JPH0447606A - Pyroelectric type infrared sensor - Google Patents

Pyroelectric type infrared sensor

Info

Publication number
JPH0447606A
JPH0447606A JP15278290A JP15278290A JPH0447606A JP H0447606 A JPH0447606 A JP H0447606A JP 15278290 A JP15278290 A JP 15278290A JP 15278290 A JP15278290 A JP 15278290A JP H0447606 A JPH0447606 A JP H0447606A
Authority
JP
Japan
Prior art keywords
thin film
film
orientation
infrared sensor
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15278290A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ono
俊之 小野
Yukio Sakashita
幸雄 坂下
Hideo Segawa
瀬川 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP15278290A priority Critical patent/JPH0447606A/en
Publication of JPH0447606A publication Critical patent/JPH0447606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To increase a figure of merit and a specific detectability by providing a Pt film [001]-oriented on a substrate which has a larger coefficient of thermal expansion than that of a thin film of specific composition and of which mismatching ratio with a lattice constant of the thin film is not more than 10%, and also utilizing a ferroelectrics thin film having [001]-orientation and the particle diameter of 1mum or more as a thin film having specific composition, being formed over the Pt film. CONSTITUTION:A substrate 3 to be required is to have a larger coefficient of thermal expansion than that of a thin film represented by a chemical formula of Pb(Zr1-xTix)O3 and 10% or below the mismatching ratio with a lattice constant of the thin film represented by the formula of Pb(Zr1-xTix)O3. An MgO single crystal is taken, for example, because of heightening [001]-orientation ratio. Next, a Pt film 2 [001]-oriented is formed as a conductive film by which a lower electrode in a pyroelectric type infrared sensor is made. Composition of the Pt film 2 represented by the chemical formula of Pb(Zr1-xTix)O3 is for making [001]-orientation and a value of (x) in the formula is set within the range of 0.48<=x<=1, and also the particle diameter is set not less than 1mum. Because of such a high orientation property and the effective particle diameter, the dielectric constant becomes small, and the figure of merit and the specific detectability become large.

Description

【発明の詳細な説明】 、産1」3ス邪」LL歴 本発明は、強誘電体薄膜を利用した焦電型赤外線センサ
ーに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pyroelectric infrared sensor using a ferroelectric thin film.

盗米二肢皿 赤外線を検出する素子としては、従来がら量子型と熱槽
がある。量子型は応答速度が速く感度も高いという特徴
があるが、冷却を必要とし検出波長に限界がある。それ
に対して熱槽に属する焦電型は、感度は低いが常温で動
作し感度の波長依存性がないという長所を持っている。
Conventional devices for detecting infrared rays include quantum type and thermal bath. The quantum type has the characteristics of fast response speed and high sensitivity, but requires cooling and has a limit to the detection wavelength. On the other hand, the pyroelectric type, which belongs to the thermal bath category, has low sensitivity but has the advantage of operating at room temperature and having no wavelength dependence on sensitivity.

この焦電型素子においては、応答速度を速くするために
焦電材料の薄膜化によって熱容量を小さくすることで性
能の向上が図られている。特性の面ではスパッタ法で強
誘電体を薄膜化し向上を試みてはいる。が、比検出能に
ついて言えば、2X10’cm5/W程度でバルク材を
用いた焦電型素子と同程度であり、感度や検出能の面で
さらに特性のよい素子が望まれている。
In this pyroelectric element, the performance is improved by reducing the heat capacity by making the pyroelectric material thinner in order to increase the response speed. In terms of characteristics, attempts have been made to improve the properties by thinning the ferroelectric material using sputtering. However, in terms of specific detectability, it is about 2×10'cm 5 /W, which is comparable to that of a pyroelectric element using a bulk material, and an element with even better characteristics in terms of sensitivity and detectability is desired.

叉里n旦m 本発明は、性能指数および比検出能の大きな焦電型赤外
線センサーを提供することを目的とする。
An object of the present invention is to provide a pyroelectric infrared sensor with a high figure of merit and high specific detection ability.

且貝辺盈炭 本発明は、化学式P b (Z r、−xT i x)
 o、で表される薄膜より熱膨張係数が大きく、化学式
pb(Z r、−xT i、) o、で表される簿膜の
格子定数との不整合率が10%以下である基板上に[0
01]配向したPt膜を有し、さらにPt膜上に形成し
た化学式P b (Z r、−、T ix) O,で、
0.48≦X≦1の組成を持つ薄膜か、[001]配向
しかつその粒径が1μm以上あることを特徴とする強誘
電体薄膜を利用した焦電型赤外線センサーである。
The present invention uses the chemical formula P b (Z r, -xT ix)
On a substrate, the coefficient of thermal expansion is larger than that of the thin film represented by o, and the mismatch rate with the lattice constant of the thin film represented by the chemical formula pb(Z r, -xT i,) is 10% or less. [0
01] having an oriented Pt film and further formed on the Pt film with the chemical formula P b (Z r, -, T ix) O,
This is a pyroelectric infrared sensor using a ferroelectric thin film having a composition of 0.48≦X≦1 or having a [001] orientation and a grain size of 1 μm or more.

口の へがな舌口 焦電型赤外線センサーにおいて、感度を大きくするため
に要求されることは、焦電係数が大きいこと、誘電率が
小さいことである。また、比検出能を大きくするには性
能指数が大きくかつ雑音か小さくなければならない。
In order to increase the sensitivity of a tongue-and-mouth pyroelectric infrared sensor, what is required is a large pyroelectric coefficient and a small dielectric constant. Furthermore, in order to increase the specific detectability, the figure of merit must be large and the noise must be small.

本発明の素子に用いた強誘電体薄膜は、化学式Pb (
Z r、−、T i j O,で表される薄膜より熱膨
張係数が大きく化学式P b (Z r、−xT i 
x) o、で表される薄膜の格子定数との不整合率が1
0%以下である基板を要する。例えばMgO単結晶であ
る。これは、[001]配向率を高くするためである。
The ferroelectric thin film used in the device of the present invention has the chemical formula Pb (
The coefficient of thermal expansion is larger than that of the thin film represented by Z r, -, T i j O, and the chemical formula P b (Z r, - x T i
x) The mismatch rate with the lattice constant of the thin film represented by o is 1
0% or less is required. For example, MgO single crystal. This is to increase the [001] orientation rate.

次に焦電型赤外線センサーにおける下部電極となる導電
性膜として[001]配向のPt膜を形成した。
Next, a [001]-oriented Pt film was formed as a conductive film to serve as a lower electrode in a pyroelectric infrared sensor.

pt以外でも可能ではあるが、化学式Pb(Zr、Ti
、)O,で表される薄膜の格子定数との不整合率が小さ
く、かつ化学式p b (z r、−xT i、)○3
で表される薄膜の形成温度で反応しないことが必要であ
る。次に強誘電体簿膜の形成方法は結晶粒径が適度に成
長する方法が良く、本発明では熱平衡に近い状態で成長
し表面の損傷が少ないCVD法を採用した。スパッリン
グ法であっても成長速度、冷却速度を制御することで可
能である。化学式Pb(Zrl−xT 1x)O,で表
される薄膜の組成は、これは、[001]配向させるた
めである。また上記化学式においてXは、0.4.8≦
X≦1の範囲とする。これは、正方晶とすることが、好
ましいからである。
Although it is possible to use other than pt, the chemical formula Pb(Zr, Ti
, )O, the mismatch rate with the lattice constant of the thin film is small, and the chemical formula p b (z r, -xT i,)○3
It is necessary that the reaction does not occur at the thin film formation temperature expressed by . Next, as a method for forming a ferroelectric film, it is preferable to use a method that allows crystal grain size to grow appropriately, and in the present invention, a CVD method that grows in a state close to thermal equilibrium and causes less damage to the surface is adopted. Even the sputtering method is possible by controlling the growth rate and cooling rate. The composition of the thin film represented by the chemical formula Pb(Zrl-xT 1x)O is for [001] orientation. In addition, in the above chemical formula, X is 0.4.8≦
The range is X≦1. This is because it is preferable to have a tetragonal crystal.

この方法で得られた強誘電体薄膜は、[:OO1]配向
率か0.85以上あり、比誘電率を小さくすることがで
きる。更に第3図に示すように粒径によって比誘電率が
変化し、1μm以上で比誘電率を小さくすることができ
る。たたし異常粒成長を起こすと膜の平坦性を損なうた
め、1μmから3μmの範囲がより好ましい。この高配
向性と粒径の効果で比誘電率が小さくなり、焦電係数と
比誘電率の比で表される性能指数が大きくなる。また、
次式で表せる誘電損失雑音も小さいために雑音が小さく
なり、感度と雑音の比で表される比検出能が大きくなる
The ferroelectric thin film obtained by this method has a [:OO1] orientation ratio of 0.85 or more, and can have a low dielectric constant. Further, as shown in FIG. 3, the relative permittivity changes depending on the particle size, and the relative permittivity can be reduced at 1 μm or more. If abnormal grain growth occurs, the flatness of the film will be impaired, so a range of 1 μm to 3 μm is more preferable. Due to the effects of this high orientation and particle size, the relative permittivity becomes small, and the figure of merit expressed by the ratio of the pyroelectric coefficient to the relative permittivity increases. Also,
Since the dielectric loss noise expressed by the following equation is also small, the noise becomes small, and the specific detection ability expressed as the ratio of sensitivity to noise becomes large.

K   : ボルツマン定数 T   ・ 絶対温度 ω   : 赤外線の角周波数 R: 電気抵抗 ε0   : 真空の誘電率 A   : 赤外線受光面積 d    : 厚さ τ6   : 電気時定数 tanδ  ° 誘電損失 、 比誘電率 実施例 本発明における強誘電体薄膜は、[001]配向したM
g○基板上に高周波スパッタリング法で下部電極となる
[OO1]方向に配向したPtを形成した後にPt上に
CVD法にて形成した。下部電極PLの厚さは0.1μ
mとし、強誘電体薄膜は、pb(C,H,)4、Z r
(DPM)4、T j、(i−QC,H,)。
K: Boltzmann constant T ・Absolute temperature ω: Angular frequency of infrared rays R: Electrical resistance ε0: Dielectric constant of vacuum A: Infrared receiving area d: Thickness τ6: Electrical time constant tanδ ° Dielectric loss, Relative permittivity Examples This invention The ferroelectric thin film in [001] oriented M
After forming Pt oriented in the [OO1] direction, which will become the lower electrode, on the g◯ substrate by high-frequency sputtering, it was formed on the Pt by CVD. The thickness of the lower electrode PL is 0.1μ
m, and the ferroelectric thin film is pb(C,H,)4, Z r
(DPM) 4, T j, (i-QC, H,).

を原料とし、第1表に示す条件で合成を行った。was used as a raw material, and synthesis was carried out under the conditions shown in Table 1.

第 表 キャリアガス流量は各原料毎に20〜100m1/ m
 i nでZr/Tiの組成比に合わせてm整し、20
0分で厚さ約2μmの膜を形成した。
Table Carrier gas flow rate is 20 to 100 m1/m for each raw material
Adjust m according to the Zr/Ti composition ratio with i n, and
A film with a thickness of about 2 μm was formed in 0 minutes.

得られた薄膜の粒径は、1μm以上であった。The particle size of the obtained thin film was 1 μm or more.

X線回折の結果、[001]配向したPt上に形成した
強誘電体薄膜では、(1,00)面と(ooi、)面の
反射のみが認められた。薄膜の[001]方向の配向率
αは(100)面と(00]、)面の反射強度をそれぞ
れ■1o、T、、、としたとき■。。
As a result of X-ray diffraction, in the ferroelectric thin film formed on the [001]-oriented Pt, only reflections from the (1,00) plane and the (ooi,) plane were observed. The orientation ratio α of the thin film in the [001] direction is (■) when the reflection intensities of the (100) plane and (00], ) plane are respectively (■1o, T, . . . ). .

■1゜。十■。。■1°. Ten ■. .

で定義する。Defined by

次に得られた強誘電体薄膜の特性を調べるために0,1
μrn厚さのA uを蒸着法にて形成し上部電極とし、
25℃で]、 OO](V / c mの電界強度で2
0分のポーリング処理を行った後に焦電係数と比誘電率
を測定した。第2表■〜■に本発明で作製した強誘電体
薄膜の[001]配向率α、比誘電率ε1、焦電係数λ
、性能指数λ/ε0ε1、l OHzでの比検4州能D
+1を■、■に比較のためにスパッタ法で作製した特開
昭60−131704の値を示す。比較例の誘電率が大
きいのは、結晶粒径が小さいためと思われる。
Next, in order to investigate the characteristics of the obtained ferroelectric thin film,
A layer of Au having a thickness of μrn is formed by vapor deposition to serve as the upper electrode,
at 25 °C], OO] (2 at an electric field strength of V/cm
The pyroelectric coefficient and relative dielectric constant were measured after performing a 0-minute poling process. Table 2 ■ to ■ show the [001] orientation ratio α, relative permittivity ε1, and pyroelectric coefficient λ of the ferroelectric thin films produced according to the present invention.
, figure of merit λ/ε0ε1, l Comparative four-state performance D at OHz
For comparison, the values of JP-A-60-131704 manufactured by the sputtering method are shown. The reason why the dielectric constant of the comparative example is large is considered to be because the crystal grain size is small.

以下余白 ? [001]配向したPし上に形成した強誘電体薄膜は、
[001]配向率が85%以上あり、比誘電率ε1が小
さいため性能指数か著しく大きくなる。
Margin below? The ferroelectric thin film formed on the [001] oriented P film is
Since the [001] orientation rate is 85% or more and the dielectric constant ε1 is small, the figure of merit becomes significantly large.

特に7. rが多い組成でのε、か大きく改善されてい
る。また、誘電損失雑音も小さくなり、比検出能が大き
くなる。
Especially 7. ε in a composition with a large amount of r is greatly improved. Further, dielectric loss noise is also reduced, and specific detection ability is increased.

第1図に、この強誘電体薄膜を利用した焦電型赤外線セ
ンサーの作製例を示す。この素子の作製方法は、まずフ
ォトリソグラフィーの技術を用いて[001]配向した
MgO基板上に赤外線を受光する部分になる1、5X1
,5mm’のパターンを形成し、ジ 去の部分に高周波スパッタリング法で下部電極となる[
001]方向に配向したPLを0.1μmの厚さて形成
した。次にP t lにCVD法にて強誘電体薄膜を形
成した。強誘電体薄膜は、P b (C,H,)、、Z
 r (D P M)4、T1(1−○C3H,)4を
原料とし、第1表に示す条件で200分間合成し、厚さ
2μmの膜を形成した。
FIG. 1 shows an example of manufacturing a pyroelectric infrared sensor using this ferroelectric thin film. The method for manufacturing this device is to first use photolithography technology to place a 1,5
, 5mm' pattern was formed, and the lower electrode was formed by high-frequency sputtering on the leftover part [
001] direction was formed to a thickness of 0.1 μm. Next, a ferroelectric thin film was formed on Ptl by CVD. The ferroelectric thin film is P b (C, H,), Z
Using r (D P M) 4, T1 (1-○C3H,) 4 as raw materials, synthesis was carried out for 200 minutes under the conditions shown in Table 1 to form a film with a thickness of 2 μm.

次に素子の熱容量を小さくするためにMgO基板の下部
にフォー・リソグラフィー技術によりパターンを形成後
イオンミリング法でエツチングし、受光部の下に空間を
形成した。
Next, in order to reduce the heat capacity of the device, a pattern was formed on the lower part of the MgO substrate using a four-lithography technique, and then etched using an ion milling method to form a space under the light receiving section.

次に強誘電体薄膜上に上部電極となるNiCrを蒸着法
で200人形成し、フォトリソグラフィー技術でPLの
下部電極と一致するようにパターンを形成後、イオンミ
リング法にて不要部分をエツチングした。MgO基板及
び強誘電体薄膜のエツチングに今回はイオンミリング法
を用いたか、湿式の化学エツチングや反応性イオンエツ
チングで可能なことは言うまでもない。
Next, 200 pieces of NiCr, which will become the upper electrode, were formed on the ferroelectric thin film by vapor deposition, and after forming a pattern using photolithography to match the lower electrode of the PL, unnecessary parts were etched using ion milling. . It goes without saying that ion milling was used for etching the MgO substrate and ferroelectric thin film, or wet chemical etching or reactive ion etching could be used.

これをメタルパッケージ上に絶縁性接着剤で取り付け、
次に赤外線の入射によって生じる焦電電流を電圧変化と
して取り出すためにインピーダンス変換用FETを接着
し、FETの電極と上部電極間およびメタルパッケージ
のポスト間をワイヤボンディング法で配線し、入射赤外
線の波長を制限するためのフィルター付きキャップを取
り付は焦電型赤外線センサーとした。
Attach this to the metal package with insulating adhesive,
Next, in order to extract the pyroelectric current generated by the incidence of infrared rays as a voltage change, an impedance conversion FET is bonded, and wires are wired between the FET electrode and the upper electrode and between the posts of the metal package using the wire bonding method, and the wavelength of the incident infrared rays is A pyroelectric infrared sensor was installed with a cap with a filter to limit the amount of heat generated.

第2図は、−例としてP b (Z r、、T I。6
)03の組成の薄膜を用いて作製した受光面積2.25
mm2の単一素子の電圧感度Rvと比検出能り本を示し
たものである。比検出能は2×10°cm FT/Wあ
リバルクに比べて1桁以上大きくなっている。
FIG. 2 shows - as an example P b (Z r,, T I.6
) Light-receiving area made using a thin film with a composition of 03: 2.25
This figure shows the voltage sensitivity Rv and ratio detection capability of a single element of mm2. The specific detection ability is more than an order of magnitude larger than that of the 2×10°cm FT/W rebulk.

本発明は、上記の実施例に限定されるものではなく、例
えば、赤外線受光部を2次元的に配列することで1受光
部の面積が小さい素子で高感度に2次元的な赤外線の検
出が可能である。
The present invention is not limited to the above-mentioned embodiments. For example, by arranging infrared light receiving sections two-dimensionally, it is possible to detect two-dimensional infrared light with high sensitivity using an element with a small area for each light receiving section. It is possible.

且皿久立米 以−1ム説明した通り本発明の焦電型赤外線センサーは
、配向した下部電極上に強誘電体薄膜を配向させ形成す
ること及び粒径を制御することで強誘電体薄膜の比誘電
率が小さくなり、性能指数が著しく大きくなる。従って
、受光部が小さいとしても高感度のセンサーが得られる
。このことは、単一センサのみならず、2次元のアレイ
センサーを作製する場合に、非常に優れた特性を持たせ
ることができる。
As explained above, the pyroelectric infrared sensor of the present invention has a structure in which the ferroelectric thin film is formed by orienting the ferroelectric thin film on the oriented lower electrode and by controlling the particle size. The dielectric constant becomes smaller and the figure of merit becomes significantly larger. Therefore, a highly sensitive sensor can be obtained even if the light receiving section is small. This allows extremely excellent characteristics to be provided not only when manufacturing a single sensor but also a two-dimensional array sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例の焦電型赤外線センサ受光部
の斜視図である。第1図中1が強誘電体薄膜、2が下部
電極(Pt)、3がMgO基板、4がJ−FET、5が
上部電極(NiCr)である。 第2図は、本発明の〜態様における電圧感度(RV)と
比検出能(D*)を示す。 第3図は、 薄膜の粒径と比誘電率の関係を示す。
FIG. 1 is a perspective view of a pyroelectric infrared sensor light receiving section according to an embodiment of the present invention. In FIG. 1, 1 is a ferroelectric thin film, 2 is a lower electrode (Pt), 3 is an MgO substrate, 4 is a J-FET, and 5 is an upper electrode (NiCr). FIG. 2 shows voltage sensitivity (RV) and specific detectability (D*) in embodiments of the present invention. Figure 3 shows the relationship between the grain size and dielectric constant of a thin film.

Claims (1)

【特許請求の範囲】[Claims]  化学式Pb(Zr_1_−_xTi_x)O_3で表
される薄膜より熱膨張係数が大きく、化学式Pb(Zr
_1_−_−xTi_x)O_3で表される薄膜の格子
定数との不整合率が10%以下である基板上に[001
]配向したPt膜を有し、さらにPt膜上に形成した化
学式Pb(Zr_1_−_xTi_x)O_3で、0.
48≦x≦1の組成を持つ薄膜が、[001]配向しか
つその粒径が1μm以上あることを特徴とする強誘電体
薄膜を利用した焦電型赤外線センサー。
The coefficient of thermal expansion is larger than that of the thin film represented by the chemical formula Pb(Zr_1_-_xTi_x)O_3;
[001
] oriented Pt film, and further formed on the Pt film, with the chemical formula Pb(Zr_1_-_xTi_x)O_3, and 0.
A pyroelectric infrared sensor using a ferroelectric thin film, characterized in that the thin film has a composition of 48≦x≦1, is oriented in [001], and has a grain size of 1 μm or more.
JP15278290A 1990-06-13 1990-06-13 Pyroelectric type infrared sensor Pending JPH0447606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15278290A JPH0447606A (en) 1990-06-13 1990-06-13 Pyroelectric type infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15278290A JPH0447606A (en) 1990-06-13 1990-06-13 Pyroelectric type infrared sensor

Publications (1)

Publication Number Publication Date
JPH0447606A true JPH0447606A (en) 1992-02-17

Family

ID=15548033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15278290A Pending JPH0447606A (en) 1990-06-13 1990-06-13 Pyroelectric type infrared sensor

Country Status (1)

Country Link
JP (1) JPH0447606A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972783A (en) * 1995-09-01 1997-03-18 Kawasaki Heavy Ind Ltd Thin-film pyroelectric type infrared sensor and its manufacture
US5866238A (en) * 1994-05-05 1999-02-02 Minolta Co., Ltd. Ferroelectric thin film device and its process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866238A (en) * 1994-05-05 1999-02-02 Minolta Co., Ltd. Ferroelectric thin film device and its process
JPH0972783A (en) * 1995-09-01 1997-03-18 Kawasaki Heavy Ind Ltd Thin-film pyroelectric type infrared sensor and its manufacture

Similar Documents

Publication Publication Date Title
US5949071A (en) Uncooled thin film pyroelectric IR detector with aerogel thermal isolation
US5821598A (en) Uncooled amorphous YBaCuO thin film infrared detector
KR100827216B1 (en) Microelectronic piezoelectric structure
WO2002047127A2 (en) Pyroelectric device on a monocrystalline semiconductor substrate
JP3974338B2 (en) Infrared detector and infrared detector
US4631633A (en) Thin film capacitors and method of making the same
Okuyama et al. PbTiO3 ferroelectric thin films and their pyroelectric application
US5804823A (en) Bismuth layered structure pyroelectric detectors
US5286975A (en) Pyro-electric type infrared-ray sensor
JPH0447606A (en) Pyroelectric type infrared sensor
CN1007764B (en) Film resistance temp. sensor and manufacturing method
Shi et al. Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films
Fuflyigin et al. Free-standing films of PbSc 0.5 Ta 0.5 O 3 for uncooled infrared detectors
Uhlmann et al. Ferroelectric films
JPH0334580A (en) Electronic parts
JPS60161635A (en) Substrate for electronic device
JPH04206871A (en) Semiconductor device and manufacture thereof
JP2004281742A (en) Semiconductor device, semiconductor sensor and semiconductor memory element
McCarthy et al. Pyroelectric properties of various sol-gel derived PLZT thin films
Deb et al. Investigation of pyroelectric characteristics of lead titanate thin films for microsensor applications
JP2564526B2 (en) Pyroelectric infrared array element and manufacturing method thereof
JPS59141427A (en) Thin film of ferroelectric material
JP5030349B2 (en) Dielectric film fabrication method
Akai et al. Pyroelectric infrared sensors with fast response time and high sensitivity using epitaxial Pb (ZrTi) O/sub 3/films on epitaxial/spl gamma/-Al/sub 2/O/sub 3//Si substrates
Teowee et al. Pyroelectric properties of sol-gel derived PZT thin films with various Zr/Ti ratios