JPH0447730B2 - - Google Patents

Info

Publication number
JPH0447730B2
JPH0447730B2 JP746185A JP746185A JPH0447730B2 JP H0447730 B2 JPH0447730 B2 JP H0447730B2 JP 746185 A JP746185 A JP 746185A JP 746185 A JP746185 A JP 746185A JP H0447730 B2 JPH0447730 B2 JP H0447730B2
Authority
JP
Japan
Prior art keywords
ground
quicklime
water
grout
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP746185A
Other languages
Japanese (ja)
Other versions
JPS61169521A (en
Inventor
Ryoichi Tozawa
Kazuo Yamamoto
Taisan Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giken Kogyo Co Ltd
Original Assignee
Giken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giken Kogyo Co Ltd filed Critical Giken Kogyo Co Ltd
Priority to JP746185A priority Critical patent/JPS61169521A/en
Publication of JPS61169521A publication Critical patent/JPS61169521A/en
Publication of JPH0447730B2 publication Critical patent/JPH0447730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Agronomy & Crop Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は地盤を補強する際に粒径が0.03mmか
ら0.3mmで、かつ水との活発な反応開始時間が水
と混合後1分から30分であるとともに反応持続時
間が活発な反応開始後1分から30分にした生石灰
の膨張材をグラウト材にセメント重量の2%から
15%混入し、地盤の掘削孔に打設して地盤を補強
する点に特徴を有する地盤の補強方法に係るもの
である。 従来の技術 従来の地盤の補強方法としては自然斜面や切取
斜面、掘削時の仮設土留工法、トンエルや下水道
などのシールド推進工法の補強としてセメントミ
ルク、モルタルなどを掘削孔に無加圧または加圧
して打設しているが、無加圧ではボーリングにお
り緩んだ地盤を元の状態に戻すことができないと
いう欠点があり、また加圧して打設するには特殊
な機械を必要とするとともに複雑な作業を必要と
する欠点があり、かつ加圧力は地盤のクリープに
より次第に低下してしまうおそれがあるという欠
点がる。 発明が解決しようとする問題点 この発明は従来の地盤の補強方法が有する前記
の欠点を解消し、グラウト材を徐々に膨張して地
盤を圧密、圧縮したり、地盤に拘束力を存在させ
たりして地盤を補強することなどを目的としたも
のである。 問題点を解決するための手段 この発明の地盤の補強方法は粒径が0.03mmから
0.3mmで、かつ所定の活発な反応開始時間と反応
持続時間に調整した生石灰の膨張材をグラウト材
にセメント重量の2%から15%混入し、この膨張
材を混入したグラウト材を地盤に設けた複数の掘
削孔に打設する方法である。 この発明の地盤の補強方法において、地盤に設
けた複数の掘削孔に生石灰の膨張材を混合したグ
ラウト材のスラリーを打設し、グラウト材を膨張
させながら地盤を圧密、圧縮または拘束すること
により地盤を補強するものであるが、普通の生石
灰では活性が良すぎて生石灰と水との反応時間が
早いのでグラウト材が掘削孔の中で充分に膨張し
ないために地盤を圧密などして補強することがほ
とんどできないし、また逆に生石灰の活性を抑え
すぎて生石灰と水との反応があまり遅すぎると固
まりかけたグラウト材を破壊してしまうか、また
は膨張が抑えられてほとんど膨張しないが、のど
ちらかであるので地盤を圧密などして補強するこ
とがほとんどできない。 そこで生石灰と水との活発な反応開始時間は両
者を混合した後に1分から30分であり、かつ反応
持続時間は活発な反応開始後1分から30分である
ことが作業工程上やグラウト材が効果的に膨張す
ることなどから望しいことが判明した。 この程度の活性度に生石灰を調整するために
種々の実験を行つた結果として生石灰の粒径を
0.03mmから0.3mmにし、この小さな粒径の生石灰
を湿潤な空気中で攪拌して空気中の水(H2O)
と炭酸ガス(CO2)で化学反応させて生石灰の表
面を水酸化カルシウム(Ca(OH)2)と炭酸カル
シウム(CaCO3)の膜でコーテイングを行うと
よいことが判明した。更に生石灰に次の物質のう
ちから1つを重量比の割合で混入することにより
生石灰の表面を水酸化カルシウム(Ca(OH)2
などの水に溶けにくい膜でコーテイングを行つて
もよいことが判明した。 珪酸化合物1%から15%・珪弗化物0.5%から
3%・アルコール類1.5%から20%・アルカリ類
3%から30%・糖類1%から10%・石膏15%から
40%・ゴムラテツクス15%から50%・樹脂エマル
ジヨン5%から30%・水溶性ポリマー2%から20
%・ベントナイト5%から30%・フライアツシユ
5%から30%・ このようにして生石灰の表面を水酸化カルシウ
ム(Ca(OH)2)などの水に溶けにくい膜でコー
テイングした生石灰を膨張材としてセメントミル
ク、モルタルなどのグラフト材に混入するが、膨
張材の混入率は少なすぎるとあまり膨張しないた
めにほとんど補強されないし、多すぎると地盤を
破壊してしまい逆効果になるので膨張材の混入率
は補強する地盤の強度により増減する。例えば岩
盤の場合には弾性係数が105Kg/cm2と大きくて降
伏点ひずみは0.1%から零と小さいので混入率を
2%から5%と少なくし、粘性土地盤の場合には
弾性係数が102Kg/cm2から103Kg/cm2と小さくて降
伏点ひずみは1%から10%と比較的大きいのでグ
ラウト材の強度を大きく低下させない範囲で混入
率を10%から15%と多くする。このように膨張材
はセメント重量の2%から15%が良い。 地盤の補強、即ち強度の増加は2つの場合があ
り、1つは地盤の圧密、圧縮による強度の増加で
ある。もう1つは拘束力の存在による強度の増加
である。 前者は緩い砂質土や粘性土の場合であつて、地
盤自体が圧密、圧縮されて強度が増加する。後者
は岩盤や締つた砂質土などの場合であつて、地盤
自体の隙間比や弾性係数はほとんど変化しない
が、拘束力が作用することにより地盤が破壊しに
くくなり、強度が増加する。 次にこの発明の地盤の補強方法を実施例につい
て図面とともに説明する。 実施例 1 傾斜した地盤1の斜面に多数の掘削孔2を間隔
をおいて格子状に設け、この掘削孔2に、セメン
トと後記の生石灰の膨張材とを100対7.5の重量比
率に混合するとともに水を加えたグラウト材3の
スラリーを、パイプを用いて注入しながら打設す
る。 掘削孔2の中に打設したグラウト材3は第2
図々示の状態から第3図々示の状態に膨張してグ
ラフト材3が掘削孔2の中より地盤1を圧密、圧
縮した状態になるので地盤1を補強する。 この実施例1の地盤の補強方法に用いる生石灰
の膨張材の1例として塊状の石灰石を焼成温度
1200℃で焼いて生石灰にし、この生石灰を0.03mm
から0.3mmの粒径に粉砕する。粉砕した生石灰の
粒度分布は次表の通りである。
Industrial Application Field This invention is suitable for reinforcing the ground when the particle size is 0.03 mm to 0.3 mm, the active reaction start time with water is 1 minute to 30 minutes after mixing with water, and the reaction duration is active. The expansion agent of quicklime, which has been used for 1 to 30 minutes after the start of the reaction, is added to the grout from 2% of the cement weight.
This relates to a method of reinforcing the ground, which is characterized by reinforcing the ground by pouring it into an excavated hole in the ground with a concentration of 15%. Conventional technology Conventional ground reinforcement methods include natural slopes, cut slopes, temporary earth retaining methods during excavation, and shield propulsion methods such as tunnels and sewers by applying cement milk, mortar, etc. to the excavation hole without pressure or with pressure. However, the disadvantage is that the soil that has become loose during boring cannot be returned to its original condition without pressure, and pouring with pressure requires special machinery and is complicated. This method has the disadvantage that it requires extensive work, and that the pressing force may gradually decrease due to creep in the ground. Problems to be Solved by the Invention This invention solves the above-mentioned drawbacks of the conventional ground reinforcement method, and gradually expands the grout material to consolidate and compress the ground, or to create a restraining force in the ground. The purpose is to strengthen the ground. Means for Solving the Problems The method for reinforcing the ground of this invention has particle diameters starting from 0.03 mm.
A quicklime expanding agent with a thickness of 0.3 mm and adjusted to a predetermined active reaction start time and reaction duration is mixed into the grout material in an amount of 2% to 15% of the cement weight, and the grout material mixed with this expanding agent is installed in the ground. This is a method in which the concrete is poured into multiple drilled holes. In the method for reinforcing the ground of the present invention, a slurry of grout mixed with an expanding agent of quicklime is poured into a plurality of excavated holes in the ground, and the ground is consolidated, compressed, or restrained while expanding the grout. It is used to reinforce the ground, but since ordinary quicklime is too active and the reaction time between quicklime and water is fast, the grout material does not expand sufficiently in the excavation hole, so the ground is reinforced by consolidation etc. On the other hand, if the activity of quicklime is suppressed too much and the reaction between quicklime and water is too slow, the grout material that is hardening will be destroyed, or the expansion will be suppressed and it will hardly expand. Therefore, it is almost impossible to consolidate the ground or strengthen it. Therefore, the active reaction start time between quicklime and water is 1 minute to 30 minutes after the two are mixed, and the reaction duration is 1 minute to 30 minutes after the start of the active reaction. It was found that this is desirable because it expands. In order to adjust quicklime to this degree of activity, we conducted various experiments and as a result, we determined that the particle size of quicklime was
0.03mm to 0.3mm, and stir this small particle size quicklime in humid air to remove water (H 2 O) in the air.
It has been found that it is effective to coat the surface of quicklime with a film of calcium hydroxide (Ca(OH) 2 ) and calcium carbonate (CaCO 3 ) through a chemical reaction with carbon dioxide (CO 2 ) and carbon dioxide gas (CO 2 ). Furthermore, by mixing one of the following substances into the quicklime in a weight ratio, the surface of the quicklime becomes calcium hydroxide (Ca(OH) 2 ).
It was found that coating with a film that is difficult to dissolve in water such as Silicic acid compounds 1% to 15%, silicofluorides 0.5% to 3%, alcohols 1.5% to 20%, alkalis 3% to 30%, sugars 1% to 10%, gypsum 15%
40%, rubber latex 15% to 50%, resin emulsion 5% to 30%, water-soluble polymer 2% to 20%
%・Bentonite 5% to 30%・Fly ash 5% to 30%・The surface of the quicklime is thus coated with a water-insoluble film such as calcium hydroxide (Ca(OH) 2 ), and the quicklime is used as an expanding agent to make cement. It is mixed into graft materials such as milk and mortar, but if the mixing rate of the expanding agent is too low, it will not expand much and will hardly be reinforced, and if it is too high, it will destroy the ground and have the opposite effect, so the mixing rate of the expanding agent increases or decreases depending on the strength of the ground to be reinforced. For example, in the case of rock, the elastic modulus is as high as 10 5 Kg/cm 2 and the yield point strain is small, ranging from 0.1% to 0. is small, ranging from 10 2 Kg/cm 2 to 10 3 Kg/cm 2 , and the yield point strain is relatively large, ranging from 1% to 10%. Therefore, the mixing rate should be increased from 10% to 15% without significantly reducing the strength of the grout. Do more. In this way, the expansion agent should preferably account for 2% to 15% of the cement weight. There are two ways of reinforcing the ground, that is, increasing its strength. One is consolidation of the ground, an increase in strength due to compression. The other is an increase in strength due to the presence of a restraining force. The former is a case of loose sandy soil or clayey soil, and the ground itself is consolidated and compressed, increasing its strength. The latter is the case with rock or compacted sandy soil, where the gap ratio and elastic modulus of the ground itself hardly change, but the action of a restraining force makes the ground harder to break and increases its strength. Next, embodiments of the method for reinforcing the ground according to the present invention will be described with reference to the drawings. Example 1 A large number of excavated holes 2 are provided in a grid pattern at intervals on the slope of the sloping ground 1, and cement and an expanding agent of quicklime (described later) are mixed in the excavated holes 2 at a weight ratio of 100:7.5. At the same time, a slurry of grout material 3 to which water has been added is poured while being poured using a pipe. The grout material 3 poured into the excavated hole 2 is
The graft material 3 expands from the state shown in the figure to the state shown in the third figure, consolidating and compressing the ground 1 from inside the excavated hole 2, thereby reinforcing the ground 1. As an example of the quicklime expansion material used in the ground reinforcement method of Example 1, lump limestone is fired at
Burn it at 1200℃ to make quicklime, and make this quicklime 0.03mm.
Grind to a particle size of 0.3 mm. The particle size distribution of crushed quicklime is shown in the table below.

【表】 この生石灰を相対湿度25%の空気中で1時間攪
拌して空気中の水と炭酸ガスで化学反応させて生
石灰の表面を水酸化カルシウムと炭酸カルシウム
でコーテイングする。このように処理した生石灰
の膨張材は水との活発な反応開始時間は5分30秒
であり、また反応持続時間は活発な反応開始後5
分である。 実際に砂質土で次表のような土質条件において
地盤の圧密、圧縮による補強強度の増加について
実験を行つた。
[Table] This quicklime is stirred in air with a relative humidity of 25% for 1 hour to cause a chemical reaction between the water in the air and carbon dioxide gas, coating the surface of the quicklime with calcium hydroxide and calcium carbonate. The quicklime expansive material treated in this way has an active reaction start time with water of 5 minutes and 30 seconds, and a reaction duration of 5 minutes and 30 seconds after the start of the active reaction.
It's a minute. We actually conducted experiments on sandy soil to increase reinforcement strength through soil consolidation and compression under the soil conditions shown in the table below.

【表】 実験条件 上記の砂質土の地盤に縦横20cm間隔で格子状に
直径9mmの掘削孔を設け、セメントと前記の生石
灰の膨張材を重量比で100対7.5の割合で混合し、
水を加えたスラリーを掘削孔に注入により打設し
て地盤を補強した。 この補強した地盤を水平から徐々に片方を端を
持上げて傾斜させて斜面にし、破壊に至るまで傾
斜させて抑止効果を測定した。測定した結果は次
の通りである。
[Table] Experimental conditions Drill holes with a diameter of 9 mm were made in a grid pattern at intervals of 20 cm vertically and horizontally in the sandy soil described above, and cement and the above-mentioned quicklime expansive agent were mixed in a weight ratio of 100:7.5.
The ground was reinforced by pouring slurry with water into the excavation hole. This reinforced ground was gradually raised from horizontal to create a slope, and the deterrent effect was measured by tilting the ground until failure occurred. The measured results are as follows.

【表】 この実験結果より膨張材の混入比率をセメント
の重量に対して7.5%で、補強材の配置の面積比
率が0.16%の時の前記砂質土の地盤の補強増加率
(崩壊抑止力増加率)は45%から50%であること
が判る。 実施例 2 地盤改良のパイル工法として平坦な地盤に多数
の掘削孔を格子状に設け、この掘削孔に、セメン
トと前記実施例1で使用したものと同じ生石灰の
膨張材とを100対5または100対15の重量比率で混
合するとともに水を加えたグラウト材のスラリー
を、打設する。 掘削孔の中に打設したグラウト材は前記実施例
1のものと同様にグラウト材が膨張して掘削孔の
中より地盤を圧密、圧縮してパイル(抗)の周り
の地盤を補強する。 実際に砂質土で次表のような土質条件において
地盤の圧密、圧縮による支持力の増加について実
験を行つた。
[Table] From the results of this experiment, the reinforcement increase rate of the sandy soil ground (collapse deterrence It can be seen that the increase rate) is 45% to 50%. Example 2 As a pile construction method for ground improvement, a large number of drilled holes were formed in a grid pattern on flat ground, and cement and the same quicklime expansive material used in Example 1 were mixed in a ratio of 100:5 or 100:5. A slurry of grout material is mixed in a weight ratio of 100:15 and water is added. The grout material cast into the excavation hole expands as in Example 1, consolidates and compresses the ground from inside the excavation hole, and reinforces the ground around the pile. We actually conducted experiments on increasing the bearing capacity through soil consolidation and compression using sandy soil under the soil conditions shown in the table below.

【表】 実験条件 上記の砂質土の地盤に縦横20cm間隔で格子状に
直径25mmの掘削孔を設け、セメントと生石灰の膨
張材を重量比で100対5および100対15の重量比率
で混合し、水を加えたグラウト材のスラリーを掘
削孔に打設して地盤を補強した。 膨張効果が充分に発現するとともにグラウト材
が硬化したと考えられる打設してから7日後に土
壌硬度計により地盤の支持力を測定した。測定し
た結果は次の通りである。
[Table] Experimental conditions Drill holes with a diameter of 25 mm were made in a grid pattern at 20 cm intervals in the horizontal and vertical directions in the sandy soil described above, and the expanding agents of cement and quicklime were mixed at a weight ratio of 100:5 and 100:15. Then, a slurry of grout material mixed with water was poured into the excavation hole to strengthen the ground. The bearing capacity of the ground was measured using a soil hardness meter 7 days after pouring, when the expansion effect was sufficiently expressed and the grout material was thought to have hardened. The measured results are as follows.

【表】 この実験結果より砂質土地盤では膨張材の混入
比率が5〜15%程度では高くなるほど地盤の支持
力(補強力)が増大することが判る。 なお、実施例1と2では複数の掘削孔を格子状
に設けたものについて説明したが、複数の掘削孔
は千鳥状、線状、不規則状に設けてもよい。また
補強する地盤は自然斜面、切取斜面、盛土斜面、
地すべり地、トンネルの周面、シールド発進部の
近辺、杭基礎地、軟弱地盤などどのような地盤で
もよい。また掘削孔に金属棒を挿入してからグラ
ウト材のスラリーを打設してもよい。 発明の効果 この発明の地盤の補強方法は粒径が0.03mmから
0.3mmで、かつ水との活発な反応開始時間が水と
混合後1分から30分であるとともに反応持続時間
が活発な反応開始後1分から30分にした生石灰の
膨張材をグラウト材にセメント重量の2%から15
%混入し、このグラウト材を地盤に設けた複数の
掘削孔に打設するから、グラウト材が掘削孔の中
で徐々に膨張して地盤を圧密などして補強するこ
とができるし、また従来の施工方法に較べて極め
て簡単に施工することができる。
[Table] From the results of this experiment, it can be seen that in a sandy ground, the supporting capacity (reinforcing force) of the ground increases as the mixing ratio of expansive material increases from 5 to 15%. In Examples 1 and 2, the plurality of drilled holes are provided in a grid pattern, but the plurality of drilled holes may be provided in a staggered, linear, or irregular pattern. In addition, the ground to be reinforced is natural slope, cut slope, embankment slope,
Any type of ground may be used, such as a landslide area, the circumference of a tunnel, the vicinity of a shield launching area, a pile foundation area, or soft ground. Alternatively, a metal rod may be inserted into the excavated hole and then the grout slurry may be cast. Effects of the Invention The ground reinforcement method of this invention has particle sizes starting from 0.03 mm.
0.3 mm, and the active reaction start time with water is 1 minute to 30 minutes after mixing with water, and the reaction duration is 1 minute to 30 minutes after the start of active reaction, and the cement weight is used as a grout material. 2% to 15
%, and this grout material is poured into multiple drilling holes in the ground, so the grout material gradually expands in the drilling holes and can strengthen the ground by consolidating it. It is extremely easy to construct compared to the construction method of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明の1実施例の工程順
の断面図である。 1は地盤、2は掘削孔、3はグラウト材。
FIGS. 1 to 3 are cross-sectional views of one embodiment of the present invention in the order of steps. 1 is the ground, 2 is the excavation hole, and 3 is the grout material.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径が0.03mmから0.3mmで、かつ水との活発
な反応開始時間が水と混合後1分から30分である
とともに反応持続時間が活発な反応開始後1分か
ら30分にした生石灰の膨張材をグラウト材にセメ
ント重量の2%から15%混入し、該グラウト材を
地盤に設けた複数の掘削孔に打設することを特徴
とする地盤の補強方法。
1 Swelling of quicklime with a particle size of 0.03 mm to 0.3 mm, an active reaction start time with water of 1 minute to 30 minutes after mixing with water, and a reaction duration of 1 minute to 30 minutes after the start of active reaction. 1. A method for reinforcing the ground, which comprises mixing 2% to 15% of the weight of cement into grout and pouring the grout into a plurality of excavated holes provided in the ground.
JP746185A 1985-01-21 1985-01-21 Reinforcing of ground Granted JPS61169521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP746185A JPS61169521A (en) 1985-01-21 1985-01-21 Reinforcing of ground

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP746185A JPS61169521A (en) 1985-01-21 1985-01-21 Reinforcing of ground

Publications (2)

Publication Number Publication Date
JPS61169521A JPS61169521A (en) 1986-07-31
JPH0447730B2 true JPH0447730B2 (en) 1992-08-04

Family

ID=11666455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP746185A Granted JPS61169521A (en) 1985-01-21 1985-01-21 Reinforcing of ground

Country Status (1)

Country Link
JP (1) JPS61169521A (en)

Also Published As

Publication number Publication date
JPS61169521A (en) 1986-07-31

Similar Documents

Publication Publication Date Title
EP2018454B1 (en) Ground engineering method
JPWO2006129884A1 (en) Plastic gel injection material and ground reinforcement method
JP4610581B2 (en) Ground strengthening method
Kazemian et al. Assessment of stabilization methods for soft soils by admixtures
JP2008002076A (en) Ground reinforcing method and press-in management method
JP4972661B2 (en) Ground injection method
CN114956744A (en) Nano-modified high-density sprayed concrete and construction method of water-rich tunnel using same
JPH05302318A (en) Method and apparatus for stabilizing friction soiland adjacent cohesion soil layers
JP2002302931A (en) Foundation constructing method by compaction pile using blast furnace water granulated slag
JPH0447730B2 (en)
Bilal et al. A study on advances in ground improvement techniques
JPH10331149A (en) Improving method for poor clayey soil
JPH0483012A (en) Liquefaction preventing ground improving method
JPH0571730B2 (en)
JP3709505B2 (en) Ground liquefaction prevention method
JPH01146009A (en) Preventing work for liquefaction of ground
JPS61196025A (en) Lining method for cut off of structure buried in ground
Liong Investigation of Dynamic Compaction and Vibro-compaction to Mitigate Liquefaction: A Case Study
JP4754121B2 (en) Improvement method for soft ground
JPS6323328B2 (en)
Safi Improvement of selected coastal soils of Bangladesh using cement
JPH04250215A (en) Method for improving soft ground
JPH0953227A (en) Method of liquefaction reventive construction of sandy ground
JP2003221825A (en) Work execution method for foundation ground
JP2004197474A (en) Vibration isolation banking structure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees