■良好な
りI成形性、■優れた耐錆性の確保にある。
The purpose of applying a Zn plating layer to the lower layer on the outer surface side and applying a Sn plating layer to the upper layer is to (1) improve the printed appearance on the outer surface side, (2) ensure good moldability, and (2) ensure excellent rust resistance.

まず、外観の向上には、上層と下層のトータルメッキ量
が大きな影響を与える。即ち、DI成形後ホワイトイン
キ印刷後の外観が暗いのは、DI成形時にメッキ層が損
傷され分光反射率の低い地鉄が露出するからである。つ
まり、印刷後の外観を向上させるにはDI成形後におい
ても鉄が露出しないようにメッキ層を付与しなくてはな
らない。上層と下層のトータルメッキ量が1.1g/m
2未満だと、DI成形後に鉄の露出を防止することがで
きず、良好な外観を確保することが難しい。また、トー
タルメンキ量が15g/r+(を越えると、外観向上の
効果が飽和すると共に経済的な面で不利となる。
First, the total amount of plating in the upper and lower layers has a large effect on improving the appearance. That is, the reason why the appearance after white ink printing after DI molding is dark is because the plating layer is damaged during DI molding and the base metal with low spectral reflectance is exposed. In other words, in order to improve the appearance after printing, a plating layer must be applied to prevent iron from being exposed even after DI molding. Total plating amount of upper layer and lower layer is 1.1g/m
If it is less than 2, it will not be possible to prevent iron from being exposed after DI molding, and it will be difficult to ensure a good appearance. Moreover, if the total amount of spacing exceeds 15 g/r+(), the effect of improving the appearance will be saturated and it will be disadvantageous from an economic point of view.

即ち、上層と下層のトータルメッキ量は1.1〜15g
/rTfが適正である。更にその内訳は、下層のZnメ
ッキ量を1〜log/m2、上層のSnメッキ量を0.
1〜5 g/m2に規制する。その理由は、下層のZn
メッキ量がIg/r4未満だと良好な耐錆性を確保する
ことができず、Log/m2を越えると耐錆性向上効果
が飽和すると共に経済的な面で不利となる。更に、上層
のSnメンキ量がo、xg/nf未満だと優れた潤滑性
を有するSn量が不足するためDI成形性が劣化し連続
成形時にrかしり」等の欠陥が発生するようになり、良
好なりI成形性を確保することができなくなる。また、
Snのメッキ量が5g/nfを越えるとDI成形性に関
する潤滑効果が飽和すると共に経済的に不利になる。
In other words, the total plating amount for the upper and lower layers is 1.1 to 15g.
/rTf is appropriate. Furthermore, the breakdown is that the amount of Zn plating on the lower layer is 1 to log/m2, and the amount of Sn plating on the upper layer is 0.
It is regulated to 1 to 5 g/m2. The reason is that the lower layer of Zn
If the plating amount is less than Ig/r4, good rust resistance cannot be ensured, and if it exceeds Log/m2, the effect of improving rust resistance is saturated and it is economically disadvantageous. Furthermore, if the amount of Sn coating in the upper layer is less than o, xg/nf, the amount of Sn, which has excellent lubricity, will be insufficient, so DI formability will deteriorate and defects such as "r" will occur during continuous molding. , it becomes impossible to ensure good formability. Also,
If the Sn plating amount exceeds 5 g/nf, the lubricating effect on DI formability will be saturated and it will be economically disadvantageous.

つまり、下層のZnメッキ層をl〜Log/m2施し、
上層のSnメッキ層を0.1〜5 g/r+(施した二
層メッキ鋼板は水分、酸素などが十分存在する腐食環境
下にさらされ、メンキ層に加工ダメージとかピンホール
があった場合でも、下層メッキ層の効果により地鉄から
の錆の発生は認められず、耐錆性は良好である。更に、
上層メンキ層の効果により良好な連続DI成形性が確保
され、DI加工後も下層と上層のトータルメッキ量効果
により地鉄は殆ど露出せず、良好な印刷仕上がり性を発
揮することができる。
In other words, the lower Zn plating layer is applied at l~Log/m2,
The upper Sn plating layer is coated with a coating of 0.1 to 5 g/r+ (double-layer plated steel sheets are exposed to a corrosive environment with sufficient moisture and oxygen, and even if there is machining damage or pinholes in the coating layer) Due to the effect of the lower plating layer, no rust is observed from the base steel, and the rust resistance is good.Furthermore,
The effect of the upper coating layer ensures good continuous DI formability, and even after DI processing, the base iron is hardly exposed due to the effect of the total plating amount of the lower and upper layers, and good printing finish can be achieved.

次に、上述のSn/Zn二層メッキ鋼板の製造法につい
て述べる。
Next, a method for manufacturing the above-mentioned Sn/Zn double-layer plated steel sheet will be described.

まず、下層のZnメッキについては通常工業的に用いら
れている硫酸浴、塩化物浴等で行えばよく、特にメッキ
条件を規制するものではないが、浴組成としては硫酸亜
鉛200〜500g/j2、硫酸ソーダ60〜100g
/nで十分である。また、電流密度は10〜100 A
/dm2、浴温は40〜70°Cという条件で十分であ
る。
First, the Zn plating of the lower layer may be carried out using a sulfuric acid bath, a chloride bath, etc., which are usually used industrially, and there are no particular restrictions on the plating conditions, but the bath composition should be 200 to 500 g/j2 of zinc sulfate. , 60-100g of sodium sulfate
/n is sufficient. In addition, the current density is 10 to 100 A
/dm2 and a bath temperature of 40 to 70°C are sufficient.

次に、上層のSnメッキについて述べる。下層にZnメ
ッキ層を有し、その上にSnメッキ層を施す場合、前述
したように次の2つの問題点を解決しなくてはならない
。即ち、 ■)下層のZnメンキ層を溶解させることなく、上層に
Snメッキ層を施すことのできるSnメッキ浴の開発 2)容器用メッキ鋼板として十分な商品価値を有する良
好な外観を得ることのできるSnメッキ浴の開発 である。
Next, the Sn plating of the upper layer will be described. When a Zn plating layer is provided as a lower layer and a Sn plating layer is applied on top of the Zn plating layer, the following two problems must be solved as described above. Namely, 1) development of a Sn plating bath that can apply a Sn plating layer to the upper layer without dissolving the lower Zn coating layer; and 2) development of a good appearance with sufficient commercial value as a plated steel sheet for containers. This is the development of a Sn plating bath that can be used.

始めに、1)のZn金属のSnメッキ浴への溶解という
問題について述べる。これは、Zn金属は電位的に卑な
ため極めて活性であり、Snメッキ浴に浸漬されると活
性溶解が起こりZn”イオンとしてSnメッキ浴中に溶
出し、高価なSnメッキ浴を汚染し、連続操業が不可能
になる。この現象は、特にSnメッキ浴として通常工業
的に使用されている硫酸系のフェロスタン浴、塩化物浴
のようにpHの非常に低いSnメッキ浴を用いた場合顕
著に現れる。Zn金属は強酸性、強アルカリ性のpn域
において活性に溶解する。Zn金属の熔解が起こりにく
いSnメッキ浴の適正なpH域は、pH=5〜12であ
る。pHが5未満だと、Zn金属が活性に熔解しSnメ
ッキ浴が汚染される。また、pHが12を越えるとアル
カリ性になり過ぎ、Znの活性溶解を引き起こす。つま
り、Zn金属の活性溶解が起こりに(く、Snメッキ浴
の汚染がされないSnメッキ浴の適正pH域はpH=5
〜12である。
First, the problem of 1) dissolution of Zn metal into a Sn plating bath will be described. This is because Zn metal is extremely active because it has a base potential, and when it is immersed in a Sn plating bath, it undergoes active dissolution and is eluted into the Sn plating bath as Zn'' ions, contaminating the expensive Sn plating bath. Continuous operation becomes impossible.This phenomenon is particularly noticeable when using a Sn plating bath with a very low pH, such as a sulfuric acid-based ferrostane bath or a chloride bath, which are usually used industrially as a Sn plating bath. Zn metal is actively dissolved in the strongly acidic and strongly alkaline pn range.The appropriate pH range for the Sn plating bath, where Zn metal is unlikely to melt, is between pH 5 and 12.When the pH is less than 5. Then, Zn metal is actively dissolved and the Sn plating bath is contaminated.Also, when the pH exceeds 12, it becomes too alkaline and causes active dissolution of Zn.In other words, active dissolution of Zn metal does not occur. The appropriate pH range for the Sn plating bath without contamination is pH = 5.
~12.

このような弱酸〜中性〜弱アルカリ性のSnメッキ浴と
しては、ピロリン酸系のメッキ浴が適正である。その理
由は、このようなptt域ではSn”イオンは単独では
メッキ浴中に存在し得す、水酸化物として沈澱する。S
nメッキ可能なSn”イオンとしてメッキ浴中に安定に
存在させるためには、錯塩として浴中に存在させねばな
らず、そのためにはピロリン酸浴が適正である。ピロリ
ン酸イオンは、Snイオンと安定な錯塩を形成すること
が可能であり、本発明のSnメッキ浴として、ピロリン
酸系のメッキ浴を規制する。ここで、ビロリン酸系Sn
メッキ浴の濃度、メンキ温度等は特に規制するものでは
ない。
As such a weak acidic to neutral to weakly alkaline Sn plating bath, a pyrophosphoric acid plating bath is suitable. The reason is that in such a PTT region, Sn'' ions, which can be present alone in the plating bath, precipitate as hydroxides.
In order to stably exist in the plating bath as a Sn'' ion that can be plated, it must be present in the bath as a complex salt, and a pyrophosphate bath is suitable for this purpose.Pyrophosphate ions are compatible with Sn ions. It is possible to form a stable complex salt, and as the Sn plating bath of the present invention, a pyrophosphate-based plating bath is regulated.
There are no particular restrictions on the concentration of the plating bath, the plating temperature, etc.

しかし、このような適性pH域のSnメッキ浴において
もZn金属の溶解は完全には抑制されず、工業的に適用
するには十分とは言えない。連続操業可能な工業的に十
分なレベルまでZn金属の溶解を抑えるには、種々の検
討の結果、添加剤としてEtholated α−Na
phthol mono 5ulfonic Ac1d
(以下ENSAと称す)を用いれば良いことが明らかに
なった。これは、ENSAは界面活性剤であるためEN
SAがZn金属の表面に吸着され、Snメッキ浴中での
Znの活性溶解を防止する。更に、ENSAの添加量に
ついては0.01g/lfi未満ではZnの活性溶解を
防止する効果が小さく工業的に十分な作用を発揮しない
。また、ENSAの添加量が5g/lを越えるとZn金
属の溶解を防止する効果が飽和するとともに、経済的に
不利になる。即ち、Zn金属の溶解を防止する適正なE
NSAの添加量は0.01〜5 g//2に規制される
However, even in such a Sn plating bath with a suitable pH range, the dissolution of Zn metal is not completely suppressed, and it cannot be said to be sufficient for industrial application. In order to suppress the dissolution of Zn metal to an industrially sufficient level for continuous operation, after various studies, we decided to use Etholated α-Na as an additive.
phthol mono 5ulfonic Ac1d
(hereinafter referred to as ENSA) has been found to be suitable. This is because ENSA is a surfactant.
SA is adsorbed on the surface of Zn metal and prevents active dissolution of Zn in the Sn plating bath. Furthermore, if the amount of ENSA added is less than 0.01 g/lfi, the effect of preventing the active dissolution of Zn will be small and it will not exhibit a sufficient effect industrially. Furthermore, if the amount of ENSA added exceeds 5 g/l, the effect of preventing the dissolution of Zn metal is saturated, and this becomes economically disadvantageous. That is, an appropriate E to prevent dissolution of Zn metal.
The amount of NSA added is regulated to 0.01 to 5 g//2.

引き続き、2)のSnメッキ層の良好な外観を確保する
方法について述べる。ピロリン酸系のメッキ浴からのS
n金属の電析はメッキ層の光沢および平滑性という観点
で大きな問題を抱えている。これは、Snメンキ後の外
観が灰黒色を呈して金属光沢が殆ど認められないという
現象で、容器用表面処理調板としての商品価値が著しく
損なわれることになる。この理由は、従来のピロリン酸
系snメッキ浴からSn金属が電析する過程において■
 Sn金属の析出は水素発生反応との競争反応であり、
水素発生が大量に起こった場所ではSnメンキ層のメッ
キ焼は現象でメッキ外観が灰黒色を呈するとともに、水
素発生が局部的に起こった場所ではメンキ層にピンホー
ルが発生し、メッキ層の平滑性が失われる。
Next, 2) method of ensuring a good appearance of the Sn plating layer will be described. S from pyrophosphate plating bath
Electrodeposition of n-metal has major problems in terms of gloss and smoothness of the plating layer. This is a phenomenon in which the appearance after Sn coating is grayish-black and almost no metallic luster is observed, and the commercial value as a surface treatment plate for containers is significantly impaired. The reason for this is that in the process of electrodepositing Sn metal from the conventional pyrophosphate-based Sn plating bath,
The precipitation of Sn metal is a competitive reaction with the hydrogen generation reaction,
In places where a large amount of hydrogen has been generated, the plating of the Sn coating layer is a phenomenon that causes the plating to take on a grayish-black appearance, and in places where hydrogen generation has occurred locally, pinholes appear in the coating layer, causing the plating layer to become smooth. Gender is lost.

■ Sn金属の電析が析出しやすい場所で集中的に起こ
り、メッキ層の平滑性が損なわれる。
■ Electrodeposition of Sn metal occurs intensively in areas where it is likely to deposit, impairing the smoothness of the plating layer.

という2点である。There are two points.

この問題を解決するために種々の検討を重ねた結果、本
発明者らはピロリン酸系メッキ浴からSn金属を電析さ
せる際にアミノ酸化合物あるいはクエン酸塩の一種また
は二種をピロリン酸系メッキ浴に添加すれば良いことを
見出した。
As a result of various studies to solve this problem, the present inventors decided to use one or two amino acid compounds or citrates in pyrophosphate plating when depositing Sn metal from a pyrophosphate plating bath. We discovered that it can be added to the bath.

つまり、アミノ酸化合物の添加によりSnメッキ時の水
素過電圧を著しく増加させることが可能であり、この水
素過電圧が高いということは水素の発生反応を抑制する
効果が大きいことを示している。アミノ酸化合物の添加
により、ピロリン酸系メッキ浴からのSnメンキ時に水
素の大量発生の現象がなくなりメッキ焼けのない金属光
沢を有したSnメッキ層が得られる。更には局部的な水
素の大量発生が減少するので、Snメッキ層のピンホー
ルが減少し、メッキ層の平滑性も向上する。
In other words, it is possible to significantly increase the hydrogen overvoltage during Sn plating by adding an amino acid compound, and the fact that this hydrogen overvoltage is high indicates that the effect of suppressing the hydrogen generation reaction is large. By adding the amino acid compound, the phenomenon of large amounts of hydrogen being generated during Sn plating from a pyrophosphoric acid plating bath is eliminated, and a Sn plating layer with metallic luster without plating burn can be obtained. Furthermore, since the local generation of a large amount of hydrogen is reduced, the number of pinholes in the Sn plating layer is reduced, and the smoothness of the plating layer is also improved.

アミノ酸化合物としては特に規定するものではなく、グ
リシン、アラニン、チロシン、セリン、シスチン、グル
タミン酸、アスパラギン酸、リジン、ヒスチジン等の化
合物が含まれ、これらのアミノ酸化合物が高分子化され
たゼラチン、ペプトン、アルブミン等の蛋白質も本発明
に含まれる。
Amino acid compounds are not particularly specified, and include compounds such as glycine, alanine, tyrosine, serine, cystine, glutamic acid, aspartic acid, lysine, and histidine, and include gelatin, peptone, and polymerized polymers of these amino acid compounds. Proteins such as albumin are also included in the present invention.

また、クエン酸塩を添加することによりSnが遷移状態
で析出すると即座にエネルギー的に安定化され、Sn金
属がカソード面全体に均一に析出する。
Further, when Sn is precipitated in a transition state by adding citrate, it is immediately stabilized energetically, and Sn metal is precipitated uniformly over the entire cathode surface.

クエン酸塩の添加を行わないと、カソード面に遷移状態
で析出したSnがエネルギー的により安定化できる場所
に移動してSn金属として析出する。つまり、メンキ浴
中へのクエン酸塩の添加により、Sn金属の析出がある
特定の析出しやすい場所で集中的に起こるということが
無くなり、Snメッキ層の平滑性は大きく向上し良好な
外観のSnメッキ層を得ることができる。
If citrate is not added, Sn precipitated on the cathode surface in a transition state moves to a place where it can be more energetically stabilized and precipitates as Sn metal. In other words, by adding citrate to the coating bath, the precipitation of Sn metal does not occur concentratedly in certain areas where it tends to precipitate, and the smoothness of the Sn plating layer is greatly improved, resulting in a good appearance. A Sn plating layer can be obtained.

クエン酸塩としては特に規制するものではなく、クエン
酸のナトリウム塩、カリウム塩、アンモニウム塩等が含
まれる。
Citrates are not particularly regulated, and include sodium salts, potassium salts, ammonium salts, etc. of citric acid.

次に、アミノ酸化合物およびクエン酸塩の添加量につい
て述べる。
Next, the amounts of the amino acid compound and citrate added will be described.

まず、アミノ酸化合物の添加量については、0.01g
/l未満ではSnメッキ時の水素過電圧を増大させる効
果が小さく、メッキ焼けを防止し金属光沢を有する良好
なSnメッキ外観を得られる効果が認められない。また
、その添加量が5g/lを越えると水素過電圧を増大さ
せる作用効果が飽和すると共に、経済的に不利になる。
First, the amount of amino acid compound added is 0.01g.
If it is less than /l, the effect of increasing hydrogen overvoltage during Sn plating is small, and the effect of preventing plating burn and obtaining a good Sn plating appearance with metallic luster is not recognized. Furthermore, if the amount added exceeds 5 g/l, the effect of increasing the hydrogen overvoltage becomes saturated and becomes economically disadvantageous.

クエン酸塩の添加量については、1g/2未満では遷移
状態のSnをエネルギー的に安定化させる効果が小さく
、Snメンキ層の良好な平滑性を確保することができな
い。更に、その添加量が50g/I!を越えると平滑性
を確保できる効果が飽和すると共に、経済的に不利とな
る。
Regarding the amount of citrate added, if it is less than 1 g/2, the effect of energetically stabilizing Sn in the transition state is small, and good smoothness of the Sn coating layer cannot be ensured. Furthermore, the amount added is 50g/I! If it exceeds this, the effect of ensuring smoothness will be saturated and it will be economically disadvantageous.

以上をまとめると、Sn/Zn二層鋼板を製造する際、
下層のZnメッキ層の溶解をさせる事なく、上層に外観
の良好なSnメッキを施すには、Snメッキ浴として0
.01〜5g/lのENSAを添加し、0.01〜5g
/lのアミノ酸化合物あるいは1〜50 g / Qの
クエン酸塩のうち一種または二種を添加したpl(5〜
12のピロリン酸系Snメッキ浴を用いればよい。
To summarize the above, when manufacturing Sn/Zn double layer steel plate,
In order to apply Sn plating on the upper layer with a good appearance without dissolving the lower Zn plating layer, the Sn plating bath should be 0.
.. Add 0.01-5g/l ENSA, 0.01-5g
/l of amino acid compound or 1 to 50 g/Q of citrate added to one or two of them (5 to 1
No. 12 pyrophosphoric acid-based Sn plating bath may be used.

引き続き、このように缶外面相当面にSn/Zn二層メ
ッキ層を有するメッキ調板に対して、塗料密着性、塗装
後耐食性の向上を目的とし必要に応じてクロメート処理
が施されるが、01缶用途に対しては、クロメート処理
を行う場合と行わない場合がある。
Subsequently, the plated plate having the Sn/Zn two-layer plating layer on the surface corresponding to the outer surface of the can is subjected to chromate treatment as necessary for the purpose of improving paint adhesion and post-painting corrosion resistance. For 01 can applications, chromate treatment may or may not be performed.

クロメート処理を行う場合には、一般にクロム酸のナト
リウム塩、カリウム塩、アンモニウム塩の水溶液中での
浸漬処理が行われる。これは、電解により生成するクロ
メート被膜では潤滑性に乏しくI成形性を劣化せしめる
。したがって、Sn/Zn二層メッキ層の良好なりI成
形性を損なうことなく、メンキ層の空気酸化による変色
を防くためには、浸漬クロメート処理を行えばよい。ク
ロメート付着量は浴濃度によりコントロールできるが、
金属クロム量換算で1■/ボ以上のクロム付着量であれ
ば空気酸化による変色などを防くことができる。更には
、01缶用途の場合、DI成形後に塗装性能、塗装後耐
食性を向上させるためにクロメート処理あるいはリン酸
処理が施されるが、本発明においてはDI成形後のこれ
らの処理方法及び処理条件については、特に規制するも
のではなく、通常行われている処理方法が適用される。
When performing chromate treatment, immersion treatment in an aqueous solution of sodium salt, potassium salt, or ammonium salt of chromic acid is generally performed. This is because the chromate film produced by electrolysis has poor lubricity and deteriorates I-formability. Therefore, in order to prevent discoloration of the coating layer due to air oxidation without impairing the good formability of the Sn/Zn two-layer plating layer, immersion chromate treatment may be performed. The amount of chromate deposited can be controlled by the bath concentration, but
Discoloration due to air oxidation can be prevented if the amount of chromium deposited is 1 cm/bo or more in terms of the amount of metallic chromium. Furthermore, in the case of 01 can applications, chromate treatment or phosphoric acid treatment is performed after DI molding to improve coating performance and post-painting corrosion resistance, but in the present invention, these treatment methods and treatment conditions after DI molding are There are no particular regulations regarding this, and commonly used processing methods will apply.

Dll用途の場合には、このように微量のクロメート被
膜が有効であるが製缶工程でのDI成形後の水洗条件に
よっては表面に水洗模様が発生することがあり、クロメ
ート処理を施さないで製造されることもある。従って、
本発明にはクロメート処理を施さない場合も含まれる。
In the case of Dll applications, such a small amount of chromate coating is effective, but depending on the water washing conditions after DI molding in the can making process, water washing patterns may appear on the surface, so manufacturing without chromate treatment may be difficult. Sometimes it is done. Therefore,
The present invention also includes cases where chromate treatment is not performed.

また、缶蓋用途に対するクロメート処理は電解処理が行
われる。電解処理により生成したクロメート被膜は、缶
内面に対しては缶内容物が塗膜を通過して塗膜下で腐食
が進行するアンダーカッティングコロ−ジョンの防止、
缶外面に対しては貯蔵時に塗膜下で発生する糸状錆、い
わゆるフィリフォームコロージゴンなどの耐錆性の向上
に非常に効果がある。
Further, chromate treatment for can lid applications is performed by electrolytic treatment. The chromate coating produced by electrolytic treatment prevents undercutting corrosion on the inside of the can, where the contents of the can pass through the coating and corrosion progresses under the coating.
On the outside of cans, it is very effective in improving the rust resistance against filamentous rust, so-called filiform corrodigon, which occurs under the paint film during storage.

このようなりロメート被膜が形成されていることにより
、長時間にわたり塗膜の密着性が劣化せず、良好な耐食
性、耐錆性が保持される。また、クロメート被膜は硫黄
化合物を含む食品、例えば魚肉、畜産物などの場合に見
られる鋼板の表面の黒変、即ち硫化黒変を防止する効果
が大きい。このように、クロメート被膜は特に塗装され
て用いられる場合には性能向上に効果が大きいが、多く
付着しすぎるとEOE加工など厳しい加工を受けた部分
でクロメート被膜層にクラックが発生し、かえって耐食
性を損なうことがある。ここで言うクロメート被膜とは
水和酸化クロム単一の被膜即ち本来のクロメート被膜と
、いま一つは下層に金属クロム層、上層に水和酸化クロ
ム層の二層よりなる被膜の二つの場合を指している。
By forming such a romate film, the adhesion of the coating does not deteriorate over a long period of time, and good corrosion resistance and rust resistance are maintained. Further, the chromate coating has a great effect of preventing blackening of the surface of the steel plate, that is, sulfide blackening, which occurs in foods containing sulfur compounds, such as fish meat and livestock products. In this way, the chromate film has a great effect on improving performance, especially when it is used after being painted, but if too much is attached, cracks will occur in the chromate film layer in areas that have undergone severe processing such as EOE processing, and the corrosion resistance will deteriorate. may be damaged. The chromate coating referred to here refers to two cases: one is a single coating of hydrated chromium oxide, that is, the original chromate coating, and the other is a coating consisting of two layers: a metallic chromium layer on the bottom layer and a hydrated chromium oxide layer on the top layer. pointing.

このように、クロメート処理を施す場合には良好な塗装
性を有し加工部耐食性を劣化せしめない適正なりロム付
着量は1〜50■/ポが選定される。クロメート処理を
施さない場合には、適正クロム付着量は規制されない。
As described above, when performing chromate treatment, the appropriate ROM adhesion amount is selected to be 1 to 50 cm/po, which has good paintability and does not deteriorate the corrosion resistance of the processed area. If chromate treatment is not performed, the appropriate amount of chromium adhesion is not regulated.

即ち、適正クロム付着量を規制する場合には、クロム付
着量が1■/ポ未満では塗料密着性の向上、アンダーカ
ッティングコロ−ジョンなどの塗膜上腐食の防止に効果
が得られないので、1■/ボ以上のクロム付着量とする
。一方、50■/rTrを越えるとEOE加工の厳しい
加工を受けた部分での加工部耐食性が劣化する。そのた
め、クロム付着量は50■/ボ以下とする。
That is, when regulating the appropriate amount of chromium adhesion, if the amount of chromium adhesion is less than 1 cm/po, it will not be effective in improving paint adhesion or preventing corrosion on the paint film such as undercutting corrosion. The amount of chromium deposited should be 1 cm/bo or more. On the other hand, if it exceeds 50 .mu./rTr, the corrosion resistance of the processed portion deteriorates in the portion that has undergone severe EOE processing. Therefore, the amount of chromium deposited should be 50 .mu./bo or less.

クロメート処理は各種のクロム酸のナトリウム塩、カリ
ウム塩、アンモニウム塩の水溶液による浸漬処理、スプ
レィ処理、電解処理などいずれの方法で行っても良いが
、特に陰極電解処理が優れている。とりわけ、クロム酸
に304′−イオン、F−イオン(錯イオンを含む)あ
るいはそれらの混合物を添加した水溶液中での陰極電解
処理が最も優れている。クロム酸の濃度は特に規制しな
いが、20〜200 g/1.の範囲で充分である。
The chromate treatment may be carried out by any method such as immersion treatment with an aqueous solution of various sodium salts, potassium salts, or ammonium salts of chromic acid, spray treatment, or electrolytic treatment, but cathodic electrolytic treatment is particularly excellent. In particular, cathodic electrolytic treatment in an aqueous solution in which 304'-ions, F-ions (including complex ions), or a mixture thereof are added to chromic acid is most excellent. The concentration of chromic acid is not particularly regulated, but is 20 to 200 g/1. is sufficient.

添加するアニオンの量はCr”の1/300〜1/25
好ましくは1/200〜115oの時、最良のクロメー
ト被膜が得られる。アニオンの量がCr”の1/300
未満では均質かつ均一で塗装性能に大きく影響する良質
のクロメート被膜が得られない。また、1/25超では
、生成するクロメート被膜中に取り込まれるアニオンの
量が多(なり、塗装性能特に塗料二次密着性が劣化する
The amount of anion added is 1/300 to 1/25 of Cr”
Preferably, the best chromate coating is obtained when the angle is 1/200 to 115 degrees. The amount of anion is 1/300 of Cr”
If it is less than that, it will not be possible to obtain a homogeneous and uniform chromate film of good quality, which will greatly affect coating performance. Moreover, if it exceeds 1/25, a large amount of anions will be incorporated into the formed chromate film, resulting in deterioration of coating performance, especially secondary paint adhesion.

添加されるアニオンは硫酸、硫酸クロム、弗化アンモン
、弗化ソーダの化合物などの形態でクロム酸浴中へ添加
される。
The anions to be added are added to the chromic acid bath in the form of compounds such as sulfuric acid, chromium sulfate, ammonium fluoride, and sodium fluoride.

浴温は特に規制するものではないが、30〜70゛Cの
範囲が作業性の点から適切な温度範囲である。陰極電解
電流密度は5〜100A/dm”の範囲で充分である。
Although the bath temperature is not particularly restricted, a range of 30 to 70°C is an appropriate temperature range from the viewpoint of workability. A cathode electrolytic current density in the range of 5 to 100 A/dm is sufficient.

処理時間は、前記処理条件の任意の組み合わせにおいて
、クロム付着量が前記に示した1〜50■/ボの範囲に
入るように設定する。
The treatment time is set so that the amount of chromium deposited falls within the range of 1 to 50 cm/bore as shown above under any combination of the treatment conditions.

また、水和酸化クロム層は、電解処理後の水溶液中での
浸漬時間の調整あるいは別に設けられた処理タンクで濃
度の異なるクロム酸アニオン系処理浴での溶解処理によ
りその被膜量が調整される。
In addition, the amount of the hydrated chromium oxide layer can be adjusted by adjusting the immersion time in the aqueous solution after electrolytic treatment or by dissolving it in a chromate anion treatment bath with different concentrations in a separate treatment tank. .

容器用素材として使用される場合、クエン酸などの有機
酸水溶液を含む腐食環境では、塗膜を通して侵入してく
る腐食水溶液が塗膜下でメッキ層を腐食させるため、金
属クロム層を析出させ腐食水溶液がメンキ金属表面に到
達するのを抑制する効果が顕著である。
When used as a container material, in a corrosive environment containing aqueous organic acids such as citric acid, the corrosive aqueous solution that enters through the paint film corrodes the plating layer under the paint film, causing the precipitation of a metallic chromium layer and corrosion. The effect of suppressing the aqueous solution from reaching the metal surface is remarkable.

〔実施例〕〔Example〕

以下に本発明の実施例について述べ、その結果を第1表
に示す。
Examples of the present invention are described below, and the results are shown in Table 1.

冷間圧延、焼鈍工程により、DI缶用途9缶蓋用途に応
した材質と板厚に調整したメッキ原板を5%苛性ソーダ
中で電解脱脂水洗後、10%硫酸中で電解酸洗し表面活
性化後、缶外面に相当する面に(1)に示す条件でZn
メッキを行い、引き続きその上に(21(イ)、(ロ)
、(ハ)に示す条件でSnメッキを施した。また、比較
例として(2)−’(ニ)、(ホ)に示す条件でもSn
メッキを行った。そして、(3)−(イ)、(ロ)(ハ
)に示す条件でクロメート処理を行ったもの、およびク
ロメート処理を行わなかったものを作成した。缶内面側
に相当する面には、必要に応じてSnメッキあるいはS
nメッキ、Niメッキ、電解クロム酸処理を行ってから
有機フィルム(PET、PP)を貼りつけたものを用い
た。
Through cold rolling and annealing processes, the plated original plate was adjusted to the material and thickness suitable for 9 DI cans and can lids, and was electrolytically degreased and washed with water in 5% caustic soda, and then electrolytically pickled in 10% sulfuric acid for surface activation. After that, Zn was applied to the surface corresponding to the outer surface of the can under the conditions shown in (1).
Plating is performed, and then on top of that (21 (a), (b)
Sn plating was performed under the conditions shown in (c). Moreover, as a comparative example, even under the conditions shown in (2)-'(d) and (e), Sn
Plating was done. Then, samples were prepared that were subjected to chromate treatment under the conditions shown in (3)-(a), (b) and (c), and those that were not subjected to chromate treatment. The surface corresponding to the inner surface of the can is coated with Sn plating or S as required.
After N plating, Ni plating, and electrolytic chromic acid treatment, an organic film (PET, PP) was attached.

(1)  Znメッキ条件 メッキ浴組成 硫酸亜鉛   400g/l硫酸ソーダ
  100g/lfi メッキ浴温  50°C 電流密度   50A/dm” (電解時間はZnメッキ量に応じて調整)(2)  S
nメッキ条件 ピロリン酸浴 (イ)メッキ浴組成 ピロリン酸第−錫   60g//l ピロリン酸カリウム 250gzl ENSA       0.01〜5g/ρ(必要に応
じて添加量を調整) アミノ酸化合物 0.01〜5g/l (必要に応じて添加量を調整) (ロ)メッキ浴組成 ピロリン酸第−錫   60 g/l ピロリン酸カリウム 250 g/1 ENSA         0.01〜5g/l(必要
に応じて添加量を調整) クエン酸塩    1〜50 g/l (必要に応して添加量を調整) (ハ)メッキ浴組成 ピロリン酸第−錫   60 g/l!ピロリン酸カリ
ウム 250 g/A ENSA       0.01〜5g/l(必要に応
じて添加量を調整) アミノ酸化合物 0.01〜5 g/l(必要に応じて
添加量を調整) クエン酸塩    1〜50g/l (必要に応じて添加量を調整) メッキ浴のpH5〜12(必要に応してpi(を調整)
メッキ浴温  50°C 電流密度   20A/dm” (電解時間はSnメッキ量に応じて調整)尚、比較例と
して通常工業的に使用されている硫酸浴(フェロスタン
浴)、塩化物浴を用いてSnメッキを行った。各々のメ
ッキ条件を(ニ)、(ホ)に示す。
(1) Zn plating conditions Plating bath composition Zinc sulfate 400g/l Sodium sulfate 100g/lfi Plating bath temperature 50°C Current density 50A/dm" (Electrolysis time is adjusted according to the amount of Zn plating) (2) S
n Plating conditions Pyrophosphate bath (a) Plating bath composition Tinn pyrophosphate 60g//l Potassium pyrophosphate 250gzl ENSA 0.01-5g/ρ (adjust amount as necessary) Amino acid compound 0.01-5g /l (adjust the amount added as necessary) (b) Plating bath composition Tinn pyrophosphate 60 g/l Potassium pyrophosphate 250 g/l ENSA 0.01-5 g/l (adjust the amount added as necessary) Adjustment) Citrate 1 to 50 g/l (Adjust the amount added as necessary) (c) Plating bath composition Tinn pyrophosphate 60 g/l! Potassium pyrophosphate 250 g/A ENSA 0.01-5 g/l (adjust the amount added as necessary) Amino acid compound 0.01-5 g/l (adjust the amount added as necessary) Citrate 1- 50g/l (Adjust the amount added as necessary) pH of the plating bath 5-12 (adjust the pi as necessary)
Plating bath temperature: 50°C Current density: 20A/dm" (Electrolysis time is adjusted according to the amount of Sn plating) As a comparative example, a sulfuric acid bath (ferrostane bath) and a chloride bath, which are usually used industrially, were used. Sn plating was performed.The plating conditions for each are shown in (d) and (e).

(ニ)フェロスタン浴 メッキ浴組成 硫酸錫    30〜40 g/lフェ
ノ−)lフルフオン酸  25〜3 5  g/12E
NSA+EN               8  g
 / nメッキ浴のpH1以下 メッキ浴温  45°C 電流歯a20A/dm2 (電解時間はSnメッキ量に応して調整)(ホ)塩化物
浴 メッキ浴組成 塩化第一錫    75g//l弗化ナ
トリウム  25 g/l。
(d) Ferrostane bath Plating bath composition Tin sulfate 30-40 g/l Phenol-)l Flufonic acid 25-35 g/12E
NSA+EN 8g
/N plating bath pH 1 or less Plating bath temperature 45°C Current tooth a20A/dm2 (Electrolysis time is adjusted according to the amount of Sn plating) (e) Chloride bath Plating bath composition Stannous chloride 75g//l fluoride Sodium 25 g/l.

弗化水素カリウム 50g/l! 塩化ナトリウム  45g/l メッキ浴のpH2,7 メッキ浴温  65℃ 電流密度   50A/dm” (電解時間はSnメッキ量に応じて調整)(3)クロメ
ート処理条件 (イ)浴組成  Na2jr’zO924g / 1p
H4,5 浴温   45°C 処理条件 浸漬処理 (ロ)浴組成  CrO+      100 g/ 
nS0.2−     1.0 g/42浴温   5
o″C 電流密度 5〜60A/dm” (電解時間はクロム付着量に応じて調整)(ハ)浴組成
  CrCh80g/1 504”−0,05g / f NazSiFi  1   2.58 / INHaF
       0.5 g / 12浴温   45°
C 電流密度 5〜60 A /dm” (電解時間はクロム付着量に応じて調整)(A)Znメ
ッキ層の溶解性 (1)の条件でZnメッキを行った後、その上に(2)
の条件でSnメッキを施す際に下層のZn金属の溶解量
を測定した。Znメッキ層の溶解量の測定方法は、Zn
メッキを行った後Snメッキを行う前後でZnメッキ量
を化学分析にて測定し、そのZnメッキ量の差をZn金
属の溶解量として求めた。
Potassium hydrogen fluoride 50g/l! Sodium chloride 45g/l Plating bath pH 2.7 Plating bath temperature 65℃ Current density 50A/dm" (Electrolysis time is adjusted according to the amount of Sn plating) (3) Chromate treatment conditions (a) Bath composition Na2jr'zO924g / 1p
H4,5 Bath temperature 45°C Treatment conditions Immersion treatment (b) Bath composition CrO+ 100 g/
nS0.2- 1.0 g/42 Bath temperature 5
o"C Current density 5-60A/dm" (Electrolysis time is adjusted according to the amount of chromium deposited) (c) Bath composition CrCh80g/1 504"-0.05g / f NazSiFi 1 2.58 / INHaF
0.5 g / 12 Bath temperature 45°
C Current density 5 to 60 A/dm" (Electrolysis time is adjusted according to the amount of chromium deposited) (A) Solubility of Zn plating layer After Zn plating is performed under the conditions of (1), (2)
The amount of dissolved Zn metal in the lower layer was measured when Sn plating was performed under these conditions. The method for measuring the amount of dissolved Zn plating layer is
After performing plating, the amount of Zn plating was measured by chemical analysis before and after performing Sn plating, and the difference in the amount of Zn plating was determined as the amount of dissolved Zn metal.

第1表中のZnメンキ量はSnメンキ後のZnメッキ量
を示しており、同しく第1表中の(A)Znメッキ層の
溶解量は上記の方法で求めた溶解したZnメンキ層の量
である。
The amount of Zn coating in Table 1 indicates the amount of Zn plating after Sn coating, and the amount of dissolved Zn coating layer (A) in Table 1 is the amount of Zn coating obtained by the above method. It's the amount.

(B)Snメッキ層の外観(光沢性および平滑性)(1
)の条件でZnメッキを行った後、その上に(2)の条
件でSnメッキを施し、Snメッキ層の外観を評価した
。光沢性に関しては目視で判定し、平滑性に関しては3
000倍の電子顕微鏡(SEM)にて表面を観察して判
定した。Snメッキ層の外観に対する判定基準は以下の
とおりである。
(B) Appearance (gloss and smoothness) of Sn plating layer (1
After performing Zn plating under the conditions of (2), Sn plating was performed thereon under the conditions of (2), and the appearance of the Sn plating layer was evaluated. Glossiness is judged visually, and smoothness is judged as 3.
The determination was made by observing the surface using an electron microscope (SEM) with a magnification of 1,000 times. The criteria for determining the appearance of the Sn plating layer are as follows.

◎;メンキ層が金属光沢を有し、SEM観察でもSn金
属が全面に密に析出している。
◎: The coating layer has metallic luster, and SEM observation shows that Sn metal is densely precipitated over the entire surface.

Q;メッキ層の光沢が若干失われ、SEM観察でSn金
属が粗に析出している部分が認められる。
Q: The luster of the plating layer is slightly lost, and SEM observation reveals areas where Sn metal is coarsely precipitated.

△;メッキ層が灰白色になり、SEM観察でメッキ層の
ピンホールが認められる。
Δ: The plating layer becomes grayish white, and pinholes in the plating layer are observed by SEM observation.

×;メッキ層が灰色になり、SEM観察でメンキ層のピ
ンホールが明瞭に認められる。
×: The plating layer turned gray, and pinholes in the coating layer were clearly observed by SEM observation.

××;メッキ層が灰黒色になり、SEM観察でピンホー
ルがメッキ層全面に認められる。
XX: The plating layer turned grayish-black, and pinholes were observed on the entire surface of the plating layer by SEM observation.

また、上記処理材について以下に示す(C)〜(E)の
項目について実施し、その性能を評価した。
In addition, the above-mentioned treated materials were tested for the following items (C) to (E) to evaluate their performance.

(C)DI成形性 水溶性エマルジョンタイプのクーラントを使用して、ブ
ランクサイズ136肛φから缶径65.9閣φまで製缶
スピード110缶/minの成形条件でDI缶を成形し
、各種処理材のDI成形性を評価した。尚、評価基準は
以下の基準で判定した。
(C) DI moldability Using a water-soluble emulsion type coolant, DI cans are molded from a blank size of 136 holes to a can diameter of 65.9 holes at a molding speed of 110 cans/min, and subjected to various treatments. The DI formability of the material was evaluated. The evaluation criteria were as follows.

◎;DI成形性は極めて良好。◎; DI moldability is extremely good.

○;しごき加工時外面に若干かじりが発生するが、DI
成形性良好。
○: Slight galling occurs on the outer surface during ironing, but DI
Good moldability.

Δ、01成形は可能であるが、しごき加工時外面に強度
のかじりが発生し、DI成形性に劣る。
Δ, 01 molding is possible, but strong galling occurs on the outer surface during ironing, and DI moldability is poor.

X;DI成形過程で材料が破断し、DI成形不可能。X: The material broke during the DI molding process, making DI molding impossible.

(D)DI成形後の印刷仕上がり性 (C)の条件でDI缶を作成し、赤、白、黄色の缶外面
用インキを膜厚5Innで印p1]シ、その印刷仕上が
り性を目視で判定した。判定基準は以下のとおりである
(D) Printing finish after DI molding Create a DI can under the conditions of (C), apply red, white, and yellow ink for the outside of the can at a film thickness of 5 Inn, and visually judge the printing finish. did. The judgment criteria are as follows.

○;印刷後の外観がインキ本来の色が発揮できており、
印刷仕上がり性が極めて良好。
○: The appearance after printing shows the original color of the ink,
Extremely good print finish.

Δ;印刷後の外観が若干灰色がかり、印刷仕上がり性に
若干劣る。
Δ: The appearance after printing is slightly grayish, and the print finish is slightly inferior.

×;印刷後の外観がインキ本来の色を示さず、ブリキと
同程度に灰色がかっており、印刷仕上がり性に劣る。
×: The appearance after printing does not show the original color of the ink, and is grayish to the same extent as tinplate, and the printing finish is poor.

(E)外面側の耐錆性 (C)、(D)の条件で作成したDI印刷缶および塗装
後EOE加工を施した評価材の外面側の耐錆性を以下の
評価テストにて評価した。尚、DI印刷江はウオール部
に傷を付けた部分とボトム部を評価し、EOE加工材に
ついてはスコア一部とリヘノト部を評価した。
(E) Rust resistance on the outside surface The rust resistance on the outside surface of the DI printed cans prepared under the conditions of (C) and (D) and the evaluation materials that were subjected to EOE processing after painting was evaluated using the following evaluation test. . In addition, for DI printing, the part where the wall part was scratched and the bottom part were evaluated, and for the EOE processed material, part of the score and the recessed part were evaluated.

■水道水浸漬テスト 評価材を水道水中に常温で3日間浸漬し、評価該当部の
発錆率を測定した。
■Tap water immersion test The evaluation materials were immersed in tap water at room temperature for 3 days, and the rusting rate of the evaluation part was measured.

■冷凍サイクルテスト 評価材を一15°Cの冷凍庫に30m1n保定後、すく
49°C1相対湿度98%以上の湿気槽に60m1n入
れた後、常温で室内に22時間放置するのを1サイクル
として15サイクル試験を継続し、評価該当部の発錆率
を測定した。
■Freezing cycle test evaluation After keeping the material in a freezer at 15°C for 30ml, placing it in a humidity chamber at 49°C and relative humidity of 98% or higher for 60ml, and leaving it indoors at room temperature for 22 hours, one cycle is 15 The cycle test was continued and the rusting rate of the relevant parts was measured.

■レトルトテスト 評価材を120’CX90m1nの蒸気レトルトを施し
、評価該当部の発錆率を評価した。
(2) Retort test evaluation The material was subjected to a steam retort of 120'CX90m1n, and the rusting rate of the relevant portion was evaluated.

尚、各試験での耐錆性の評価基準は以下のとおりである
The evaluation criteria for rust resistance in each test are as follows.

◎;錆の発生が全く認められなく、耐錆性極めて良好。◎: No rust was observed at all, and the rust resistance was extremely good.

○;全発錆率5%以下で耐錆性良好。○: Good rust resistance with a total rust occurrence rate of 5% or less.

△;発錆率5〜30%で耐錆性やや劣る。Δ; Rust resistance is slightly inferior with a rust occurrence rate of 5 to 30%.

×;発錆率30%以上で耐錆性がブリキと同程度に劣る
×; Rust resistance is inferior to that of tinplate when the rusting rate is 30% or more.

××;発錆率30%以上で耐錆性がブリキより劣る。XX: Rust resistance is inferior to tinplate with a rusting rate of 30% or more.

上記の実施例から明らかなように、本発明はSnメッキ
時のZnメッキの溶解を起こすこともなく、しかもSn
メッキ層の外観性、耐錆性なと各種の特性も安定して優
れている。この反対に本発明から逸脱する比較例は、不
安定な特性を示している。
As is clear from the above examples, the present invention does not cause dissolution of Zn plating during Sn plating, and
The appearance of the plating layer, rust resistance, and various other properties are also consistently excellent. On the contrary, comparative examples that deviate from the present invention exhibit unstable characteristics.

(発明の効果) 本発明によれば、缶外面側で優れた耐錆性を発揮し、良
好な製缶加工性(特にDI成形性)を有し、D+成形後
の印刷仕上がり性も良好であり、かつ経済性にも合致す
るSn/Zn二層メッキ鋼板を提供することができる。
(Effects of the Invention) According to the present invention, the can exhibits excellent rust resistance on the outside surface side, has good can forming processability (especially DI formability), and has good printing finish after D+ molding. It is possible to provide a Sn/Zn double-layer plated steel sheet that is both economical and economical.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも、缶外面側に相当する面の下層に1〜
10g/m^2のZnメッキ層を有する鋼板の上層に、
Snメッキ浴として、0.01〜5g/lのENSAを
添加し、かつ0.01〜5g/lのアミノ酸化合物ある
いは1〜50g/lのクエン酸塩のうち一種または二種
を添加してなるpH5〜12のピロリン酸系メッキ浴を
用いて、0.1〜5g/m^2のSnメッキ層を施すこ
とを特徴とする缶外面の耐錆性と外観に優れた容器用メ
ッキ鋼板の製造法。
(1) At least 1~
On the upper layer of the steel plate with a Zn plating layer of 10g/m^2,
As a Sn plating bath, 0.01 to 5 g/l of ENSA is added, and one or two of 0.01 to 5 g/l of an amino acid compound or 1 to 50 g/l of citrate is added. Production of a plated steel sheet for containers with excellent rust resistance and appearance on the outer surface of the can, characterized by applying a Sn plating layer of 0.1 to 5 g/m^2 using a pyrophosphoric acid plating bath with a pH of 5 to 12. Law.
(2)少なくとも、缶外面側に相当する面の下層に1〜
10g/m^2のZnメッキ層を有する鋼板の上層に、
Snメッキ浴として、0.01〜5g/lのENSAを
添加し、かつ0.01〜5g/lのアミノ酸化合物ある
いは1〜50g/lのクエン酸塩のうち一種または二種
を添加してなるpH5〜12のピロリン酸系メッキ浴を
用いて、0.1〜5g/m^2のSnメッキ層を施し、
次いでクロム換算付着量で1〜50mg/m^2のクロ
メート被膜を施すことを特徴とする缶外面の耐錆性と外
観に優れた容器用メッキ鋼板の製造法。
(2) At least 1~
On the upper layer of the steel plate with a Zn plating layer of 10g/m^2,
As a Sn plating bath, 0.01 to 5 g/l of ENSA is added, and one or two of 0.01 to 5 g/l of an amino acid compound or 1 to 50 g/l of citrate is added. Apply a Sn plating layer of 0.1 to 5 g/m^2 using a pyrophosphoric acid plating bath with a pH of 5 to 12,
A method for producing a plated steel sheet for containers having excellent rust resistance and appearance on the outer surface of the can, characterized in that a chromate film is then applied at a coating amount in terms of chromium of 1 to 50 mg/m^2.
JP15669190A 1990-06-15 1990-06-15 Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance Pending JPH0448094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15669190A JPH0448094A (en) 1990-06-15 1990-06-15 Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15669190A JPH0448094A (en) 1990-06-15 1990-06-15 Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance

Publications (1)

Publication Number Publication Date
JPH0448094A true JPH0448094A (en) 1992-02-18

Family

ID=15633228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15669190A Pending JPH0448094A (en) 1990-06-15 1990-06-15 Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance

Country Status (1)

Country Link
JP (1) JPH0448094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023664A1 (en) * 1995-12-22 1997-07-03 Toyo Kohan Co., Ltd. Tinning bath and tinning method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997023664A1 (en) * 1995-12-22 1997-07-03 Toyo Kohan Co., Ltd. Tinning bath and tinning method

Similar Documents

Publication Publication Date Title
US4999258A (en) Thinly tin coated steel sheets having excellent rust resistance and weldability
JP4845951B2 (en) Manufacturing method of surface-treated steel sheet, surface-treated steel sheet, and resin-coated surface-treated steel sheet obtained by coating surface-treated steel sheet with organic resin
KR900003473B1 (en) Chromate-treated zinc-plated steel strip and method for making
US3816082A (en) Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced
EP0250792B1 (en) A chromate treatment of a metal coated steel sheet
JPH0448094A (en) Production of plated steel sheet for vessel having superior rust resistance at outside of can and fine appearance
JPH0448095A (en) Production of surface-treated steel sheet for vessel having superior rust resistance at outside of can and fine appearance
JPS6250554B2 (en)
JPH0448096A (en) Production of surface-treated steel sheet for vessel having satisfactory rust resistance at outside of can and fine appearance
US5395510A (en) Efficient preparation of blackened steel strip
JPH0533188A (en) Surface treated steel for vessel excellent in rust resistance and external appearance characteristic
JPH02274896A (en) Surface-treated steel sheet for vessel excellent in rust-preventing property and appearance
WO2016207966A1 (en) Steel sheet for container, and method for producing steel sheet for container
JPS5939515B2 (en) Manufacturing method of bright composite electrogalvanized steel sheet
US3898139A (en) Process for surface treatment of zinc-plated steel plates
JP4221874B2 (en) Plated steel sheet for welding cans
US3486990A (en) Electrolytic surface treatment of metals
JPH059780A (en) Surface-treated steel sheet for container excellent in corrosion resistance and appearance
JPS6335718B2 (en)
JPH0544078A (en) Surface treated steel plate for vessel excellent in rust preventing property and appearance
JP2629506B2 (en) Manufacturing method of electric thin tin plated steel sheet with excellent surface gloss
KR100544646B1 (en) Surface Treated Steel Sheet Having Excellent Corrosion Resistance And Manufacturing Method Thereof
KR100685026B1 (en) Chrome free post treatment solution and method for manufacturing electrolytic tinplate steel sheet using it
JPH0474889A (en) Surface treated steel sheet for container having excellent rust resistance and appearance
JPH0459993A (en) Surface-treated steel sheet for vessel having superior rust resistance and fine appearance