JPH0447648A - Shadow mask and its manufacture - Google Patents

Shadow mask and its manufacture

Info

Publication number
JPH0447648A
JPH0447648A JP15395090A JP15395090A JPH0447648A JP H0447648 A JPH0447648 A JP H0447648A JP 15395090 A JP15395090 A JP 15395090A JP 15395090 A JP15395090 A JP 15395090A JP H0447648 A JPH0447648 A JP H0447648A
Authority
JP
Japan
Prior art keywords
shadow mask
electron beam
rolling direction
rolling
beam passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15395090A
Other languages
Japanese (ja)
Other versions
JP3032245B2 (en
Inventor
Emiko Higashinakagaha
東中川 恵美子
Yasuhisa Otake
大竹 康久
Hidekazu Akiyoshi
英一 穐吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2153950A priority Critical patent/JP3032245B2/en
Publication of JPH0447648A publication Critical patent/JPH0447648A/en
Application granted granted Critical
Publication of JP3032245B2 publication Critical patent/JP3032245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To easily obtain precise and uniform electron beam passing holes by providing crystal orientation different in the rolling direction and the rectangular direction against the rolling direction and carrying out etching in the way of making the longitudinal direction of the electron beam passing holes become practically the rolling direction and carrying out press-molding into a shadow mask. CONSTITUTION:An ingot of an inver alloy is hot-rolled at 900 deg.C to give a 2-3mm thick plate. In this case, the crystal orientation is made different in the rolling direction and the rectangular direction against the rolling direction. The shadow mask raw plate in prior stage of the successive etching process has anisotropic crystal orientation. In the next etching process, both sides of the shadow mask raw plate are covered with a masking material for etching, and a prescribed etching solution is sprayed to form 200,000-300,000 slender electron beam passing holes arranged, for example, at 0.45-0.75mm intervals in a 20 inchtube. At that time, the masking material is so put as to make the slender electron beam passing holes have the same longitudinal direction of the slender electron beam passing holes as the rolling direction practically.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はカラーテレビ用受像管に使用されるシャドウマ
スク及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a shadow mask used in a color television picture tube and a method for manufacturing the same.

(従来の技術) カラーテレビ用受像管に使用されるシャドウマスクは、
三色蛍光面に正確な電子ビームスポットを投影する機能
を有する。このため、電子ビム通過孔の相対位置、孔径
及び孔形状が画質に直接的な影響を及ぼし、電子ビーム
通過孔の高い加工精度が要求される。また、散乱電子の
発生防止のため、電子ビーム通過孔の蛍光面と対向する
面を半球状の面取り加工するという特殊な加工も必要で
ある。これらの加工精度が低いと、ドーミングにより画
質低下を招く。
(Prior art) Shadow masks used in color television picture tubes are
It has the ability to project an accurate electron beam spot onto a three-color phosphor screen. Therefore, the relative position, diameter, and shape of the electron beam passage hole have a direct effect on image quality, and high processing accuracy of the electron beam passage hole is required. Furthermore, in order to prevent the generation of scattered electrons, a special process is required in which the surface of the electron beam passage hole facing the fluorescent screen is chamfered into a hemispherical shape. If these processing precisions are low, image quality will deteriorate due to doming.

従来、このようなシャドウマスクの加工はシャドウマス
クの原板にエツチングによって細長状の電子通過孔を形
成していた。
Conventionally, such shadow masks have been processed by forming elongated electron passing holes by etching on the original plate of the shadow mask.

一方、近年、テレビ画面の“きめの細がさ“に対する一
般的要求が高まり、通信方式そち高品位テレビ方式の開
発が進められている。従って、受像管においても解像度
の向」−の観点がら、シャドウマスクに更に微細な電子
ビーム通過孔を形成することが要求される。また、高精
細となるシャドウマスクの熱膨張による電子ビーム通過
孔の位置ずれの問題が生じ、これを解決するためにFe
Ni系アンバー合金の使用が検討されている。
On the other hand, in recent years, the general demand for "fineness" of television screens has increased, and the development of communication systems, such as high-definition television systems, is progressing. Therefore, even in picture tubes, from the viewpoint of improving resolution, it is required to form even finer electron beam passage holes in the shadow mask. In addition, due to the thermal expansion of the high-definition shadow mask, the problem of positional deviation of the electron beam passage hole has arisen, and to solve this problem, Fe
The use of Ni-based amber alloy is being considered.

アンバー合金に電子ビーム通過孔を開孔する場合、通常
フォトエツチングを行っているが、アンバー合金のエツ
チング速度は異方性が強く、+100+結晶面のエツチ
ング速度が速いが、[1001は遅い。
When opening an electron beam passage hole in an amber alloy, photoetching is usually performed, but the etching rate of the amber alloy is strongly anisotropic, and the etching rate of the +100+ crystal plane is fast, but the etching rate of the [1001 plane is slow.

特許1379343号及び特許J、 3392 B 9
号では、エツチング前のシャドウマスク原板の結晶方位
を(1001面に揃えることが記述されている。ところ
で、シャドウマスクの電子ビーム通過孔の形状は丸形と
細長型があるが、エツチングで開孔した時に細長型の短
径の寸法を精度良く均一にすることが困難であった。
Patent No. 1379343 and Patent J, 3392 B 9
In the issue, it is described that the crystal orientation of the shadow mask original plate before etching is aligned to the (1001 plane). By the way, the shape of the electron beam passing hole in the shadow mask is either round or elongated, but When doing so, it was difficult to make the short axis dimension of the elongated mold uniform with high precision.

前述の特許1379343.133269号の従って結
晶面を+1001 に揃えた度合か高い場合には短径が
均一な細長型電子ビーム通過孔を得ることが出来るが、
+1001面でない結晶面を含む度合が大きくなると細
長型電子ビームの短径かばらつく。その度合は長径0.
600 μm X短径0.155 p mの電子ビーム
通過孔において、長径で±0.(1003μm1短径で
±0.003μm。程度であるか、これらのわずかな変
動が画像の明暗に影響する。
According to the above-mentioned patent No. 1379343.133269, if the crystal planes are aligned to +1001 or a high degree, it is possible to obtain an elongated electron beam passing hole with a uniform short axis.
As the degree of inclusion of crystal planes other than the +1001 plane increases, the short axis of the elongated electron beam varies. The degree of this is 0.
In the electron beam passage hole of 600 μm x minor axis 0.155 pm, the major axis is ±0. (1003 μm 1 short axis and ±0.003 μm.) These slight variations affect the brightness and darkness of the image.

また米国特許4846747号公報には、エツチングで
形成した細長型の電子ビーム通過孔か、その後のシャド
ウマスクとしての成形の為の冷間加工によるプレス成形
時に変形するのを防止する為に、電子ビーム通過孔の長
手方向を圧延方向と直角とする技術が記載されている。
In addition, U.S. Pat. No. 4,846,747 discloses that an elongated electron beam passing hole formed by etching is used to prevent deformation during press forming by cold working for forming a shadow mask. A technique is described in which the longitudinal direction of the passage hole is perpendicular to the rolling direction.

これは一般に行われているシャドウマスクとしての冷間
加工によるプレス成形時に事前に設けられた細長型の電
子ビム通過孔の変形を防止する為にアンバー合金の圧延
方向と圧延方向の直角方向とての耐力の相異に着目した
ものである。
This is done in a direction perpendicular to the rolling direction of the amber alloy in order to prevent deformation of the elongated electron beam passage hole that was previously provided during press forming by cold working as a shadow mask, which is generally performed. This study focused on the difference in yield strength of the two types.

(発明が解決しようとする課題) 本発明は電子ビーム通過孔を形成する為のエッチング二
I−程の制御が容易であり、精細で均一な電子ビーム通
過孔を容易に得ることができ、かつ効率よくシャドウマ
スクを得る事のできるシャドウマスク及びその製造方法
を提供するものである。
(Problems to be Solved by the Invention) According to the present invention, the etching process for forming the electron beam passage hole can be easily controlled, fine and uniform electron beam passage holes can be easily obtained, and An object of the present invention is to provide a shadow mask that can efficiently obtain a shadow mask and a method for manufacturing the same.

[発明の構成] (課題を解決するための手段及び作用)本発明はアンバ
ー合金からなるシャドウマスク材をロール圧延により冷
間加工を施し、圧延方向と圧延方向の直角方向とにおい
て異なる結晶配向性を付与する工程と、 細長型の電子ビーム通過孔の長手方向が実質的に前記圧
延方向となる様にエツチングを施す工程と、電子ビーム
通過孔を形成したシャドウマスク材を所定形状に切断し
た後、温間プレスによりシャドウマスク形状にプレス成
型する工程とを具備したシャドウマスクの製造方法、及
び圧延方向と圧延方向の直角とで結晶配向性の異なるア
ンバ合金からなるシャドウマスク材において、細長型の
電子ビーム通過孔の長手方向と圧延方向とを実質的に同
一としたシャドウマスクである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention cold-works a shadow mask material made of an amber alloy by roll rolling, and produces crystal orientations that differ in the rolling direction and the direction perpendicular to the rolling direction. etching so that the longitudinal direction of the elongated electron beam passage hole is substantially in the rolling direction; and after cutting the shadow mask material in which the electron beam passage hole is formed into a predetermined shape. , a method for producing a shadow mask comprising a step of press-molding into a shadow mask shape by warm pressing, and a shadow mask material made of an umber alloy having different crystal orientations in the rolling direction and at right angles to the rolling direction, This is a shadow mask in which the longitudinal direction of the electron beam passage hole and the rolling direction are substantially the same.

つまり本発明は、アンバー合金にロール圧延を施した場
合に圧延方向と、直角方向とで結晶配向性か異なる点に
着目してなされたものである。
That is, the present invention was made by focusing on the fact that when an amber alloy is rolled, the crystal orientation is different between the rolling direction and the orthogonal direction.

まずこの結晶配向性の異方性について説明する。First, this anisotropy of crystal orientation will be explained.

第1図〜第2図に第3図のシャドウマスク工程図のエツ
チングの直前の調整圧延による冷間加工の圧延率を20
%、40%とした場合のアンバー合金の(002)極点
図を揚げる。RDは圧延方向で、紙面内のRDに直角方
向が圧延方向と直角方向、紙面に垂直方向が厚板の垂直
方向となる。図中の等硬線は集合度を表わしており、冷
間圧延率が増加するにつれて、原板面に(1001の集
合の度合が少くなっている。(Noolの集合の度合は
X線(002)回折強度で表わしである。)ところで第
1図、第2図とも圧延方向の方がI +、 001面の
集合の度合が少く、圧延方向と垂直な方向によ< +1
001面が揃っている。例えば20%圧延の第1図では
、圧延方向に板面から15度傾いた方向の[1001面
濃度は、圧延方向に直角な方向に板面から30度傾いた
方向の+ 1.001面濃度と同じである。40%圧延
材では(第2図)、板面から圧延方向10度傾いた方向
の(1001而濃度は、圧延方向に直角な方向に板面か
ら15度傾いた方向の(1001面濃度をと同じである
。つまり圧延方向より圧延方向と直角な方向の方か10
01結品面が揃っている。前述の様にエツチング速度の
速い結晶面は[1001面でありエツチングで電子ビー
ム孔を形成する時にflool 面と揃っている様、孔
の精度が良くなるので、細長型の電子ビーム通過孔の長
手方向を圧延方向と実質的に一致させることにより、短
径が精度よく均一に得られることかわかった。
Figures 1 and 2 show the rolling rate of cold working by adjustment rolling just before etching in the shadow mask process diagram in Figure 3.
%, the (002) pole figure of the amber alloy is 40%. RD is the rolling direction, the direction perpendicular to the RD in the plane of the paper is the direction perpendicular to the rolling direction, and the direction perpendicular to the plane of the paper is the direction perpendicular to the plate. The isohard lines in the figure represent the degree of aggregation, and as the cold rolling rate increases, the degree of aggregation of (1001) on the original plate surface decreases.(The degree of aggregation of Nool is X-ray (002) (It is expressed by diffraction intensity.) By the way, in both Figures 1 and 2, the degree of aggregation of I +, 001 planes is smaller in the rolling direction, and in the direction perpendicular to the rolling direction, < +1
All 001 sides are available. For example, in Figure 1 for 20% rolling, the [1001 surface concentration in the direction tilted 15 degrees from the sheet surface in the rolling direction is the +1.001 surface concentration in the direction perpendicular to the rolling direction and tilted 30 degrees from the sheet surface. is the same as In the case of 40% rolled material (Figure 2), the (1001 concentration) in the direction tilted 10 degrees from the rolling direction from the sheet surface is the (1001 concentration) in the direction perpendicular to the rolling direction and tilted 15 degrees from the sheet surface. The same.In other words, the direction perpendicular to the rolling direction is 10
01 Finished items are available. As mentioned above, the crystal plane with a high etching rate is the [1001 plane, and when forming an electron beam hole by etching, it is aligned with the flool plane, so the precision of the hole is improved, so the long side of the elongated electron beam passing hole is It has been found that by making the direction substantially coincide with the rolling direction, the short axis can be obtained uniformly and accurately.

なお本発明においては前述の如く、ロール圧延。In addition, in the present invention, roll rolling is performed as described above.

エツチング工程の後、温間プレスによりシャドウマスク
形状に成形する為、この温間プレスでの細長型の電子ビ
ーム通過孔の変形は生じない。この結果本発明において
は後工程での電子ビーム通過孔の変形を考慮することな
くエツチング工程で高精度に電子ビーム通過孔を形成す
ることができる。
After the etching process, the shadow mask shape is formed by warm pressing, so that the elongated electron beam passage holes are not deformed by the warm pressing. As a result, in the present invention, the electron beam passage hole can be formed with high precision in the etching process without considering the deformation of the electron beam passage hole in the subsequent process.

次に本発明に係るシャドウマスクの製造方法を第3図を
用いて説明する。
Next, a method for manufacturing a shadow mask according to the present invention will be explained with reference to FIG.

まず本発明に用いるアンバー合金のインゴットを900
°C以」二の温度で熱間圧延(])を施し、2〜3 m
m厚の板体を得る。
First, 900 ingots of amber alloy used in the present invention were prepared.
Hot rolled (]) at a temperature of 2-3 m
A plate of m thickness is obtained.

まず本発明に用いるアンバー合金のインゴットを900
°C以上の温度で熱間圧延(1)を施し、2〜3 m+
n厚の板体で得る。
First, 900 ingots of amber alloy used in the present invention were prepared.
Hot rolled (1) at a temperature above °C, 2-3 m+
Obtained as a plate of n thickness.

なお本発明に用いるアンバー合金としては重量で34−
42%Ni、0.8%以下Mn、0.8%以下Cr0.
5%以下Si、0.02%以下C,0,02%以丁S、
残部Fe等を用いることができる。この板体を70%〜
95%の圧延等でロール圧延(2)により冷間加工を施
し、0.1〜0.3mm厚のシャドウマスク原板と得た
The amber alloy used in the present invention has a weight of 34-
42% Ni, 0.8% or less Mn, 0.8% or less Cr0.
5% or less Si, 0.02% or less C, 0.02% or less S,
The remainder may be Fe or the like. 70%~ of this board
Cold working was performed by roll rolling (2) at a rolling rate of 95% to obtain a shadow mask original plate having a thickness of 0.1 to 0.3 mm.

次に必要に応じ650°〜1200℃程度の焼鈍(3)
及び調整圧延(4)を行う。なおこの際の焼鈍(3)は
板面の結晶方向をflool に揃える為であり、又調
整圧延は高温の焼鈍で曲がった板を平坦に直す為であり
、実用上はこれらの工程を行う事が望ましい。
Next, annealing at 650° to 1200°C as necessary (3)
and adjustment rolling (4). Note that the annealing (3) at this time is to align the crystal direction of the plate surface to the flool, and the adjustment rolling is to flatten the plate that has been bent due to high temperature annealing. is desirable.

なお次のエツチング(5)工程の前段階のシャドウマス
ク原板は第1図乃至第2図で示した結晶配向性の異方性
を有した状態となっている。
The shadow mask original plate before the next etching step (5) has the anisotropy of crystal orientation shown in FIGS. 1 and 2.

次のエツチング(5)工程においては、前記のシャドウ
マスク原板の両面をエツチング用マスク材で覆い、所定
のエツチング液を吹付けることにより、20インチ管で
例えば0.45〜0.75mmピッチで配列された細長
型の電子ビーム通過孔を20〜30万個形成する。この
際の細長型の電子ビーム通過孔は第4図に示す如く電子
ビーム通過孔の長手方向が、圧延方向と実質的に同一方
向となる様にエツチング用マスク材を配置する。なお実
質的に同一の方向とは本発明を逸脱しない範囲のズレを
示し、実用」二は圧延方向と電子ビーム通過孔の長手方
向のズレが±5°程度を意味する。
In the next etching step (5), both sides of the shadow mask original plate are covered with an etching mask material, and a predetermined etching solution is sprayed to arrange the images in a 20-inch tube at a pitch of, for example, 0.45 to 0.75 mm. 200,000 to 300,000 elongated electron beam passing holes are formed. At this time, the etching mask material is arranged in the elongated electron beam passing hole so that the longitudinal direction of the electron beam passing hole is substantially the same as the rolling direction, as shown in FIG. Note that "substantially the same direction" refers to a deviation within a range that does not depart from the scope of the present invention, and "practical use" means that the deviation between the rolling direction and the longitudinal direction of the electron beam passage hole is approximately ±5°.

シャドウマスク原板の切出しく6)は第4図の如く面取
りする事が好ましい。
It is preferable that the cutout 6) of the shadow mask original plate be chamfered as shown in FIG.

次に必要に応じ焼鈍を行う。一般にアンバー合金は耐力
が大きくプレス成形する時の抵抗が太きく、プレス成形
後もスプリングバックか起こることがある。そこで耐力
を低下させる為に真空中あるいは水空中あるいは不治性
ガス中り00℃〜1200°C焼鈍を施す。
Next, annealing is performed if necessary. In general, amber alloys have a large yield strength and resistance during press forming, and springback may occur even after press forming. Therefore, in order to reduce the yield strength, annealing is performed at 00°C to 1200°C in a vacuum, water, or an incurable gas.

次いて所定のプレス型を用いて温間プレス(8)により
ンヤトウマスク形状に成形する。この際の温間プレスは
約100〜400°Cの温度で行う。
Next, using a predetermined press die, it is warm-pressed (8) to form a mask shape. The warm pressing at this time is performed at a temperature of about 100 to 400°C.

成形されたシャドウマスクは例えば水蒸気を含む雰囲気
中で熱処理し、その表面に001〜3μm程度の黒化膜
を設ける(9)。
The formed shadow mask is heat-treated in, for example, an atmosphere containing water vapor, and a blackened film of about 0.01 to 3 μm is formed on its surface (9).

以」二の如く製造されたシャドウマスクは第5図に示す
如く、カラーテレビ用受像管に組み込まれる。つまり第
5図に断面的に示すように、カラ受像管2は電子ビーム
を射出する電子銃3と、射出された電子ビームを変更さ
せるヨーク4と、電子ビーム通過用の多数の長孔6か形
成されたシャドウマスク5と、電子ビームか照射される
三色蛍光面7と、を備えている。シャドウマスク5は、
電子銃3と蛍光面7との間に配設されている。電子銃3
から射出された3本の電子ビームは、ヨり4の磁力で変
更され、その進路を制御され、シャドウマスク5の孔6
を通過して三色蛍光面7に到達し、各ビームが蛍光面7
の赤色、青色及び緑色の螢光体を発光させるようになっ
ている。
The shadow mask manufactured as described above is assembled into a color television picture tube as shown in FIG. In other words, as shown in cross section in FIG. 5, the color picture tube 2 includes an electron gun 3 that emits an electron beam, a yoke 4 that changes the emitted electron beam, and a large number of long holes 6 for passing the electron beam. It includes a formed shadow mask 5 and a three-color fluorescent screen 7 that is irradiated with an electron beam. Shadow mask 5 is
It is arranged between the electron gun 3 and the fluorescent screen 7. electron gun 3
The three electron beams emitted from the shadow mask 5 are changed by the magnetic force of the yaw 4, their paths are controlled, and the electron beams are directed through the holes 6 of the shadow mask 5.
and reaches the three-color phosphor screen 7, and each beam passes through the phosphor screen 7.
It is designed to emit red, blue, and green phosphors.

(実施例) 36%Ni−Feアンバー合金を溶解した後熱間圧延で
2 +on+厚の板を得た。これを冷間圧延ロールの加
工率90%で0.2+om厚の薄板とし、900℃で焼
鈍を行なった。更に5%の調整圧延によりシャドウマス
厚板とした。これを圧延方向となる様にフォトエツチン
グをほどこし長径0.6000±0.0003μm、短
径0.155±0.0005μmの電子ビーム通過孔を
得た。次にシャドウマスクを所定寸法毎に第4図の如く
切り出した。この時シャドウマスクの板面は良< +1
001 に結晶方位が揃っており且つ、圧延方向より(
1001の集合の度合が強かった。これら切り離された
電子孔を開孔したシャドウマスク厚板は、950℃の水
素焼鈍を施し、200℃で温間ブレスを行ない、シャド
ウマスクの形状に成型した。更にその後650℃の水蒸
気中で黒化処理を行ないシャドウマスクを完成した。
(Example) A plate having a thickness of 2+on+ was obtained by hot rolling after melting a 36% Ni-Fe amber alloy. This was made into a thin plate with a thickness of 0.2+ om at a processing rate of 90% with cold rolling rolls, and annealed at 900°C. Further, it was made into a shadow mass plate by 5% adjustment rolling. This was photo-etched in the rolling direction to obtain an electron beam passing hole with a major axis of 0.6000±0.0003 μm and a minor axis of 0.155±0.0005 μm. Next, shadow masks were cut out at predetermined dimensions as shown in FIG. At this time, the surface of the shadow mask is good < +1
The crystal orientation is aligned to 001, and from the rolling direction (
The degree of aggregation of 1001 was strong. The shadow mask thick plate with these separated electron holes was subjected to hydrogen annealing at 950°C, warm pressed at 200°C, and molded into the shape of a shadow mask. Further, a blackening treatment was then performed in water vapor at 650° C. to complete a shadow mask.

又、比較例として上記実施例において厚板圧延方向に垂
直な方向に電子ビーム孔の長手方向になる様にフォトエ
ツチングした。その結果、長径0.8000±0.00
02μm、短径0 、1.55±0.003μmの電子
ビーム通過孔を得た。これらのシャドウマスクを用いて
C−CRTを行なう。両者を比較したところ、本発明の
シャドウマスクを用いたC−CRTは画像が鮮明で、比
較例のシャドウマスクを用いたC−CRTと比較して明
るさが1.5倍であった。
In addition, as a comparative example, photoetching was carried out in the longitudinal direction of the electron beam holes in the direction perpendicular to the thick plate rolling direction in the above embodiment. As a result, the major axis is 0.8000±0.00
An electron beam passing hole with a diameter of 0.02 μm, a short axis of 0.02 μm, and a diameter of 1.55±0.003 μm was obtained. C-CRT is performed using these shadow masks. When the two were compared, the image of the C-CRT using the shadow mask of the present invention was clear and the brightness was 1.5 times that of the C-CRT using the shadow mask of the comparative example.

[発明の効果] 本発明に係るシャドウマスクでは、電子ビム通過孔の精
度は良く均一であり、鮮明で明るい画像のカラー受像管
を得ることができる。
[Effects of the Invention] In the shadow mask according to the present invention, the precision of the electron beam passage holes is good and uniform, and a color picture tube with clear and bright images can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第2図はそれぞれ圧延率が20%、40%、
のシャドウマスク原板の結晶集合組織を示す(002)
極点図。第3図は本発明方法を説明する工程図。第4図
は本発明方法におけるシャドウマスり原板の切出し例を
示す図。 第5図はカラ 受像 管の断面図。
In Figures 1 and 2, the rolling ratio is 20%, 40%,
(002) shows the crystal texture of the shadow mask original plate of
Pole figure. FIG. 3 is a process diagram explaining the method of the present invention. FIG. 4 is a diagram showing an example of cutting out a shadow masking original plate in the method of the present invention. FIG. 5 is a sectional view of a color picture tube.

Claims (2)

【特許請求の範囲】[Claims] (1)アンバー合金からなるシャドウマスク材をロール
圧延により冷間加工を施し、圧延方向と圧延方向の直角
方向とにおいて異なる結晶配向性を付与する工程と、 細長型の電子ビーム通過孔の長手方向が実質的に前記圧
延方向となる様にエッチングを施す工程と、 電子ビーム通過孔を形成したシャドウマスク材を所定形
状に切断した後、温間プレスによりシャドウマスクの形
状にプレス成型する工程とを具備した事を特徴とするシ
ャドウマスクの製造方法。
(1) A step in which a shadow mask material made of an amber alloy is cold worked by roll rolling to give different crystal orientations in the rolling direction and in a direction perpendicular to the rolling direction, and in the longitudinal direction of an elongated electron beam passage hole. a step of performing etching so that the shadow mask material is substantially in the rolling direction, and a step of cutting the shadow mask material in which the electron beam passage holes are formed into a predetermined shape and then press-molding it into the shape of the shadow mask by warm pressing. A method for manufacturing a shadow mask characterized by the following features.
(2)圧延方向と圧延方向の直角方向とで結晶配向性の
事なるアンバ合金からなるシャドウマスク材において、
細長型の電子ビーム通過孔の長手方向と圧延方向とを実
質的に同一としたことを特徴とするシャドウマスク。
(2) In a shadow mask material made of an amba alloy that has different crystal orientation in the rolling direction and in the direction perpendicular to the rolling direction,
A shadow mask characterized in that the longitudinal direction of the elongated electron beam passage hole and the rolling direction are substantially the same.
JP2153950A 1990-06-14 1990-06-14 Shadow mask and method of manufacturing the same Expired - Fee Related JP3032245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153950A JP3032245B2 (en) 1990-06-14 1990-06-14 Shadow mask and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153950A JP3032245B2 (en) 1990-06-14 1990-06-14 Shadow mask and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0447648A true JPH0447648A (en) 1992-02-17
JP3032245B2 JP3032245B2 (en) 2000-04-10

Family

ID=15573618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153950A Expired - Fee Related JP3032245B2 (en) 1990-06-14 1990-06-14 Shadow mask and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3032245B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545631B2 (en) 2006-12-27 2013-10-01 Samsung Display Co., Ltd. Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545631B2 (en) 2006-12-27 2013-10-01 Samsung Display Co., Ltd. Mask device, method of fabricating the same, and method of fabricating organic light emitting display device using the same

Also Published As

Publication number Publication date
JP3032245B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
CA1204143A (en) Textured shadow mask
JPH04104425A (en) Manufacture of shadow mask and shadow mask plate material
JPS59200721A (en) Manufacture of shadow mask
US4751424A (en) Iron-nickel alloy shadow mask for a color cathode-ray tube
EP0222560B1 (en) Shadow mask
KR0135060B1 (en) Shadow mask plate material and shadow mask
JPH029655B2 (en)
KR100665237B1 (en) Shadow mask
JPS6313239A (en) Shadow mask
JPH0447648A (en) Shadow mask and its manufacture
KR870000147B1 (en) Manufacturing method of shadov mask
KR880000102B1 (en) The method of manufacturing of a shadow mask
JPS61218050A (en) Material for the parts of color television picture tube and their manufacture
JPS6014731A (en) Cathode ray tube for displaying color picture
JP2000017393A (en) Shadow mask for color cathode-ray tube
JP3029417B2 (en) Molded blackened shadow mask and method of manufacturing molded blackened shadow mask
JP2819654B2 (en) Color cathode ray tube
US2762942A (en) Apertured mask
JPS63193440A (en) Shadow mask alloy plate and shadow mask
JPH1017998A (en) Ferrum-nickel alloy stock for electron gun parts, excellent in blankability, and its production, and worked parts
US6285120B1 (en) Shadow mask of cathode ray tube and manufacturing method thereof
JPS62103943A (en) Shadowmask material board and shadowmask
JPH0326898B2 (en)
EP0996139A1 (en) Shadow mask and base material therefor
JPH0687398B2 (en) Method for manufacturing shed mask

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees