JPH0448023A - Vacuum suction type degassing method - Google Patents

Vacuum suction type degassing method

Info

Publication number
JPH0448023A
JPH0448023A JP15832190A JP15832190A JPH0448023A JP H0448023 A JPH0448023 A JP H0448023A JP 15832190 A JP15832190 A JP 15832190A JP 15832190 A JP15832190 A JP 15832190A JP H0448023 A JPH0448023 A JP H0448023A
Authority
JP
Japan
Prior art keywords
melt
gas
components
partition member
degassing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15832190A
Other languages
Japanese (ja)
Other versions
JPH0830225B2 (en
Inventor
Masamichi Sano
佐野 正道
Nobuo Miyagawa
宮川 信夫
Kimiji Yamamoto
君二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TYK Corp
Original Assignee
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TYK Corp filed Critical TYK Corp
Priority to JP2158321A priority Critical patent/JPH0830225B2/en
Priority to EP91109887A priority patent/EP0462536A1/en
Priority to CA002044724A priority patent/CA2044724C/en
Publication of JPH0448023A publication Critical patent/JPH0448023A/en
Priority to US08/058,792 priority patent/US5306472A/en
Publication of JPH0830225B2 publication Critical patent/JPH0830225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To sufficiently remove the gaseous components in a melt with a small amt. of gaseous argon by putting the surface of the melt in a housing vessel under a reduced pressure to gasify the gaseous components in the melt and placing the inside of a partition member which is formed of a porous material to allow the diffusion of gases but does not allow the infiltration of the melt and is immersed into the melt under a vacuum. CONSTITUTION:A valve 11 is closed and an atm. pressure is maintained in a degassing member 8. The gaseous components in the melt 2 gasify and boiling arises in the melt 2 when the pressure in the reduced vessel 6 is reduced. The valve 11 is then opened to put the inside of the degassing member 6 into a vacuum or reduced pressure state. The gas forming components remaining in the melt 2 diffuse through the partition member 8a of the degassing member 8 and are discharged into the degassing member 8. The gaseous components are thus removed from the inside of the melt 2.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、多孔質部材を介して、溶融金属、溶融マット
及び溶融スラグ等の融体からガス相を生成する溶質成分
を除去し、又は回収する真空吸引式脱ガス方法に関し、
特に脱ガス成分が高濃度である融体に適用するのに好適
の真空吸引式脱ガス方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a method for removing solute components that generate a gas phase from a melt such as a molten metal, a molten matte, and a molten slag through a porous member; Regarding the vacuum suction degassing method for recovery,
In particular, the present invention relates to a vacuum suction type degassing method suitable for application to a melt having a high concentration of degassed components.

[従来の技術] 溶融金属、溶融マット及び溶融スラグ等の融体から、ガ
ス相を生成する溶質成分を除去し、又は回収する技術と
して、従来、RH法及びDH法等の脱ガス法がある。こ
のRH法及びDH法は、真空下又は減圧下において溶湯
中に大量のアルゴンガスを吹き込み、溶湯中のガス成分
の分圧を低下させてこのガス成分を除去している。
[Prior Art] Conventionally, there are degassing methods such as the RH method and the DH method as technologies for removing or recovering solute components that generate a gas phase from melts such as molten metal, molten matte, and molten slag. . In the RH method and the DH method, a large amount of argon gas is blown into the molten metal under vacuum or reduced pressure to lower the partial pressure of the gas component in the molten metal and remove this gas component.

[発明が解決しようとする課題] しかしながら、この従来のRH法及びDH法による脱ガ
ス法は、大量のアルゴンガスを使用するため、ランニン
グコストが高いという欠点がある。
[Problems to be Solved by the Invention] However, the conventional degassing methods using the RH method and the DH method use a large amount of argon gas, and therefore have a drawback of high running costs.

また、脱ガス処理後の融体中におけるガス生成成分の濃
度の低減が十分ではないという欠点もある。
Another drawback is that the concentration of gas-forming components in the melt after degassing is not sufficiently reduced.

本発明はかかる問題点に鑑みてなされたものであって、
融体中のガス成分を大量のアルゴンガスを使用すること
なく容易に除去することができ、ランニングコストが低
く、融体中のガス生成成分の濃度を従来に比して更に低
減することができる真空吸引式脱ガス方法を提供するこ
とを目的とする。
The present invention has been made in view of such problems, and includes:
Gas components in the melt can be easily removed without using large amounts of argon gas, running costs are low, and the concentration of gas-generating components in the melt can be further reduced compared to conventional methods. The purpose of the present invention is to provide a vacuum suction degassing method.

[課題を解決するための手段] 本発明に係る真空吸引式脱ガス方法は、収納容器内の融
体の湯面を減圧下において前記融体中のガス成分の一部
をガス化させる第1の工程と、ガスを透過するが融体は
透過しない多孔質材料で成形され融体中に浸漬された仕
切り部材の内部を真空下又は減圧下において前記融体中
のガス又は前記融体と前記仕切り部材の成分との反応に
より生じたガスを吸引する第2の工程とを有することを
特徴とする。
[Means for Solving the Problems] The vacuum suction type degassing method according to the present invention includes a first step in which a part of the gas component in the melt is gasified under reduced pressure on the surface of the melt in a storage container. The interior of the partition member, which is formed of a porous material that allows gas to pass through but not the melt, and is immersed in the melt, is heated under vacuum or reduced pressure so that the gas in the melt or the melt does not pass through the partition member. The method is characterized by comprising a second step of suctioning gas generated by reaction with components of the partition member.

[作用] 本発明においては、先ず、融体を収納した容器を減圧下
に配置する等して、前記融体の湯面を減圧下におく。融
体中のガス成分が高濃度の場合は、融体の湯面を減圧下
におくことにより前記脱ガス成分が融体内でガス化して
ボイリングが発生する。
[Operation] In the present invention, first, the surface of the melt is placed under reduced pressure, such as by placing a container containing the melt under reduced pressure. When the gas components in the melt are highly concentrated, by placing the surface of the melt under reduced pressure, the degassed components are gasified within the melt and boiling occurs.

従って、極めて高効率でガス成分を除去することができ
る。この場合に、融体中にAr及びN2等の不活性ガス
を供給して、不活性ガスの気泡を発生させることにより
、脱ガス効率をより一層向上させることができる。
Therefore, gas components can be removed with extremely high efficiency. In this case, the degassing efficiency can be further improved by supplying an inert gas such as Ar and N2 into the melt to generate inert gas bubbles.

この第1の工程において、融体中に浸漬しである多孔質
の仕切り部材の内部はボイリングを促進するため、常圧
のままにしておく。
In this first step, the inside of the porous partition member that is immersed in the melt is kept at normal pressure in order to promote boiling.

次いで、上述の第1の工程により融体中のガス生成成分
の濃度が減少し、ボイリングが停止した後、多孔質仕切
り部材の内部を真空(又は減圧)にする。この仕切り部
材は、ガスを透過するが融体は透過しない多孔質材料に
より形成されている。
Next, after the concentration of the gas generating component in the melt is reduced by the above-described first step and boiling is stopped, the inside of the porous partition member is evacuated (or reduced pressure). This partition member is made of a porous material that allows gas to pass through but not melt.

このため、この仕切り部材の他方の面を真空下又は減圧
下におくことにより、前記融体中に残留しているガス成
分又は前記融体と前記仕切り部材の多孔質材料の成分と
の反応により生じたガスは、仕切り部材を透過して融体
から分離される。これにより、融体中の脱ガス成分を極
めて低濃度にすることができる。
Therefore, by placing the other side of the partition member under vacuum or reduced pressure, the gas components remaining in the melt or the reaction between the melt and the components of the porous material of the partition member The generated gas passes through the partition member and is separated from the melt. This allows the concentration of degassed components in the melt to be extremely low.

第2図は多孔質部材によるガス生成成分の分離の原理を
示す模式図である。仕切り部材1は、ガスのみを透過し
、溶融金属、溶融マット及び溶融スラグ等の融体は透過
しない多孔質材料からなる部材である。そして、この仕
切り部材1の一方の面に前記融体2を接触させ、他方の
面を真空又は減圧雰囲気3にした場合に、融体2と接触
した壁面では融体2の静圧に無関係に圧力が低下する。
FIG. 2 is a schematic diagram showing the principle of separation of gas generating components using a porous member. The partition member 1 is a member made of a porous material that allows only gas to pass therethrough and does not allow melts such as molten metal, molten matte, and molten slag to pass therethrough. When the molten material 2 is brought into contact with one surface of the partition member 1 and the other surface is placed in a vacuum or reduced pressure atmosphere 3, the wall surface in contact with the molten material 2 is independent of the static pressure of the molten material 2. Pressure decreases.

このため、融体2中の不純物成分又は回収する価値があ
る有価成分であって、ガス相を生成するものは、容易に
仕切り部材1の壁面で核生成し、生成したガス4は仕切
り部材1を透過して融体2から分離される。
Therefore, impurity components in the melt 2 or valuable components worth recovering that generate a gas phase easily nucleate on the wall surface of the partition member 1, and the generated gas 4 is transferred to the partition member 1. It is separated from the melt 2 by passing through.

本願発明者等はこのような原理に基づいて融体中からガ
ス生成成分を除去できることに想到し、本発明を完成さ
せるに至ったものである。
The inventors of the present application have come up with the idea that gas-generating components can be removed from a molten material based on such a principle, and have completed the present invention.

而して、融体中に溶解しているガス生成成分は下記の反
応式により、ガスとなって除去される。
Thus, the gas-generating components dissolved in the melt are removed in the form of gas according to the reaction formula below.

瓦+瓦→NQ        ・・・(1)比+比→H
2・・・(2) ℃−十止→CO・・・(3) i+2迂→S02        ・・・(4)また、
融体中の不純物が仕切り部材の多孔質材料成分と反応し
てガスとなった後、前記仕切り部材を透過して除去され
ることもある。
Roof + Tile → NQ ... (1) Ratio + Ratio → H
2...(2) ℃-Judome → CO...(3) i+2 round → S02...(4) Also,
Impurities in the melt may react with the porous material component of the partition member to become a gas, and then permeate through the partition member and be removed.

多孔質材料が酸化物(MXOア)の場合には、融体中の
炭素は下記反応式によりガスとなって除去される。
When the porous material is an oxide (MXO), carbon in the melt is removed as a gas according to the following reaction formula.

yf工+M、OY(固体)→X牙+yCO・・・(5) また、多孔質材料が炭素で構成されているか、又は炭素
を1成分として含有している場合には、下記反応式によ
り融体中の酸素が除去される。
yf + M, OY (solid) -> Oxygen from the body is removed.

、Ω−+C(固体)→CO・・・(6)更に、融体中の
蒸気圧が高い有価成分(M)の分離回収は下記反応式に
より前記有価成分をガス化することにより行なわれる。
, Ω-+C (solid)→CO (6) Furthermore, the valuable component (M) having a high vapor pressure in the melt is separated and recovered by gasifying the valuable component according to the following reaction formula.

xM+Mx  (ガス)        ・・・(7)
M Ov→MOY (ガス)      ・・・(8)
MSy→MSY  (ガス)      ・・・(9)
このようにして、融体中のN、H,C,O及びS等の不
純物成分及び有価成分が融体中から除去され、又は回収
される。
xM+Mx (gas)...(7)
M Ov → MOY (gas) ... (8)
MSy→MSY (gas)...(9)
In this way, impurity components and valuable components such as N, H, C, O, and S in the melt are removed or recovered from the melt.

この場合に、本発明においては、対象とする融体中の不
純物又は有価成分に応じて、これらの不純物又は有価成
分と反応する仕切り部材中の成分の濃度を調整すること
により、融体中の不純物又は有価成分と仕切り部材中の
成分との反応速度を制御することも可能である。
In this case, in the present invention, the concentration of the component in the partition member that reacts with the impurities or valuable components in the target melt is adjusted according to the impurities or valuable components in the melt. It is also possible to control the rate of reaction between impurities or valuable components and components in the partition member.

なお、雰囲気及び収納容器への放熱による融体の温度の
低下、仕切り部材を融体に浸漬することによる融体の温
度、の低下及び仕切り部材の成分と融体との吸熱反応に
よる融体の温度の低下等に起因する不都合の発生を回避
するために、仕切り部材に通電するか、予め仕切り部材
に抵抗線を埋設しこの抵抗線に通電するか又は外部加熱
(例えば、プラズマ加熱)等の方法により、仕切り部材
及び融体を加熱してもよい。
In addition, the temperature of the molten material may be reduced due to heat radiation to the atmosphere and the storage container, the temperature of the molten material may be reduced by immersing the partition member in the molten material, and the temperature of the molten material may be reduced due to an endothermic reaction between the components of the partition member and the molten material. In order to avoid problems caused by a drop in temperature, etc., either energize the partition member, bury a resistance wire in the partition member in advance and energize the resistance wire, or use external heating (e.g. plasma heating). The method may heat the partition member and the melt.

多孔質材料としては、Ar10s 、Mg01CaO1
SiO2、Fe2O3、Fe3O4、Cra 03 、
BN% S j* N4 ′Ir!、びにSiC及びC
等の金属酸化物、金属非酸化物及び炭素並びにこれらの
混合物等、柾々のものを使用することができるが、融体
の主成分と反応しないものが好ましい。このように、主
成分と反応しないことにより、融体と接触する仕切り部
材の溶損が防止される。
Porous materials include Ar10s, Mg01CaO1
SiO2, Fe2O3, Fe3O4, Cra03,
BN% S j * N4 'Ir! , and SiC and C
A variety of metal oxides, metal non-oxides, carbon, and mixtures thereof can be used, but those that do not react with the main components of the melt are preferred. In this manner, by not reacting with the main component, the partition member that comes into contact with the melt is prevented from being melted and damaged.

また、ガスのみを透過させ、融体は透過させないように
するため、融体に濡れにくい多孔質材料の仕切り部材を
使用する。更に、多孔質の仕切り部材の気孔率は、40
%以下にすることが好ましい。
Furthermore, in order to allow only the gas to pass through and not the molten material, a partition member made of a porous material that is difficult to get wet with the molten material is used. Furthermore, the porosity of the porous partition member is 40
% or less.

更にまた、仕切り部材の融体への濡れ性によって異なる
が、仕切り部材の気孔径は約200μm以下とすること
が好ましい。
Furthermore, although it varies depending on the wettability of the partition member to the melt, it is preferable that the pore diameter of the partition member is about 200 μm or less.

多孔質浸漬管へ融体が侵入しても、真空系へ融体が入る
のを防止するため、圧力損失が小さいフィルタを多孔質
浸漬管上部に設置し、侵入した融体をこのフィルタで凝
固させ、トラップするようにする。
Even if molten material enters the porous immersion tube, to prevent it from entering the vacuum system, a filter with low pressure loss is installed at the top of the porous immersion tube, and the filter solidifies the molten material that enters the porous immersion tube. and trap it.

次に、本発明を融体からのガス生成成分の除去回収に適
用した用途例について説明する。
Next, an application example in which the present invention is applied to the removal and recovery of gas generating components from a melt will be described.

■ 先ず、本発明を、溶鉄から炭素、窒素又は水素を除
去する脱炭素、脱窒素及び脱水素の工程に使用すること
ができる。
(1) First, the present invention can be used in decarbonization, denitrification, and dehydrogenation processes for removing carbon, nitrogen, or hydrogen from molten iron.

溶鉄中の炭素の除去に不法を使用する場合、前記仕切り
部材の主成分はAf203又はMgO等とし、溶鉄中の
炭素の主酸化剤としてFe2O*+Fe304 + M
nO,S i 02等を配合する。これらの主酸化剤の
配合割合を高くすることにより、溶鉄中の酸素の除去速
度を増加させることができる。しかし、主酸化剤の配合
割合をあまり高くすると、仕切り部材の融点の低下又は
機械的強度の低下等を招き、また特に溶鉄中の炭素濃度
が低い場合には溶鉄中の酸素濃度が増加するため、目的
に応じて主酸化剤の配合割合を既に確立されている状態
図を参考にして決定する。
When using illegal methods to remove carbon from molten iron, the main component of the partition member is Af203 or MgO, and the main oxidizing agent for carbon in molten iron is Fe2O*+Fe304 + M.
Blend nO, S i 02, etc. By increasing the blending ratio of these main oxidizing agents, the rate of oxygen removal from molten iron can be increased. However, if the blending ratio of the main oxidizing agent is too high, it will lower the melting point or mechanical strength of the partition member, and especially if the carbon concentration in the molten iron is low, the oxygen concentration in the molten iron will increase. Depending on the purpose, the blending ratio of the main oxidizing agent is determined with reference to the already established phase diagram.

一方、溶鉄中の窒素の除去に不法を使用する場合、前記
仕切り部材には、安定な酸化物、例えばCab、Al2
O3+ MgO等を使用する。
On the other hand, if illegal methods are used to remove nitrogen from molten iron, stable oxides such as Cab, Al2
Use O3+ MgO etc.

また、溶鉄中の炭素及び窒素を同時に除去するために不
法を使用する場合、溶鉄中の炭素及び窒素の目標濃度に
応じて前記主酸化剤の配合割合を変化させる。
Furthermore, when using an illegal method to simultaneously remove carbon and nitrogen from molten iron, the blending ratio of the main oxidizer is changed depending on the target concentration of carbon and nitrogen in molten iron.

■ また、本発明を、溶鋼中から酸素を除去する脱酸工
程にも適用することができる。
(2) The present invention can also be applied to a deoxidation process for removing oxygen from molten steel.

■ 更に、本発明は溶融アルミニウム中から水素を除去
する脱水素工程にも適用することができる。
(2) Furthermore, the present invention can also be applied to a dehydrogenation process for removing hydrogen from molten aluminum.

■ 更にまた、本発明を、溶融シリコンの脱炭素、脱窒
素及び脱水素に適用することができる。
(2) Furthermore, the present invention can be applied to decarbonization, denitrification, and dehydrogenation of molten silicon.

■ 一方、本発明により、溶融船中の亜鉛を回収するこ
とができる。
(2) On the other hand, according to the present invention, zinc in the melting vessel can be recovered.

■ 溶融銅マットから硫黄及び酸素を除去する脱硫黄・
脱酸素の工程に本発明を適用することもできる。
■ Desulfurization and removal of sulfur and oxygen from molten copper matte
The present invention can also be applied to the process of deoxidizing.

■ そして、溶融鋼マット又はニッケルマット中の有価
金属(As+ Sb+ Bit Set Te+Pb、
Cd等)の回収にも本発明を適用することができる。
■ Valuable metals in the molten steel matte or nickel matte (As+ Sb+ Bit Set Te+Pb,
The present invention can also be applied to the recovery of Cd, etc.).

■ 更に、溶融スラグ中から有価金属(A s *Sb
+ Bit Set Te、Pb+ CcL Zn等)
を回収する場合にも、本発明を適用することができる。
■ Furthermore, valuable metals (A s *Sb
+ Bit Set Te, Pb+ CcL Zn, etc.)
The present invention can also be applied to the case of recovering.

[実施例] 次に、本発明の実施例について添付の図面を参照して説
明する。
[Example] Next, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の実施例方法を示す模式的断面図である
FIG. 1 is a schematic cross-sectional view showing an example method of the present invention.

先ず、融体2が収納された収納容器5を減圧容器6内に
載置する。減圧容器6は配管12を介して適宜の真空吸
引ポンプ(図示せず)に接続されている。減圧容器6内
には脱ガス部材8がその下半部を融体2に浸漬して配置
されている。この脱ガス部材8は下端が閉塞した円筒状
をなし、融体2内に浸漬される下半部は、仕切り部材8
aにより成形されている。この仕切り部材8aは、ガス
は透過するが、溶融金属、溶融スラグ及び溶融マット等
の融体2は侵入できないような細孔を有する多孔質の材
料で成形されている。また、脱ガス部材8の下半部はガ
スを透過しない緻密質の部材8bにより形成されている
。この仕切り部材8aと緻密質部材8bとは夫々別個に
作成した後、両者を接合して一体化してもよいし、多孔
質材料で脱ガス部材8の全体を作成した後、緻密質部材
8bの部分にガスを透過しない緻密質材料をコーティン
グする等の方法により、この部分をガス非透過性にして
もよい。
First, the storage container 5 containing the molten material 2 is placed in the vacuum container 6. The reduced pressure container 6 is connected to a suitable vacuum suction pump (not shown) via a pipe 12. A degassing member 8 is disposed within the reduced pressure container 6 with its lower half immersed in the melt 2 . This degassing member 8 has a cylindrical shape with a closed lower end, and the lower half immersed in the melt 2 is a partition member 8.
It is formed by a. The partition member 8a is formed of a porous material having pores that allow gas to pass therethrough but prevent the melt 2 such as molten metal, molten slag, and molten mat from entering. Further, the lower half of the degassing member 8 is formed of a dense member 8b that does not allow gas to pass therethrough. The partition member 8a and the dense member 8b may be created separately and then joined together to integrate them, or the entire degassing member 8 may be created from a porous material and then the dense member 8b The portion may be made gas impermeable, such as by coating the portion with a dense gas-impermeable material.

この融体2の上に露出するガス非透過性の緻密質部材8
bの上端部には連結部材9が固定されており、配管10
がこの連結部材9に、脱ガス部材8と連通ずるようにし
て連結されている。この配管10は、バルブ11を介し
て配管12に接続されている。
Gas-impermeable dense member 8 exposed above this melt 2
A connecting member 9 is fixed to the upper end of the pipe 10.
is connected to this connecting member 9 so as to communicate with the degassing member 8. This pipe 10 is connected to a pipe 12 via a valve 11.

また、収納容器5の底部には底吹きポーラスレンガから
なる気泡発生器7が設けられており、必要に応じてこの
気泡発生器7に外部からArガス等の不活性ガスを供給
することにより、融体2に不活性ガスの気泡を発生させ
るようになっている。
In addition, a bubble generator 7 made of bottom-blown porous brick is provided at the bottom of the storage container 5, and an inert gas such as Ar gas can be supplied to the bubble generator 7 from the outside as needed. Inert gas bubbles are generated in the melt 2.

第1の工程においては、先ず、バルブ11を閉じ、脱ガ
ス部材8内を常圧に保持し、減圧容器6内を適宜の真空
吸引ポンプにより減圧する。そうすると、融体2中のガ
ス成分が高濃度の場合、ガス成分がガス化して融体2中
にボイリングが発生する。このようにして、融体2中の
脱ガス成分は減圧雰囲気中に排出される。このとき、減
圧容器6及び収納容器5が大きく、スプラッシュ生成が
問題にならない場合には、気泡発生器7にArガス等の
不活性ガスを供給して、融体2中に不活性ガスの気泡を
発生させる。これにより、融体2中のガス成分の除去を
更に一層効率的に行なうことができる。融体2中にガス
成分のボイリングが発生しなくなるまで、上述の操作を
行なう。
In the first step, first, the valve 11 is closed, the inside of the degassing member 8 is maintained at normal pressure, and the inside of the depressurizing container 6 is depressurized by an appropriate vacuum suction pump. Then, when the gas component in the melt 2 has a high concentration, the gas component is gasified and boiling occurs in the melt 2. In this way, the degassed components in the melt 2 are discharged into a reduced pressure atmosphere. At this time, if the reduced pressure container 6 and the storage container 5 are large and splash generation is not a problem, an inert gas such as Ar gas is supplied to the bubble generator 7 to create bubbles of inert gas in the melt 2. to occur. Thereby, the gas components in the melt 2 can be removed even more efficiently. The above operation is carried out until no boiling of gas components occurs in the melt 2.

次いで、第2の工程に移り、バルブ8を開にする。そう
すると、脱ガス部材8の内部は、配管10、バルブ11
及び配管12を介して前記真空ポンプに接続され、真空
又は減圧状態になる。これにより、融体2中に残留して
いたガス生成成分が脱ガス部材8の仕切り部材8aを透
過して脱ガス部材8内に排出され、融体2中から除去さ
れる。
Next, in the second step, the valve 8 is opened. Then, the inside of the degassing member 8 includes the piping 10 and the valve 11.
It is connected to the vacuum pump via the piping 12 and becomes in a vacuum or reduced pressure state. As a result, the gas generating components remaining in the melt 2 pass through the partition member 8a of the degassing member 8, are discharged into the degassing member 8, and are removed from the melt 2.

本実施例においては、上述の如く、先ず、融体2が収納
された容器5を減圧雰囲気中に載置すると共に、必要に
応じて不活性ガスを融体2中に供給して、融体2中のガ
ス成分の濃度を低減し、その後、多孔質材料からなる仕
切り部材8aの内面側を真空又は減圧状態にして融体2
中のガス成分を除去するため、極めて高効率で融体中の
ガス成分を除去することができると共に、融体中のガス
成分の濃度を極めて低くすることができる。
In this example, as described above, first, the container 5 containing the melt 2 is placed in a reduced pressure atmosphere, and if necessary, an inert gas is supplied into the melt 2, and the melt is After that, the inner surface of the partition member 8a made of a porous material is brought into a vacuum or reduced pressure state to reduce the concentration of gas components in the molten material 2.
Since the gas components in the melt are removed, the gas components in the melt can be removed with extremely high efficiency, and the concentration of the gas components in the melt can be made extremely low.

[発明の効果コ 以上説明したように本発明によれば、収納容器内の融体
の湯面を減圧下において融体中のガス成分のボイリング
を発生させ、その後仕切り部材の内部を真空下又は減圧
下において前記融体中のガス又は前記融体と前記多孔質
材料との反応により生じたガスを吸引するから、融体中
のガス生成成分の分離を極めて高効率で行なうことがで
き、融体中の溶質成分の濃度を極めて低い濃度にまで低
下させることができる。
[Effects of the Invention] As explained above, according to the present invention, boiling of the gas components in the melt is generated by reducing the pressure of the melt level in the storage container, and then the inside of the partition member is placed under vacuum or Since the gas in the melt or the gas generated by the reaction between the melt and the porous material is sucked under reduced pressure, the gas-generating components in the melt can be separated with extremely high efficiency. It is possible to reduce the concentration of solute components in the body to extremely low concentrations.

そして、大量のアルゴンガスを吹き込む従来の脱ガス法
と異なり、本発明はアルゴンガスを吹き込まないか、又
は融体攪拌用に少量のアルゴンガスを吹き込めば足り、
ランニングコストを著シく低減することができる。
Unlike the conventional degassing method that blows in a large amount of argon gas, the present invention either does not blow argon gas or only needs to blow a small amount of argon gas for stirring the melt.
Running costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例方法を示す模式的断面図、第2
図は本発明方法における脱ガスの原理を説明するための
模式図である。 1.8a;仕切り部材、2:融体、3;真空又は減圧雰
囲気、4;ガス、5;収納容器、6;減圧容器、7;気
泡発生器、8;脱ガス部材、8b;緻密質部材、9;連
結部材、10,12;配管、11;バルブ
FIG. 1 is a schematic cross-sectional view showing an example method of the present invention, and FIG.
The figure is a schematic diagram for explaining the principle of degassing in the method of the present invention. 1.8a; partition member, 2: melt, 3; vacuum or reduced pressure atmosphere, 4; gas, 5; storage container, 6; reduced pressure container, 7; bubble generator, 8; degassing member, 8b; dense member , 9; Connecting member, 10, 12; Piping, 11; Valve

Claims (2)

【特許請求の範囲】[Claims] (1)収納容器内の融体の湯面を減圧下において前記融
体中のガス成分の一部をガス化させる工程と、ガスを透
過するが融体は透過しない多孔質材料で成形され融体中
に浸漬された管状の仕切り部材内部を真空下又は減圧下
において前記融体中のガス又は前記融体と前記仕切り部
材の成分との反応により生じたガスを吸引する工程とを
有することを特徴とする真空吸引式脱ガス方法。
(1) The process of gasifying a part of the gas components in the melt by reducing the pressure on the surface of the melt in the storage container; a step of suctioning the gas in the molten material or the gas generated by the reaction between the molten material and the components of the partitioning member under vacuum or reduced pressure inside the tubular partition member immersed in the body; Characteristic vacuum suction degassing method.
(2)前記仕切り部材は電気的に加熱されていることを
特徴とする請求項1に記載の真空吸引式脱ガス方法。
(2) The vacuum suction type degassing method according to claim 1, wherein the partition member is electrically heated.
JP2158321A 1990-06-16 1990-06-16 Vacuum suction type degassing method Expired - Lifetime JPH0830225B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2158321A JPH0830225B2 (en) 1990-06-16 1990-06-16 Vacuum suction type degassing method
EP91109887A EP0462536A1 (en) 1990-06-16 1991-06-17 Vacuum-suction degassing method and an apparatus therefor
CA002044724A CA2044724C (en) 1990-06-16 1991-06-17 A vacuum-suction degassing method and an apparatus therefor
US08/058,792 US5306472A (en) 1990-06-16 1993-05-10 Vacuum-suction degassing method and an apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2158321A JPH0830225B2 (en) 1990-06-16 1990-06-16 Vacuum suction type degassing method

Publications (2)

Publication Number Publication Date
JPH0448023A true JPH0448023A (en) 1992-02-18
JPH0830225B2 JPH0830225B2 (en) 1996-03-27

Family

ID=15669084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2158321A Expired - Lifetime JPH0830225B2 (en) 1990-06-16 1990-06-16 Vacuum suction type degassing method

Country Status (1)

Country Link
JP (1) JPH0830225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738135B2 (en) 2015-04-22 2017-08-22 Mahle International Gmbh Fastening arrangement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278602A (en) * 1975-12-25 1977-07-02 Toyota Motor Corp Vacuum degassing of molten metal
JPS6156257A (en) * 1984-08-25 1986-03-20 Japan Metals & Chem Co Ltd Method for degassing molten metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278602A (en) * 1975-12-25 1977-07-02 Toyota Motor Corp Vacuum degassing of molten metal
JPS6156257A (en) * 1984-08-25 1986-03-20 Japan Metals & Chem Co Ltd Method for degassing molten metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9738135B2 (en) 2015-04-22 2017-08-22 Mahle International Gmbh Fastening arrangement

Also Published As

Publication number Publication date
JPH0830225B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
JP2689540B2 (en) Method and apparatus for producing low oxygen content copper
US20020021996A1 (en) Method and apparatus for purifying silicon
KR960029466A (en) Alloy steel manufacturing method
JPH0448023A (en) Vacuum suction type degassing method
EP0644788B1 (en) Method and appartus for treating organic waste
US5306472A (en) Vacuum-suction degassing method and an apparatus therefor
JPH0448025A (en) Vacuum suction type degassing device
JPH0448024A (en) Vacuum suction type degassing device
JPS59208029A (en) Molten metal or alloy selective refinement
JPH0448021A (en) Method and device for degassing
JPH0448022A (en) Vacuum suction type degassing device
CA2039598C (en) Vacuum-suction degassing method and an apparatus therefor
US5346185A (en) Vacuum-suction degassing apparatus
US3985551A (en) Process for removing carbon from uranium
JPH0146563B2 (en)
JPH0448026A (en) Vacuum suction type continuous degassing device
US385424A (en) Smeltsng-furnage
JP2001261323A (en) Method of producing highly pure metal silicon and production device therefor
EP0127430B1 (en) Metal refining process
Powell et al. Process for removing carbon from uranium
JPH10204521A (en) Vessel for vacuum-refining molten steel
JPH0565521A (en) Production of extremely low carbon steel
TH61967A (en) Direct smelting process
BE446849A (en)
TH36702B (en) Direct smelting process