JPH0447291A - Nuclear reactor output monitor - Google Patents

Nuclear reactor output monitor

Info

Publication number
JPH0447291A
JPH0447291A JP2156390A JP15639090A JPH0447291A JP H0447291 A JPH0447291 A JP H0447291A JP 2156390 A JP2156390 A JP 2156390A JP 15639090 A JP15639090 A JP 15639090A JP H0447291 A JPH0447291 A JP H0447291A
Authority
JP
Japan
Prior art keywords
signals
nuclear reactor
lprm
output
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2156390A
Other languages
Japanese (ja)
Inventor
Yutaka Takeuchi
豊 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2156390A priority Critical patent/JPH0447291A/en
Publication of JPH0447291A publication Critical patent/JPH0447291A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To monitor events produced in a nuclear reactor to contrive the improvement of safety and an availability factor by estimating production phenomena in the nuclear reactor from a mutual relationship between the difference of signals between neutron detectors and the position of the detectors in the nuclear reactor. CONSTITUTION:Several local output monitor system (LPRM) signals 6 selected so as not to have deviation in respective spatial distribution in channels (CH) 2a-2f of an average output monitor system 2 of a device 1 are input to be averaged so as to monitor 2g on the basis of output signals. In addition, in CH3a-3d of an axial output monitor system 3 the same axial height of respective LPRM signals 6 is input to be averaged. Further, in CH4a-4d of a radial output monitor system 4 the LPRM signals 6 from the positions closest to respective maximum output bundle and three points which are the positions quartly symmet rical with the former positions are input to be averaged respectively. Fast phenomena can be estimated on the basis of sign rows of the signal from a neutron detector and the estimation of long-term and periodical phenomena is made possible according to statistical processing of the signals from the detector.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、沸騰水型原子炉の原子炉出力の監視に利用さ
れる原子炉出力監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Industrial Application Field) The present invention relates to a reactor power monitoring device used for monitoring the reactor power of a boiling water nuclear reactor.

(従来の技術) 従来から、原子力発電プラントの運転に当たっては、運
転を安全、安定かつ効果的に行うため、数多くのパラメ
ータを検出、測定して運転制御に役立てている。
(Prior Art) Conventionally, in order to operate a nuclear power plant safely, stably, and effectively, a large number of parameters have been detected and measured and used for operation control.

たとえば、多くの計装信号の中でも、特に重要となる出
力信号として、局部出力モニター系(以下LPRMとい
う)と、平均出力モニター(以下APRMという)があ
る。すなわち、LPRMは、燃料集合体約16体につき
、軸方向に4信号ずつ(110万キロワット級で43X
  4)測定されるものであり、APRMは、これらの
うち幾つかを平均化したもので、通常数チャンネル(1
1O万キロワット級で6チヤンネル)設けられている。
For example, among many instrumentation signals, particularly important output signals include a local output monitor system (hereinafter referred to as LPRM) and an average output monitor system (hereinafter referred to as APRM). In other words, the LPRM has 4 signals in the axial direction for about 16 fuel assemblies (43X in the 1.1 million kilowatt class).
4) APRM is the average of several of these, and is usually measured over several channels (1
It is equipped with 100,000 kilowatt class (6 channels).

また、制御棒操作時に使用されるものとして、LPRM
を数本選択して平均化するロッドブロックモニター系(
以下RBMという)もあるが、従来通常運転時は、この
APRMにより原子炉出力の監視を行っている。
In addition, LPRM is used during control rod operation.
Rod block monitor system that selects several rods and averages them (
There is also an APRM (hereinafter referred to as RBM), but conventionally, during normal operation, this APRM has been used to monitor the reactor output.

(発明が解決しようとする課題) しかしながら、APRMは、LPRMを平均化している
ため、炉心全体の出力変化を表わしてはいるものの、局
所的な事象の検出が見落されている場合や、あるいはマ
クロな変化のみをとらえているため、その事象を物理的
、構造的に解釈することが困難であった。このため、安
全性の確保のため、不要なスクラム等が行われ、稼働率
の低下を招く恐れがあった。
(Problem to be solved by the invention) However, since APRM averages LPRM, although it represents the output change of the entire reactor core, there are cases where detection of local events is overlooked, or Because it captures only macroscopic changes, it has been difficult to interpret the phenomenon physically and structurally. For this reason, unnecessary scrams and the like were performed to ensure safety, which could lead to a decrease in the operating rate.

本発明は、かかる従来の事情に対処してなされたもので
、従来に較べてより正確に原子炉内で起きている事象の
監視を行うことができ、安全性の向上と稼働率の向上を
図ることのできる原子炉出力監視装置を提供しようとす
るものである。
The present invention has been made in response to such conventional circumstances, and allows for more accurate monitoring of events occurring within a nuclear reactor than in the past, thereby improving safety and operating efficiency. The aim is to provide a nuclear reactor power monitoring device that can achieve the desired results.

C発明の構成コ (課題を解決するための手段) すなわち本発明は、原子炉内に配置された多数の中性子
検出器からの信号に基づいて原子炉出力の監視を行う原
子炉出力監視装置において、前記中性子検出器間の信号
の差異と、これらの中性子検出器が配置された前記原子
炉内での位置との相対的な関係から前記原子炉内で発生
した現象を推定する手段を備えたことを特徴とする。
C. Configuration of the Invention (Means for Solving the Problems) That is, the present invention provides a reactor power monitoring device that monitors the reactor power based on signals from a large number of neutron detectors arranged in the reactor. , comprising means for estimating a phenomenon occurring within the nuclear reactor from the relative relationship between the difference in signals between the neutron detectors and the position within the reactor where these neutron detectors are arranged. It is characterized by

(作 用) 上記構成の本発明の原子炉出力監視装置は、中性子検出
器間の信号の差異と、これらの中性子検出器が配置され
た原子炉内での位置との相対的な関係から原子炉内で発
生した現象を推定する手段を備えている。
(Function) The reactor power monitoring device of the present invention having the above configuration is capable of detecting a It is equipped with a means to estimate the phenomena occurring inside the reactor.

なお、このような現象の推定は、たとえば中性子検出器
からの信号を符号列に変換し、この符号列とデータベー
ス内に収容された符号列とのマツチングを行うことによ
って速い現象の推定を、中性子検出器からの信号を統計
的に処理することによって長期的な周期的な現象の推定
を行うことができる。
Note that such phenomena can be estimated quickly by, for example, converting the signal from a neutron detector into a code string and matching this code string with a code string stored in a database. Estimates of long-term periodic phenomena can be made by statistically processing the signals from the detectors.

したがって、従来に較べてより正確に原子炉内で起きて
いる事象の監視を行うことができ、安全性の向上と稼働
率の向上を図ることかできる。
Therefore, events occurring within the nuclear reactor can be monitored more accurately than in the past, and safety and operation rates can be improved.

(実施例) 以下本発明の原子炉出力監視装置を図面を参照して一実
施例について説明する。
(Embodiment) Hereinafter, one embodiment of the nuclear reactor power monitoring device of the present invention will be described with reference to the drawings.

第1図は、この実施例の原子炉出力監視装置の構成を示
すもので、原子炉出力監視装置lは、平均出力監視系2
と、軸方向出力監視系3と、径方向出力監視系4とから
構成されており、これらの平均出力監視系2、軸方向出
力監視系3、径方向出力監視系4には、それぞれ炉心5
内に多数(たとえば110万キロワット級で43X 4
)配置された中性子検出器からのLPRM信号6が入力
される。
FIG. 1 shows the configuration of the reactor power monitoring system of this embodiment.
The average power monitoring system 2, the axial power monitoring system 3, and the radial power monitoring system 4 each include a core 5, an axial power monitoring system 3, and a radial power monitoring system 4.
(for example, 43×4 in the 1.1 million kilowatt class)
) The LPRM signal 6 from the neutron detector located in the neutron detector is input.

上記平均出力監視系2には、たとえば6つのチャンネル
2a〜2fが設けられており、これらのチャンネル28
〜2fでは、それぞれ空間的な分布に偏りのないように
選択された幾つかのLPRM信号6が入力され、平均化
される。そして、これらの平均化された信号出力に基づ
いて平均出力監視部2gによって監視が行われるよう構
成されている。
The average output monitoring system 2 is provided with, for example, six channels 2a to 2f, and these channels 28
~2f, several LPRM signals 6 selected so that their spatial distributions are not biased are input and averaged. The average output monitoring section 2g is configured to perform monitoring based on these averaged signal outputs.

また、軸方向出力監視系3には、4つのチャンネル3a
〜3dが設けられている。通常炉心5内の中性子検出器
は1本のストリンゲスに4つ軸方向高さを変えて配置さ
れているので、これらのチャンネル3a〜3dでは、そ
れぞれLPRM信号6のうち軸方向高さの同じものを入
力し平均化する。すなわち、たとえばチャンネル3aで
は、最上段に配置された中性子検出器からのLPRM信
号6のみを、チャンネル3bではその次段に配置された
中性子検出器からのLPRM信号6のみを、チャンネル
3Cではさらにその次段に配置された中性子検出器から
のLPRM信号6のみを、チャンネル3dでは最下段に
配置された中性子検出器からのLPRM信号6のみを平
均化する。そして、これらの平均化された信号出力に基
づいて軸方向出力監視部3eによって監視が行われるよ
う構成されている。すなわち、この軸方向出力監視部3
eでは、チャンネル3a〜3dからの信号により、たと
えばポンプトリップや炉心安定性等の軸方向のモニター
間で同じ応答を示す事象、制御棒操作あるいは制御棒が
動く事象や、チャンネル安定性に由来する局所発振現象
等の原因と軸方向間の応答の違いに相関のある事象の判
別を行う。なお、地震時においても、軸方向ボイド率分
布の違いから軸方向間のモニターの応答性に差が生じる
In addition, the axial output monitoring system 3 includes four channels 3a.
~3d are provided. Normally, four neutron detectors in the reactor core 5 are arranged in one string with different heights in the axial direction, so in these channels 3a to 3d, among the LPRM signals 6, those having the same height in the axial direction Input and average. That is, for example, channel 3a receives only the LPRM signal 6 from the neutron detector located at the top stage, channel 3b receives only the LPRM signal 6 from the neutron detector located at the next stage, and channel 3C receives only the LPRM signal 6 from the neutron detector located at the next stage. Only the LPRM signal 6 from the neutron detector placed at the next stage is averaged, and in channel 3d, only the LPRM signal 6 from the neutron detector placed at the bottom stage is averaged. The axial output monitoring unit 3e is configured to perform monitoring based on these averaged signal outputs. That is, this axial output monitoring section 3
In e, the signals from channels 3a to 3d detect events that have the same response between axial monitors, such as pump trips and core stability, control rod operations or control rod movement events, and events originating from channel stability. Distinguish events that are correlated with causes such as local oscillation phenomena and differences in response between axial directions. In addition, even during an earthquake, differences in the response of the monitor between the axial directions occur due to differences in the axial void fraction distribution.

さらに、径方向出力監視系4には、4つのチャンネル4
a〜4dが設けられており、これらのチャンネル4a〜
4dには、それぞれ最高出力バンドルに最も近接した部
位からのLPRM信号6、およびこの部位と1/4対称
位置となる 3点からのLPRM信号6が入力され、そ
れぞれ平均化される。そして、これらの平均化された信
号出力に基づいて径方向出力監視部4eによって監視が
行われるよう構成されている。すなわち、この径方向出
力監視部4eは、各チャンネル4a〜4dからの信号を
独立に監視するとともに、これらの相関からチャンネル
安定性と、それに基づく局所発振現象の監視を行う。
Furthermore, the radial output monitoring system 4 includes four channels 4.
channels a to 4d are provided, and these channels 4a to 4d are provided.
4d, the LPRM signal 6 from the part closest to the highest output bundle, and the LPRM signal 6 from three points 1/4 symmetrical to this part are input and averaged. The radial output monitoring unit 4e is configured to perform monitoring based on these averaged signal outputs. That is, the radial output monitoring section 4e independently monitors the signals from each channel 4a to 4d, and also monitors the channel stability based on the correlation between these signals and the local oscillation phenomenon based thereon.

なお、上記各監視部における監視は次のようにして行う
。すなわち、速い事象に対しては、信号の基準値からの
変化分をその方向と大きさに関して比較的少数のパター
ンに符号化する。方向は(+)と(−)だけであるか高
周波成分あるいは不規則成分といった全体の挙動には影
響しない成分を取り除くため、サンプリング間隔により
たとえば、 (十+ + −十)→(十+ + + +)と修正する
。変化の大きさに関しては、大きさを基準値で割った割
合により、(大、中、小)の3つ程度に分ける。
Note that the monitoring in each of the above-mentioned monitoring units is performed as follows. That is, for fast events, the change in signal from a reference value is encoded into a relatively small number of patterns in terms of direction and magnitude. In order to remove components that do not affect the overall behavior, such as only directions (+) and (-), high frequency components, or irregular components, we change the sampling interval to, for example, (10+ + -10) → (10+ + + +) and correct it. Regarding the magnitude of change, it is divided into three categories (large, medium, and small) based on the ratio of the magnitude divided by the reference value.

このような方法によれば、変化の方向から各信号間の応
答の位相差を検出することができる。すなわち最も早く
増の方向へ転じた信号を基準として、あるいは着目する
信号を基準としてそれからの応答の遅れを検出すること
ができる。また、変化の方向と大きさを表す符号を簡素
化したことにより基準となるデータベース間とのマツチ
ングにより現象の推定が行える。基準となるデータベー
スは既に観測された実機データを上述した方法で符号化
して符号列と現象を対応させたものである。
According to such a method, the phase difference in response between each signal can be detected from the direction of change. In other words, it is possible to detect the delay in response based on the signal that changed to the direction of increase earliest, or using the signal of interest as a reference. Furthermore, by simplifying the codes representing the direction and magnitude of change, the phenomenon can be estimated by matching with the reference databases. The reference database is one in which the actual data already observed is encoded using the method described above, and the code strings and phenomena are made to correspond to each other.

データベースと測定された信号の符号列が完全にマツチ
ングすることはありえないであろうから、マツチングに
際しては、まず即応性を考えてマツチングに用いる間隔
はなるべく短<シ(サンプル数5程度)マツチングに際
しては論理積をとる。
Since it is unlikely that the code string of the database and the measured signal will perfectly match, when performing matching, first of all, consider the quick response and keep the interval used for matching as short as possible (the number of samples is about 5). Take a logical product.

たとえば、 十十+++ X  −十十+ として、積値(0または1)の和の大きさでマツチング
を、たとえば(和/サンプル数)が1ノ3以下ならマツ
チしない、2/3以上ならマツチすると判断する。
For example, if 10 + + + Then judge.

一方、周期的な現象に際しては、統計的手法を適用する
。統計的手法としては、最も単純な相関係数法を用いて
係数値の絶対値が最大となる遅れ時間より周期を算出し
、それがほぼ一定で周期性が認められるか否かを検出す
る。周期性が認められれば、次に振幅の変化の履歴をチ
エツクして、振動現象が成長していないか否かをチエツ
クする。
On the other hand, statistical methods are applied to periodic phenomena. As a statistical method, the period is calculated from the delay time at which the absolute value of the coefficient value is maximum using the simplest correlation coefficient method, and it is detected whether the period is approximately constant and periodicity is recognized. If periodicity is found, then the history of amplitude changes is checked to see if the vibration phenomenon has grown.

すなわち、この実施例の原子炉出力監視装置では、従来
のAPRMによる監視に較べて、より正確に原子炉内で
起きている事象の監視を行うことができ、安全性の向上
と稼働率の向上を図ることができる。
In other words, the reactor power monitoring device of this embodiment can monitor events occurring inside the reactor more accurately than monitoring using conventional APRM, improving safety and improving operation rate. can be achieved.

[発明の効果] 上述のように、本発明の原子炉出力監視装置では、従来
に較べてより正確に原子炉内で起きている事象の監視を
行うことができ、安全性の向上と稼働率の向上を図るこ
とができる。
[Effects of the Invention] As described above, the reactor power monitoring device of the present invention can monitor events occurring within the reactor more accurately than before, improving safety and improving operating efficiency. It is possible to improve the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の原子炉出力監視装置の構成
を示す図である。 1・・・・・・・・・原子炉出力監視装置2・・・・・
・・・・平均出力監視系 3・・・・・・・・・軸方向出力監視系4・・・・・・
・・・径方向出力監視系5・・・・・・・・・炉心 6・・・・・・・・・LPRM信号 出願人      株式会社 東 芝
FIG. 1 is a diagram showing the configuration of a nuclear reactor power monitoring device according to an embodiment of the present invention. 1... Reactor output monitoring device 2...
...Average output monitoring system 3...Axial output monitoring system 4...
...Radial power monitoring system 5...Core 6...LPRM signal Applicant: Toshiba Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)原子炉内に配置された多数の中性子検出器からの
信号に基づいて原子炉出力の監視を行う原子炉出力監視
装置において、 前記中性子検出器間の信号の差異と、これらの中性子検
出器が配置された前記原子炉内での位置との相対的な関
係から前記原子炉内で発生した現象を推定する手段を備
えたことを特徴とする原子炉出力監視装置。
(1) In a reactor power monitoring device that monitors the reactor output based on signals from a large number of neutron detectors placed in the reactor, differences in signals between the neutron detectors and detection of these neutrons 1. A nuclear reactor output monitoring device comprising: means for estimating a phenomenon occurring within the reactor from a relative relationship with a position within the reactor where the reactor is placed.
JP2156390A 1990-06-14 1990-06-14 Nuclear reactor output monitor Pending JPH0447291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156390A JPH0447291A (en) 1990-06-14 1990-06-14 Nuclear reactor output monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156390A JPH0447291A (en) 1990-06-14 1990-06-14 Nuclear reactor output monitor

Publications (1)

Publication Number Publication Date
JPH0447291A true JPH0447291A (en) 1992-02-17

Family

ID=15626699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156390A Pending JPH0447291A (en) 1990-06-14 1990-06-14 Nuclear reactor output monitor

Country Status (1)

Country Link
JP (1) JPH0447291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131106A1 (en) * 2017-01-12 2018-07-19 日立Geニュークリア・エナジー株式会社 Control rod operation monitoring system and control rod operation monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131106A1 (en) * 2017-01-12 2018-07-19 日立Geニュークリア・エナジー株式会社 Control rod operation monitoring system and control rod operation monitoring method
US11393600B2 (en) 2017-01-12 2022-07-19 Hitachi-Ge Nuclear Energy, Ltd. Control rod motion monitoring system and control rod motion monitoring method

Similar Documents

Publication Publication Date Title
US5410492A (en) Processing data base information having nonwhite noise
US5761090A (en) Expert system for testing industrial processes and determining sensor status
WO1994028557A1 (en) System for monitoring an industrial process and determining sensor status
Orton et al. Proof of concept simulations of the Multi-Isotope Process monitor: An online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities
WO2011142383A1 (en) Output monitoring device for nuclear reactor
EP2286414B1 (en) A method of and an apparatus for monitoring the operation of a nuclear reactor
KR970004354B1 (en) Core reactivity validation computer and method
JPH0447291A (en) Nuclear reactor output monitor
Marklund et al. Application of a new passive acoustic leak detection approach to recordings from the Dounreay prototype fast reactor
CN101556168B (en) Equipment operating data monitoring device
Zeephongsekul et al. On fuzzy debugging of software programs
Pang et al. Condition monitoring of an advanced gas-cooled nuclear reactor core
CN111797509B (en) Reactor core neutron flux prediction method based on detector measurement value
JP2012112862A (en) Method and apparatus for measuring burn-up distribution of fuel assembly
Albers Online data reconciliation and error detection
Castillo et al. Determination of limit cycles using both the slope of correlation integral and dominant Lyapunov methods
Aylward et al. Improved assessment of delayed neutron detector data in CANDU reactors
JPH08304125A (en) Plant diagnosing apparatus
Dumonteil et al. Automatic treatment of the variance estimation bias in TRIPOLI-4 criticality calculations
Mutneja et al. Design of discrete-time Kalman filter based delay compensator for Rhodium-103 SPND
Pau et al. Advances in the development of DIS_tool and first analysis on TCV disruptions
Gorski et al. Experience with fixed in-core detectors at Seabrook Station
Perfetti Continued Investigation of Metrics for Predicting Undersampling Biases in Monte Carlo Simulations
Takemoto et al. ICONE23-1585 THE AXIAL REACTION RATE DISTRIBUTION INTERPOLATION METHOD FOR FID SIGNALS IN MHI'S CORE MONITORING SYSTEM VISION
Cacciapouti et al. Experience with fixed platinum in-core detectors