JPH0447011B2 - - Google Patents

Info

Publication number
JPH0447011B2
JPH0447011B2 JP59074406A JP7440684A JPH0447011B2 JP H0447011 B2 JPH0447011 B2 JP H0447011B2 JP 59074406 A JP59074406 A JP 59074406A JP 7440684 A JP7440684 A JP 7440684A JP H0447011 B2 JPH0447011 B2 JP H0447011B2
Authority
JP
Japan
Prior art keywords
annealing
descaling
aqueous solution
steel strip
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59074406A
Other languages
Japanese (ja)
Other versions
JPS60218429A (en
Inventor
Masaaki Ishikawa
Masayuki Hino
Shinji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7440684A priority Critical patent/JPS60218429A/en
Publication of JPS60218429A publication Critical patent/JPS60218429A/en
Publication of JPH0447011B2 publication Critical patent/JPH0447011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はステンレス冷延鋼帯の製造過程にお
いて、連続焼鈍・脱スケール処理を行なう前に冷
延鋼帯に対して施す焼鈍前処理方法に関し、特に
焼鈍時の酸化スケールの生成を抑制して脱スケー
ル性を良好にするとともに脱スケール後の鋼帯表
面性状を改善するための焼鈍前処理方法に関する
ものである。 周知のようにステンレス冷延鋼帯の製造過程に
おいては、主として冷延加工による歪を除去して
良好な機械的特性を付与するため、冷間圧延後に
焼鈍を行なうのが通常である。このような冷間圧
延後の焼鈍は連続焼鈍によつて行なうのが通常で
あり、またその焼鈍雰囲気の点から、還元性雰囲
気で行なう光輝焼鈍と、酸化性雰囲気中で行なう
焼鈍とに大別される。特に後者の酸化性雰囲気中
での焼鈍を行なつた場合、焼鈍時に鋼帯表面に酸
化スケールが形成されるため、焼鈍時に脱スケー
ル処理を行なう必要がある。そこで酸化性雰囲気
中で焼鈍する場合には、一般には前半に焼鈍設備
を持ち後半に脱スケール設備を持つ所謂連続焼
鈍・脱スケールラインによつて処理するのが通常
である。なお連続焼鈍・脱スケールの前段階で鋼
帯表面に付着している圧延油を脱脂剤で洗浄除去
する場合と、脱脂は行なわずに直火式焼鈍炉内で
圧延油を燃焼除去する場合とがあるが、前者の方
が焼鈍時に生成される酸化スケール厚が薄くなる
傾向がある。 ところでステンレス冷延鋼帯の連続焼鈍・脱ス
ケールラインにおいては、脱スケール後の表面光
沢などの表面性状が優れていることが要求され、
またコスト的に安価なことすなわち脱スケールを
効率良く行えることが要求される。このような要
求に応えるためには、焼鈍時における酸化スケー
ルの生成を可及的に抑制すること、および焼鈍時
に生成された酸化スケール被膜を、地鉄表面を荒
らすことなく効率良く除去することが必要であ
る。 このようなステンレス冷延鋼帯の連続焼鈍・脱
スケールラインにおける脱スケールの方法として
は、従来は硫酸、硝酸、硝弗酸(硝酸と弗化水素
酸との混酸)などの無機酸による浸漬または電解
を組合せた処理法を採用することが多かつたが、
最近では種々研究開発が進められた結果、
NaOHを主成分とする400〜500℃に加熱した溶
融アルカリ塩に浸漬する所謂溶融アルカリ塩浸漬
法(ソルト法とも称される)や、NaSO4などの
中性塩水溶液での電解処理を組合せた方法などが
実用化され、脱スケール処理の方法自体としては
ある程度の成果をおさめるに至つている。 一方、焼鈍時の酸化スケールの生成抑制につい
ては、焼鈍時の雰囲気制御が考えられるが、軽
油、LPG等を燃料とする直火式の炉の場合には、
雰囲気制御が極めて困難なため雰囲気制御による
酸化スケール生成制御は行なわれていないのが実
情である。そこで焼鈍炉内の雰囲気制御によらず
に焼鈍時の酸化スケールの生成を制御する方法と
して、特開昭56−133478号に記載の方法が提案さ
れている。この提案の方法では、焼鈍前にカーボ
ンブラツクを主成分とする電解液中で電解を行な
うことによりステンレス鋼帯表面に黒色皮膜を生
成させ、焼鈍過程においてその皮膜が焼鈍するこ
とによつて地鉄表面の酸化を抑制するとともに、
スケール層の欠陥の生成助長による酸化スケール
の改質を図り、脱スケール性の向上をもたらすこ
とができるとされている。しかしながらこの提案
の方法を実操業に適用する場合、焼鈍前処理設備
として、浸漬槽のみならず電解設備まで付帯させ
る必要があり、そのため設備的に高コストとなら
ざるを得ないという問題がある。 この発明は以上の事情を背景としてなされたも
ので、ステンレス冷延鋼帯の製造工程における連
続焼鈍・脱スケールラインでの焼鈍時の酸化スケ
ールの生成を抑制してそれにより脱スケールを容
易ならしめ、かつまた脱スケール後の表面性状を
も良好ならしめることができ、しかも設備的にさ
ほどコスト上昇を招くことのない焼鈍前処理方法
を提供することを目的とするものである。 本願発明者は上述の目的を達成するべく種々実
験・検討を重ね、特に種々のアルカリ性水溶液に
焼鈍前のステンレス冷延鋼帯を浸漬して、酸化性
雰囲気中での焼鈍を行なつたところ、特定のアル
カリ性物質の特定濃度範囲の水溶液に焼鈍前の鋼
帯を浸漬した場合に酸化スケールの生成がかなり
の程度まで抑制されて脱スケールが容易となり、
かつ脱スケール後の鋼帯表面性状も良好となるこ
とを見出し、この発明をなすに至つた。 すなわちこの発明の焼鈍前処理方法は、冷間圧
延後に連続焼鈍・脱スケール処理を施すステンレ
ス冷延鋼帯の製造方法において、その冷間圧延
後、連続焼鈍・脱スケール処理前の段階で、冷延
鋼帯表面の脱脂処理を行ない、引続いてPH9〜13
の範囲内のKOH(水酸化カリウム)水溶液もしく
はCa(OH)2(水酸化カルシウム)水溶液を冷延鋼
帯表面に塗布することを特徴とするものである。 以下この発明の前処理方法についてさらに詳細
に説明する。 この発明の焼鈍前処理方法においては、先ず所
定寸法に冷延された冷延鋼帯の表面に付着してい
る圧延油を、適当な脱脂剤を用いて洗浄除去す
る。従来のステンレス冷延鋼帯製造方法において
は焼鈍前の脱脂処理は実施する場合もあり、また
実施しない場合もあるが、この発明の場合には次
工程のアルカリ水溶液の塗布を良好ならしめるた
め脱脂処理は必須条件となる。すなわち、脱脂が
不充分であれば次工程のアルカリ水溶液塗布時に
おいてアルカリ水溶液が鋼帯表面に充分に濡れ
ず、その結果アルカリ水溶液塗布によるこの発明
の効果が充分に得られなくなるからである。この
脱脂処理に使用される脱脂剤としては、トリクロ
ロエチレン、トリクロロエタン等の有機脱脂剤あ
るいはオルソ珪酸ソーダを主成分とするアルカリ
脱脂剤等を用いれば良いが、その種類はこの発明
では特に限定しない。 脱脂処理後のステンレス冷延鋼帯表面には
KOHの水溶液もしくはCa(OH)2の水溶液を塗布
する。ここでKOH水溶液もしくはCa(OH)2水溶
液はそのPHが9〜13の範囲となるように濃度調整
したものを用いる。このように特定範囲に濃度調
整した特定の種類のアルカリ水溶液を塗布してお
けば、塗布後の鋼帯をそのまま通常の酸化性雰囲
気で焼鈍を行つた場合に、焼鈍時の酸化スケール
の生成抑制に効果を発揮する。 このようにアルカリ水溶液を塗布するための具
体的手段としては、浸漬塗布、スプレー塗布、ロ
ールコーターによる塗布など、いずれの手段を用
いても良い。また塗布量は特に限定しないが、さ
ほど大量に塗布する必要はなく、鋼帯を連続的に
水溶液中に浸漬して引上げた場合に鋼帯表面に付
着する程度で充分である。 また鋼帯表面に塗布するKOH水溶液もしくは
Ca(OH)2水溶液のPH値の範囲は、後述する実施
例1にも示すように本発明者等の詳細な実験に基
いて定めたものである。すなわちPH値が9より低
いKOH水溶液もしくはCa(OH)2水溶液の場合、
酸化スケールの生成抑制効果が得られないから、
PH値の下限を9とした。一方、PH値が13より高い
場合にはむしろ逆に酸化スケールの生成量が増加
してしまうから、PH値上限を13とした。なおCa
(OH)2の場合、飽和水溶液のPH値は約12.7であ
り、PH値が13を超えることはない。 前述のように特定範囲のPH値のKOH水溶液あ
るいはCa(OH)2水溶液の塗布によつてその後の
焼鈍時における酸化スケールの生成を抑制する機
構については完全には解明されていないが、次の
ように推測される。すなわち、焼鈍の加熱過程の
初期において前記アルカリ水溶液とステンレス冷
延鋼帯表層部とが反応して極く薄い皮膜が形成さ
れ、この皮膜がその後の加熱、均熱時の鋼帯表面
の酸化反応を抑制するものと考えられる。 焼鈍後の脱スケール処理は、400〜500℃に加熱
した溶融アルカリ塩への浸漬処理、NaSO4等の
中性塩水溶液中での電解処理、あるいは硫酸、硝
酸、硝弗酸等の無機酸水溶液中への浸漬もしくは
これらの無機酸水溶液中での電解処理など公知の
方法を単独であるいは適宜組合せて行なえば良
く、いずれの脱スケール法でも、この発明の焼鈍
前処理を行なつた場合には、それを行なわない場
合と比較して脱スケールガ容易となる。すなわ
ち、連続焼鈍・脱スケールラインのライン速度が
脱スケール律速の場合には、脱スケール時間短縮
によりライン速度を向上させて生産性を向上させ
ることができ、ライン速度が焼鈍律速の場合に
は、脱スケールのための電解電力の減少や使用酸
液の濃度、温度の低減を図ることができる。ま
た、脱スケール処理後の表面光沢が良好なことが
特に要求されことが多いフエライト系ステンレス
鋼の場合にこの発明の焼鈍前処理を行なえば、酸
化スケールの生成が抑制される結果、脱スケール
処理を従来よりもマイルドにする(例えば電解や
酸洗の条件をより穏やかな条件としたりあるいは
脱スケール時間を短くする等)ことができ、した
がつて従来よりもマイルドな脱スケール処理を実
施することによつて、地鉄表面の荒れを少なくし
て表面光沢を従来よりも改善することができる。 なお以上の説明では酸化性雰囲気中での焼鈍の
みを対象に説明したが、この発明の前処理方法は
これに限らず、スケール発生のない焼鈍以外であ
ればすべて適用可能であることは勿論である。 実施例 1 フエライト系ステンレス鋼の代表的鋼種である
SUS430の1.0mm厚に冷間圧延した鋼帯から試験片
を採取し、オルソ珪酸ソーダを主成分とする市販
のアルカリ脱脂剤を用いて試験片の表面を脱脂洗
浄した後、種々のPHに調整したKOH水溶液もし
くはCa(OH)2水溶液に浸漬して、LPG燃焼ガス
組成に雰囲気調整した炉内で焼鈍して、酸化スケ
ール生成による重量増加を測定した。比較のため
脱脂のみを行つた試験片についても同様の測定を
行つた。但し焼鈍雰囲気は、O25Vol%、
CO29Vol%、残部N2、露点+51℃とし、また焼
鈍温度は850℃、焼鈍時間は5分とした。なおこ
こで焼鈍時間を通常行なわれている時間より少く
長くしているのは、この発明の効果をより顕著に
示すためである。 この実施例1における酸化スケールによる重量
増加測定結果を各アルカリ水溶液のPHに対応して
第1図に示す。第1図から、いずれの水溶液の場
合もPH9〜13の範囲で酸化スケールの生成抑制効
果が発揮されることが明らかである。 実施例 2 マルテンサイト系ステンレス鋼の代表的鋼種で
あるSUS410およびオーステナント系ステンレス
鋼の代表的鋼種であるSUS304の0.8mm厚さに冷間
圧延された鋼帯から試験片を採取し、実施例1と
同様の脱脂洗浄処理を施した後、PH10に調整した
KOH水溶液もしくはPH12に調整したCa(OH)2
溶液に浸漬してから焼鈍を行い、酸化スケール生
成による重量増加を測定した。比較のため脱脂の
みを行行つた試験片についても同様の測定を行つ
た。但し焼鈍雰囲気は実施例1と同様とし、焼鈍
温度はSUS410鋼では800℃、SUS304鋼では1100
℃とし、焼鈍時間は両者とも5分間とした。なお
この実施例においても実施例1と同様この発明の
効果をより顕著に示すため焼鈍時間を通常よりも
若干長くしている。 この実施例2における酸化スケールによる重量
増加の測定結果を、各鋼種、各アルカリ水溶液の
種類に応じて第1表に示す。マルテンサイト系ス
テンレス冷延鋼帯、オーステナイト系ステンレス
冷延鋼帯のいずれの場合にもこの発明の効果が発
揮されることが第1表から明らかである。 実施例 3 フエライト系ステンレス鋼の代表的鋼種である
SUS430の1.0mm厚さに冷間圧延された鋼帯から試
験片を採取し、実施例1と同様の方法で脱脂洗浄
した後PH=12に調整したCa(OH)2水溶液に浸漬
したものおよび浸漬を行わないものを用意して、
実施例1と同一の雰囲気中で850℃×3分の焼鈍
を行つた。焼鈍後の両者の試験片について脱スケ
ールの難易を以下の(A)、(B)に示す2種類の脱スケ
ール法を用いて調査した。 (A) 硝酸電解のみ 条件:110g/lHNO3水溶液、温度60℃、電
流密度20A/dm2で試験片を+極にして
電解 (B) ソルト処理→硝酸電解 ソルト処理条件:430℃の溶融アルカリ塩に
15秒間浸漬する。 硝酸電解条件:(A)と同一条件 いずれの脱スケール法の場合も硝酸電解時間を
1〜8秒の範囲で変化させ、脱スケール後の表面
を高倍率の光学顕微鏡で観察してスケールが完全
に除去されているか否かを判定した。その判定結
果を硝酸電解時間に対応して第2表に示す。この
発明の焼鈍前処理を行うことにより、いずれの脱
スケール処理方法においても脱スケールが容易と
なることが第2表から明らかである。 またステンレス冷延鋼帯のうちでもフエライト
系は特に表面光沢の優れたものが要求されること
から、第2表に示される各試験片のうち、各脱ス
ケール条件で完全にスケールが除去された時点の
試験片、すなわち第2表中のa、b、c、d、の
試験片について脱スケール処理後の表面の光沢度
を測定した。なお光沢度は、入射角20℃で白色光
を試料表面に照射して正反対光の強度を測定し、
標準板(黒色ガラス)の場合の正反射光強度を
100とした時の比で示した。 得られた結果を第3表に示す。いずれの方法で
脱スケールした場合もこの発明の焼鈍前処理を行
つてから焼鈍した試験片の方が脱スケール後の表
面光沢が優れていることが明らかである。これ
は、この発明の焼鈍前処理を施すことにより焼鈍
時の酸化スケールの生成が抑制され、したがつて
その後の脱スケール処理もマイルドな条件(本実
施例では硝酸電解時間の短縮)で脱スケールが可
能となつたためである。 以上の実施例からも明らかなように、この発明
の焼鈍前処理方法をステンレス冷延鋼帯の製造に
適用することによつて、焼鈍時の酸化スケール生
成を抑制して、脱スケール処理効率を従来よりも
大幅に向上させ、これにより生産性の大幅な向上
あるいは脱スケール処理コストの大幅な低減を図
ることができる顕著な効果が得られる。またこの
発明の焼鈍前処理方法によれば、前述のように脱
スケール性が良好となることに起因して、特に表
面光沢が要求されるフエライト系ステンレス鋼の
場合に、焼鈍、脱スケール後の表面光沢の向上を
図ることができる効果も得られる。
The present invention relates to an annealing pretreatment method that is applied to a cold rolled steel strip before continuous annealing and descaling in the manufacturing process of stainless steel cold rolled steel strip, and in particular to a method for suppressing and removing oxide scale during annealing. The present invention relates to an annealing pretreatment method for improving scale properties and improving the surface properties of a steel strip after descaling. As is well known, in the manufacturing process of cold-rolled stainless steel strips, annealing is usually performed after cold rolling, mainly to remove strain caused by cold rolling and impart good mechanical properties. Such annealing after cold rolling is usually carried out by continuous annealing, and in terms of the annealing atmosphere, it is roughly divided into bright annealing, which is carried out in a reducing atmosphere, and annealing, which is carried out in an oxidizing atmosphere. be done. In particular, when annealing is performed in the latter oxidizing atmosphere, oxide scale is formed on the surface of the steel strip during annealing, so it is necessary to perform descaling treatment during annealing. Therefore, when annealing is carried out in an oxidizing atmosphere, the process is generally carried out using a so-called continuous annealing/descaling line that has annealing equipment in the first half and descaling equipment in the latter half. In addition, there are cases in which the rolling oil adhering to the surface of the steel strip is washed and removed with a degreaser before continuous annealing and descaling, and cases in which the rolling oil is burned and removed in a direct-fired annealing furnace without degreasing. However, in the former case, the thickness of the oxide scale generated during annealing tends to be thinner. By the way, in continuous annealing and descaling lines for cold rolled stainless steel strips, excellent surface properties such as surface gloss after descaling are required.
Furthermore, it is required to be inexpensive in terms of cost, that is, to be able to perform descaling efficiently. In order to meet these demands, it is necessary to suppress the generation of oxide scale during annealing as much as possible, and to efficiently remove the oxide scale film generated during annealing without damaging the surface of the steel. is necessary. Conventionally, methods for descaling such continuous annealing/descaling lines for cold-rolled stainless steel strips include immersion in inorganic acids such as sulfuric acid, nitric acid, and nitric-fluoric acid (a mixed acid of nitric acid and hydrofluoric acid), or Treatment methods that combined electrolysis were often adopted, but
As a result of various research and development efforts,
A combination of the so-called molten alkali salt immersion method (also known as the salt method), in which the material is immersed in a molten alkali salt heated to 400 to 500°C containing NaOH as the main component, and electrolytic treatment with a neutral salt aqueous solution such as NaSO4 . This method has been put into practical use, and the descaling method itself has achieved some success. On the other hand, controlling the atmosphere during annealing can be considered to suppress the formation of oxide scale during annealing, but in the case of a direct-fired furnace that uses light oil, LPG, etc. as fuel,
The reality is that oxide scale production is not controlled by atmosphere control because it is extremely difficult to control the atmosphere. Therefore, as a method for controlling the formation of oxide scale during annealing without controlling the atmosphere in the annealing furnace, a method described in JP-A-56-133478 has been proposed. In this proposed method, a black film is generated on the surface of the stainless steel strip by electrolysis in an electrolytic solution containing carbon black as the main component before annealing, and the film is annealed during the annealing process to form a black film on the steel strip. In addition to suppressing surface oxidation,
It is said that it is possible to improve descaling performance by promoting the formation of defects in the scale layer to improve the oxide scale. However, when this proposed method is applied to actual operation, it is necessary to include not only an immersion tank but also electrolytic equipment as annealing pretreatment equipment, which poses a problem in that the equipment costs are unavoidably high. This invention was made against the background of the above-mentioned circumstances, and it suppresses the formation of oxide scale during annealing in a continuous annealing/descaling line in the production process of stainless steel cold rolled steel strips, thereby facilitating descaling. It is an object of the present invention to provide an annealing pretreatment method that can also improve the surface quality after descaling and does not cause a significant increase in equipment costs. The inventor of the present application has conducted various experiments and studies to achieve the above object, and in particular, immersed a cold rolled stainless steel strip before annealing in various alkaline aqueous solutions and annealed it in an oxidizing atmosphere. When a steel strip before annealing is immersed in an aqueous solution of a specific alkaline substance in a specific concentration range, the formation of oxide scale is suppressed to a considerable extent and descaling becomes easy.
In addition, the inventors discovered that the surface properties of the steel strip after descaling also become good, leading to the present invention. That is, the annealing pretreatment method of the present invention is a method for producing cold rolled stainless steel strip in which continuous annealing and descaling treatment is performed after cold rolling, in which cold rolling is performed after cold rolling and before continuous annealing and descaling treatment. The surface of the rolled steel strip is degreased, and then the pH is 9 to 13.
This method is characterized by applying a KOH (potassium hydroxide) aqueous solution or a Ca(OH) 2 (calcium hydroxide) aqueous solution within the range of 1 to 1 on the surface of a cold rolled steel strip. The pretreatment method of the present invention will be explained in more detail below. In the annealing pretreatment method of the present invention, rolling oil adhering to the surface of a cold rolled steel strip that has been cold rolled to a predetermined size is first washed and removed using a suitable degreasing agent. In the conventional method for producing cold rolled stainless steel strip, degreasing may or may not be carried out before annealing, but in the case of the present invention, degreasing is carried out in order to improve the application of the alkaline aqueous solution in the next step. Processing is a necessary condition. That is, if the degreasing is insufficient, the alkaline aqueous solution will not sufficiently wet the surface of the steel strip during the next step of applying the alkaline aqueous solution, and as a result, the effect of the present invention by applying the alkaline aqueous solution will not be sufficiently obtained. The degreasing agent used in this degreasing treatment may be an organic degreasing agent such as trichlorethylene or trichloroethane, or an alkaline degreasing agent containing sodium orthosilicate as a main component, but the type thereof is not particularly limited in this invention. After degreasing, the surface of cold-rolled stainless steel strip is
Apply an aqueous solution of KOH or Ca(OH) 2 . Here, the concentration of the KOH aqueous solution or Ca(OH) 2 aqueous solution is adjusted so that its pH is in the range of 9 to 13. By applying a specific type of alkaline aqueous solution whose concentration is adjusted to a specific range in this way, if the coated steel strip is annealed in a normal oxidizing atmosphere, the formation of oxide scale during annealing can be suppressed. It is effective. As a specific means for applying the alkaline aqueous solution in this way, any means such as dip coating, spray coating, and coating using a roll coater may be used. The amount of coating is not particularly limited, but it is not necessary to apply a large amount, and it is sufficient that it adheres to the surface of the steel strip when the steel strip is continuously immersed in an aqueous solution and pulled up. Also, KOH aqueous solution or
The range of the PH value of the Ca(OH) 2 aqueous solution was determined based on detailed experiments by the inventors, as shown in Example 1 below. In other words, in the case of a KOH aqueous solution or a Ca(OH) 2 aqueous solution with a pH value lower than 9,
Because the effect of suppressing the formation of oxide scale cannot be obtained,
The lower limit of the PH value was set to 9. On the other hand, if the PH value is higher than 13, the amount of oxide scale produced increases, so the upper limit of the PH value was set at 13. Furthermore, Ca
For (OH) 2 , the PH value of a saturated aqueous solution is approximately 12.7, and the PH value never exceeds 13. As mentioned above, the mechanism by which the formation of oxide scale during subsequent annealing is suppressed by applying a KOH aqueous solution or a Ca(OH) 2 aqueous solution with a pH value within a specific range has not been completely elucidated, but the following It is assumed that That is, at the beginning of the heating process of annealing, the alkaline aqueous solution and the surface layer of the cold-rolled stainless steel strip react to form a very thin film, and this film reacts with the oxidation reaction on the surface of the steel strip during subsequent heating and soaking. It is thought that this suppresses the Descaling treatment after annealing is performed by immersion in molten alkali salt heated to 400-500℃, electrolytic treatment in a neutral salt aqueous solution such as NaSO4 , or inorganic acid aqueous solution such as sulfuric acid, nitric acid, nitrofluoric acid, etc. Known methods such as immersion in aqueous solution of these inorganic acids or electrolytic treatment in an aqueous solution of these inorganic acids may be carried out alone or in an appropriate combination, and in any of the descaling methods, if the pre-annealing treatment of the present invention is performed. , descaling becomes easier compared to the case where this is not done. In other words, if the line speed of the continuous annealing/descaling line is descaling rate-limiting, the line speed can be increased by shortening the descaling time and productivity can be improved; if the line speed is annealing rate-limiting, It is possible to reduce the electrolytic power required for descaling, and to reduce the concentration and temperature of the acid solution used. In addition, if the annealing pretreatment of the present invention is applied to ferritic stainless steel, which is often required to have a good surface gloss after descaling, the formation of oxide scale will be suppressed, resulting in descaling. can be made milder than before (for example, by using milder conditions for electrolysis or pickling, or by shortening the descaling time), and therefore performing a milder descaling treatment than before. This makes it possible to reduce the roughness of the surface of the base metal and improve the surface gloss compared to the conventional method. In addition, although the above explanation has been made only for annealing in an oxidizing atmosphere, the pretreatment method of the present invention is not limited to this, and it goes without saying that it can be applied to all types of annealing other than scale-free annealing. be. Example 1 A typical type of ferritic stainless steel
A test piece was taken from a cold-rolled SUS430 steel strip with a thickness of 1.0 mm, and the surface of the test piece was degreased and cleaned using a commercially available alkaline degreaser containing sodium orthosilicate as the main ingredient, and then adjusted to various pH values. The samples were immersed in a KOH aqueous solution or a Ca(OH) 2 aqueous solution, annealed in a furnace whose atmosphere was adjusted to the LPG combustion gas composition, and the weight increase due to oxide scale formation was measured. For comparison, similar measurements were performed on test pieces that were only degreased. However, the annealing atmosphere is O 2 5Vol%,
CO 2 9Vol%, balance N 2 , dew point +51°C, annealing temperature 850°C, annealing time 5 minutes. The reason why the annealing time is made longer than the usual time is to more clearly demonstrate the effects of the present invention. The measurement results of weight increase due to oxidized scale in Example 1 are shown in FIG. 1 in correspondence with the pH of each aqueous alkaline solution. From FIG. 1, it is clear that the effect of inhibiting the formation of oxide scale is exhibited in the pH range of 9 to 13 for all aqueous solutions. Example 2 Test pieces were taken from cold-rolled steel strips of SUS410, a typical martensitic stainless steel, and SUS304, a typical austenant stainless steel, to a thickness of 0.8 mm. After applying the same degreasing and cleaning treatment as in 1, the pH was adjusted to 10.
Annealing was performed after immersion in a KOH aqueous solution or a Ca(OH) 2 aqueous solution adjusted to pH 12, and the weight increase due to oxide scale formation was measured. For comparison, similar measurements were made on test pieces that were only degreased. However, the annealing atmosphere was the same as in Example 1, and the annealing temperature was 800℃ for SUS410 steel and 1100℃ for SUS304 steel.
℃, and the annealing time was 5 minutes in both cases. In this example, as in Example 1, the annealing time was slightly longer than usual in order to more clearly demonstrate the effects of the present invention. The measurement results of the weight increase due to oxide scale in Example 2 are shown in Table 1 according to each steel type and each type of alkaline aqueous solution. It is clear from Table 1 that the effects of the present invention are exhibited in both cases of martensitic stainless steel cold rolled steel strips and austenitic stainless steel cold rolled steel strips. Example 3 A typical type of ferritic stainless steel
A test piece was taken from a cold-rolled SUS430 steel strip with a thickness of 1.0 mm, degreased and cleaned in the same manner as in Example 1, and then immersed in a Ca(OH) 2 aqueous solution adjusted to PH = 12. Prepare something that does not involve soaking,
Annealing was performed at 850° C. for 3 minutes in the same atmosphere as in Example 1. The difficulty of descaling both test pieces after annealing was investigated using two types of descaling methods shown in (A) and (B) below. (A) Nitric acid electrolysis only Conditions: 110 g/l HNO 3 aqueous solution, temperature 60°C, current density 20A/dm 2 with the test piece as the positive pole (B) Salt treatment → nitric acid electrolysis Salt treatment conditions: Molten alkali at 430°C to salt
Soak for 15 seconds. Nitric acid electrolysis conditions: Same conditions as (A) In both descaling methods, the nitric acid electrolysis time was varied in the range of 1 to 8 seconds, and the surface after descaling was observed with a high-magnification optical microscope to ensure that the scale was complete. It was determined whether or not it had been removed. The determination results are shown in Table 2 in correspondence with the nitric acid electrolysis time. It is clear from Table 2 that by performing the annealing pretreatment of the present invention, descaling becomes easy in any descaling treatment method. In addition, among cold-rolled stainless steel strips, ferritic steel strips are required to have particularly excellent surface gloss, so of the test specimens shown in Table 2, scale was completely removed under each descaling condition. The glossiness of the surface after the descaling treatment was measured for the test pieces at the time, that is, the test pieces a, b, c, and d in Table 2. The glossiness is measured by irradiating white light onto the sample surface at an incident angle of 20°C and measuring the intensity of the opposite light.
Specular reflection light intensity in case of standard plate (black glass)
Shown as a ratio when set to 100. The results obtained are shown in Table 3. It is clear that no matter which method was used for descaling, the surface gloss after descaling was better in the test piece that was annealed after performing the annealing pretreatment of the present invention. This is because the pre-annealing treatment of this invention suppresses the formation of oxide scale during annealing, and therefore the subsequent descaling treatment is performed under mild conditions (in this example, the nitric acid electrolysis time is shortened). This is because it became possible. As is clear from the above examples, by applying the annealing pretreatment method of the present invention to the production of stainless steel cold rolled steel strip, oxide scale formation during annealing can be suppressed and descaling treatment efficiency can be improved. This is a significant improvement over the conventional method, and this results in significant effects such as a significant improvement in productivity or a significant reduction in descaling processing costs. Further, according to the annealing pretreatment method of the present invention, due to the good descaling properties as described above, it is possible to improve The effect of improving surface gloss can also be obtained.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼鈍前処理として脱脂後のSUS430冷
延鋼板表面に種々のPHのKOHもしくはCa(OH)2
水溶液を塗布して焼鈍した場合の鋼板の酸化増量
を前処理なしの場合と比較して示す図である。
Figure 1 shows KOH or Ca(OH) 2 of various pH values on the surface of a SUS430 cold-rolled steel sheet after degreasing as pre-annealing treatment.
FIG. 2 is a diagram showing the oxidation weight gain of a steel plate when an aqueous solution is applied and annealed, compared with a case without pretreatment.

Claims (1)

【特許請求の範囲】 1 冷間圧延後に連続焼鈍・脱スケール処理を施
すステンレス冷延鋼帯の製造方法において、 前記冷間圧延後、連続焼鈍・脱スケール処理前
の段階で、冷延鋼帯表面の脱脂処理を行ない、続
いてPH9〜PH13の範囲内に調整したKOHもしく
はCa(OH)2の水溶液を冷延鋼帯表面に塗布する
ことを特徴とするステンレス冷延鋼帯の焼鈍前処
理方法。
[Scope of Claims] 1. A method for producing a stainless steel cold rolled steel strip in which continuous annealing and descaling treatment is performed after cold rolling, wherein the cold rolled steel strip is Pre-annealing treatment for cold-rolled stainless steel strip, which is characterized by degreasing the surface and then applying an aqueous solution of KOH or Ca(OH) 2 adjusted to a pH of 9 to 13 to the surface of the cold-rolled steel strip. Method.
JP7440684A 1984-04-13 1984-04-13 Pretreatment of cold rolled stainless steeel strip before annealing Granted JPS60218429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7440684A JPS60218429A (en) 1984-04-13 1984-04-13 Pretreatment of cold rolled stainless steeel strip before annealing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7440684A JPS60218429A (en) 1984-04-13 1984-04-13 Pretreatment of cold rolled stainless steeel strip before annealing

Publications (2)

Publication Number Publication Date
JPS60218429A JPS60218429A (en) 1985-11-01
JPH0447011B2 true JPH0447011B2 (en) 1992-07-31

Family

ID=13546272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7440684A Granted JPS60218429A (en) 1984-04-13 1984-04-13 Pretreatment of cold rolled stainless steeel strip before annealing

Country Status (1)

Country Link
JP (1) JPS60218429A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE520526C2 (en) * 2000-07-07 2003-07-22 Sandvik Ab Surface-modified stainless steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119329A (en) * 1975-04-11 1976-10-19 Nippon Steel Corp Method of descaling stainless steel
JPS5452635A (en) * 1977-10-05 1979-04-25 Nippon Steel Corp Processing method for scalped stainless steel wire rod to prevent surface roughening

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51119329A (en) * 1975-04-11 1976-10-19 Nippon Steel Corp Method of descaling stainless steel
JPS5452635A (en) * 1977-10-05 1979-04-25 Nippon Steel Corp Processing method for scalped stainless steel wire rod to prevent surface roughening

Also Published As

Publication number Publication date
JPS60218429A (en) 1985-11-01

Similar Documents

Publication Publication Date Title
US5490908A (en) Annealing and descaling method for stainless steel
US1899734A (en) Removal of oxids from ferrous metal
KR950000903B1 (en) Method for hot-dip coating chromium-bearing steel
KR890001379B1 (en) Method of controlling oxide scale formation and descaling thereof from method articles
JP4543519B2 (en) Manufacturing method of titanium cold rolled sheet
JPH0447011B2 (en)
JP4694048B2 (en) High-speed descaling method for stainless steel
JP3216571B2 (en) Alkali molten salt bath for descaling high Cr stainless steel
JP4352190B2 (en) Descaling method of titanium material
Azzerri et al. Potentiostatic pickling: a new technique for improving stainless steel processing
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JPS6261113B2 (en)
US3653979A (en) Process for the production of a steel exhibiting consistently low weight loss test values
KR100394946B1 (en) Manufacturing method of stainless cold rolled steel sheet
US4349393A (en) Continuous heat treatment for metal sheet
JPH01162786A (en) Method for pickling high strength austenitic stainless steel
JP3111853B2 (en) Method of manufacturing cold rolled stainless steel sheet
JP2501220B2 (en) Heat-scratch-free stainless cold-rolled steel sheet manufacturing method
KR100514781B1 (en) Method for pickling martensitic stainless steel wire by pretreating of reduction type
JPS61127823A (en) Method for suppressing oxide film formation during annealing of stainless steel
JPH0536510B2 (en)
JPS624473B2 (en)
JP3299389B2 (en) Pickling method for Ni-based stainless steel sheet
JP2023175315A (en) Passivation treatment liquid and passivation treatment method for stainless steel
JPH0525666A (en) Manufacture of austenitic stainless steel strip