JPH0446911B2 - - Google Patents

Info

Publication number
JPH0446911B2
JPH0446911B2 JP5849987A JP5849987A JPH0446911B2 JP H0446911 B2 JPH0446911 B2 JP H0446911B2 JP 5849987 A JP5849987 A JP 5849987A JP 5849987 A JP5849987 A JP 5849987A JP H0446911 B2 JPH0446911 B2 JP H0446911B2
Authority
JP
Japan
Prior art keywords
glass
weight
ceo
alkali
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5849987A
Other languages
Japanese (ja)
Other versions
JPS63225552A (en
Inventor
Kozo Shiora
Shuichi Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd filed Critical Nitto Boseki Co Ltd
Priority to JP5849987A priority Critical patent/JPS63225552A/en
Publication of JPS63225552A publication Critical patent/JPS63225552A/en
Publication of JPH0446911B2 publication Critical patent/JPH0446911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、印刷回路基板となるプラスチツク基
板を強化するために使用されるガラス繊維用の紫
外線吸収ガラス組成物に関し、特にこの種の強化
用ガラス繊維の原料である無アルカリホウケイ酸
ガラスに紫外線吸収特性を付与したガラス組成物
に関するものである。 〔従来の技術〕 ガラス繊維シート状基材を補強材とする積層板
を基板とし、その両面に回路を形成した印刷回路
に対してフオトレジスト法によつて、ソルダーレ
ジスト硬化パターンを得る場合、積層板は紫外線
遮断性を有していないので、紫外線硬化型のソル
ダーレジストを両面に設けて、両面から同時に紫
外線照射を行うと透過紫外線によつてそれぞれ他
面の所要パターン以外の部分に硬化が及んで不正
確な硬化レジストパターンとなるため、両面同時
照射は実施できない。これを解決するため、ガラ
ス繊維シート状基材の構成ガラス繊維の表面に酸
化チタンを付着させる方法が、特願昭61−113809
号明細書において提案されている。しかし、ガラ
ス繊維シートに後工程で、酸化チタンを付着させ
るために工程が複雑になり、製造コストが上昇
し、酸化チタンの付着むらが原因で両面同時紫外
線照射によつて得られるソルダーレジスト硬化パ
ターンに異常が生じ易い等の不都合な点があつ
た。 〔発明が解決しようとする問題点〕 本発明の目的は、上記のような従来の方法の欠
点を克服するためガラス繊維シートを構成するガ
ラス繊維自体に紫外線吸収性能を持たせ、紫外線
を遮断し、フオトレジスト法による両面同時紫外
線照射を可能にしようとするものである。 従来、紫外線吸収ガラスとしては、V2O5等を
添加した無色ソーダ石灰ガラス(特開昭52−
47811号)、Au、SnO、As2O5、CeO2等を添加し
た紫外線カツトフイルターガラス(特開昭50−
67313号)、V2O5を添加したホウケイ酸質硬質ガ
ラス(特開昭57−160938号)等数多く知られてい
るが、上記ソーダ石灰ガラスはNa2O等のアルカ
リ酸化物の含有量が多いため、ガラス繊維中のア
ルカリ酸化物の含有量が0.8%であることが要求
される電気関係の積層板用には使用できない。光
学用の上記紫外線カツトフイルターガラスは紫外
線をカツトすると同時に550mμ付近の波長を吸収
するものが要求され、本発明の目的には適合しな
い。また、ホウケイ酸質硬質ガラスはSiO2が65
%以上含まれており、熔融温度が高くなり、ガラ
ス繊維に紡糸することができない等の理由で本発
明で目的とするガラス繊維の原料として使用でき
ない。 〔問題を解決するため手段〕 本発明者等は、ガラス繊維の製造に適し、しか
も紫外線吸収性能の良いガラス繊維の原料を得る
ための研究を進めた結果、ガラス繊維製造の原料
として最も一般的に使用されている「Eガラス」
と呼ばれる無アルカリホウケイ酸ガラスにFe2O3
を添加すると、本発明で求める紫外線吸収性能を
付与できることを見出した。しかしFe2O3だけを
ホウケイ酸ガラス中に加えても、高温の熔融状態
ではその多くはFeOの形となつてしまい、そのた
めガラス生地が青色に着色し、また熔融ガラス表
面層で赤外線をよく吸収するのでガラス層の下ま
で放射熱が届きにくく、タンク炉の熔融ガラス下
層部の温度が下がり、熔融に支障をきたし、製造
が困難であることが分かつた。そこで、可視光線
の透過率がよく紫外線を吸収するFe3+を増加さ
せ、ガラス生地の着色の原因となつているFe2+
を減少させることができ、さらにFe3+と共存し
て紫外線吸収性能を向上させることができる添加
剤について検討した結果、従来の無アルカリホウ
ケイ酸ガラスに比べて、強度、耐久性、電気特
性、可視光線透過率等の一般的物性を低下させる
ことなく、360nmでの紫外線透過率を1/10以下と
大幅に改善することに成功した。 本発明の繊維用紫外線吸収ガラス組成物は、そ
れぞれ重量%で表して、SiO2 52〜56%、Al2O3
12〜16%、B2O3 6〜11%、CaO 16〜25%、
MgO 0〜6%、ただしCaO+MgO 18〜25%か
らなる無アルカリホウケイ酸ガラス組成物100重
量部に対して、重量部で、Fe2O3を0.1〜0.4部添
加し、CeO2 0.05〜4.0部、MnO2 0.05〜0.5部、
As2O5 0.2〜0.5部からなる群から選ばれた一種ま
たはCeO2+As2O5 0.1〜4.5部、CeO2+Na2NO3
0.1〜4.5部、からなる群から選ばれた一種を更に
添加熔融させて得たしかもNa2Oが、得られたガ
ラス組成物の0.8重量%以下であることを特徴と
する。 上記組成物において、Fe2O3は0.1重量部より少
ないと、紫外線の吸収が弱く、0.4重量部より多
いと従来のガラスに比べて着色が強くなるだけで
なく、ガラスの熔融に問題がありしかみ、Fe2O3
のみではFe2+とFe3+の比率のコントロールが困
難で性能がばらつき易いという欠点がある。
CeO2はFe2O3と共存するとき、0.05重量部より少
ないと紫外線を透過し、4.0重量部より多いと可
視光線の吸収が顕著となり着色してくる。MnO2
はFe2O3と共存するとき、紫外線の吸収を強める
と同時にMnO2はピンク色に着色し、FeOの着色
とは補色の関係にあるので着色が弱められる。特
に、Fe2O3との重量比がMnO2:Fe2O3=1:1.85
(等モル)のときは平均透過率を向上させる。 0.05重量部より少ないと効果がなく、0.5重量
部を超えるとマンガンの発色が強くなり、平均透
過率は低下する。As2O5はFe2O3と共存するとき、
0.2重量部より少ないと効果がなく、0.5重量部を
超えると着色が強くなる。CeO2+NaNO3
Fe2O3、またはCeO2+As2O5とFe2O3と共存する
ときは、一種類の添加剤とFe2O3の組み合わせに
比べて平均透過率を下げることなく、より一層紫
外線の吸収を高める。いずれの場合も0.1重量部
より少ないと効果はなく、CeO2+NaNO3
CeO2+As2O5の両組み合わせでは、CeO2が4.0以
上で添加剤合計が4.5重量部を超えると、平均透
過率が下がつてきて、好ましくない。 一般に、ガラス繊維用無アルカリホウケイ酸ガ
ラスは、アルカリ含有量が0.8重量%以下である
ことが要求されるので、NaNO3はガラスの中で
Na2Oに変わるため、最大0.5重量部と添加量が制
限される。この量では単独でFe2O3と共存させて
も、Fe2+をFe3+とする効果が弱い。しかし、
CeO2、As2O5との併用により、相乗効果を上げ
ることができる。 〔実施例〕 試料として下記の標準組成の無アルカリホウケ
イ酸ガラス100重量部に対して、第1表に示す紫
外線吸収成分を添加混合し、原料調合物を調製
し、1500℃の温度で加熱熔融を行い、原料調合物
を完全に溶解させた後、型に流し込んで600℃で
徐冷した。この板状の試料は40×10×厚さ8mmの
大きさで両面を鏡面研磨した後、日立製作所製
228型ダブルビーム分光光度計により360nm及び
400〜780nmでの平均透過率を測定した。 使用した無アルカリホウケイ酸ガラス組成(重
量%) SiO2 54.5 Al2O3 14.0 CaO 23.5 B2O3 8.0
[Industrial Field of Application] The present invention relates to an ultraviolet absorbing glass composition for glass fibers used to strengthen plastic substrates used as printed circuit boards, and in particular to ultraviolet absorbing glass compositions for glass fibers used to strengthen plastic substrates used as printed circuit boards. The present invention relates to a glass composition in which ultraviolet absorption properties are imparted to alkali borosilicate glass. [Prior Art] When obtaining a cured solder resist pattern using the photoresist method for a printed circuit in which the substrate is a laminate using a glass fiber sheet-like base material as a reinforcing material and circuits are formed on both sides of the laminate, the laminate is used as a reinforcing material. Since the board does not have UV-blocking properties, if UV-curable solder resist is placed on both sides and UV irradiation is applied from both sides at the same time, the transmitted UV rays will harden the areas other than the required pattern on each side. Simultaneous irradiation on both sides cannot be performed because this results in an inaccurate cured resist pattern. In order to solve this problem, a method of attaching titanium oxide to the surface of the glass fibers constituting the glass fiber sheet-like base material was proposed in Japanese patent application No. 113809/1986.
It is proposed in the specification of No. However, the process becomes complicated because titanium oxide is attached to the glass fiber sheet in a post-process, increasing manufacturing costs. There were disadvantages such as the tendency for abnormalities to occur. [Problems to be Solved by the Invention] In order to overcome the drawbacks of the conventional methods as described above, the purpose of the present invention is to provide ultraviolet absorbing properties to the glass fibers themselves constituting the glass fiber sheet and to block ultraviolet rays. , which attempts to enable simultaneous ultraviolet irradiation on both sides using the photoresist method. Conventionally, as ultraviolet absorbing glass, colorless soda-lime glass (Japanese Patent Laid-open No. 1983-1999-
No. 47811), ultraviolet cut filter glass doped with Au, SnO, As 2 O 5 , CeO 2 , etc.
67313), borosilicate hard glass containing V 2 O 5 (Japanese Patent Application Laid-Open No. 160938/1983), etc., but the soda lime glass mentioned above has a high content of alkali oxides such as Na 2 O. Therefore, it cannot be used for electrical-related laminates, which require the content of alkali oxide in the glass fiber to be 0.8%. The above-mentioned ultraviolet cut filter glass for optical use is required to cut out ultraviolet rays and at the same time absorb wavelengths around 550 mμ, which is not suitable for the purpose of the present invention. In addition, borosilicate hard glass has SiO 2 of 65
% or more, the melting temperature becomes high and it cannot be spun into glass fibers, so it cannot be used as a raw material for the glass fibers targeted in the present invention. [Means for solving the problem] As a result of conducting research to obtain a raw material for glass fiber that is suitable for manufacturing glass fiber and has good ultraviolet absorption performance, the present inventors have found that the most common raw material for glass fiber manufacturing is "E glass" used in
Fe 2 O 3 in alkali-free borosilicate glass called
It has been found that by adding , it is possible to impart the ultraviolet absorption performance required by the present invention. However, even if only Fe 2 O 3 is added to borosilicate glass, most of it will be in the form of FeO in the high-temperature molten state, which will cause the glass fabric to be colored blue, and the surface layer of the molten glass will not absorb infrared rays well. It was found that the radiant heat had difficulty reaching the bottom of the glass layer, which lowered the temperature of the lower layer of the molten glass in the tank furnace, hindering melting and making production difficult. Therefore, Fe 3+ , which has good transmittance of visible light and absorbs ultraviolet rays, is increased, and Fe 2+ , which is the cause of coloring of glass fabric, is increased.
As a result of investigating additives that can reduce UV rays and coexist with Fe 3+ to improve UV absorption performance, we found that compared to conventional alkali-free borosilicate glass, the additives have improved strength, durability, electrical properties, We succeeded in significantly improving the UV transmittance at 360 nm to less than 1/10 without reducing general physical properties such as visible light transmittance. The ultraviolet absorbing glass composition for fibers of the present invention contains 52 to 56% SiO 2 and Al 2 O 3 , respectively expressed in weight%.
12-16%, B2O3 6-11 %, CaO 16-25%,
0.1 to 0.4 parts by weight of Fe 2 O 3 and 0.05 to 4.0 parts of CeO 2 to 100 parts by weight of an alkali-free borosilicate glass composition consisting of 0 to 6% MgO, but 18 to 25% CaO + MgO. , 0.05-0.5 part MnO2,
One selected from the group consisting of 0.2 to 0.5 parts of As 2 O 5 or CeO 2 + 0.1 to 4.5 parts of As 2 O 5 , CeO 2 + Na 2 NO 3
The glass composition is characterized in that it is obtained by further adding and melting 0.1 to 4.5 parts of one selected from the group consisting of 0.1 to 4.5 parts, and that Na 2 O is 0.8% by weight or less of the obtained glass composition. In the above composition, if Fe 2 O 3 is less than 0.1 part by weight, absorption of ultraviolet rays is weak, and if it is more than 0.4 part by weight, it not only becomes more colored than conventional glass, but also causes problems in melting the glass. Shikami, Fe 2 O 3
However, the disadvantage is that it is difficult to control the ratio of Fe 2+ and Fe 3+ and the performance tends to vary.
When CeO 2 coexists with Fe 2 O 3 , if it is less than 0.05 parts by weight, it will transmit ultraviolet rays, and if it is more than 4.0 parts by weight, it will absorb visible light and become colored. MnO2
When coexisting with Fe 2 O 3 , MnO 2 strengthens the absorption of ultraviolet rays and at the same time colors MnO 2 pink, and since it has a complementary color relationship with the coloring of FeO, the coloring is weakened. In particular, the weight ratio with Fe 2 O 3 is MnO 2 :Fe 2 O 3 = 1:1.85.
(equimolar), the average transmittance is improved. If it is less than 0.05 part by weight, there will be no effect, and if it exceeds 0.5 part by weight, the coloring of manganese will become stronger and the average transmittance will decrease. When As 2 O 5 coexists with Fe 2 O 3 ,
If it is less than 0.2 parts by weight, there is no effect, and if it exceeds 0.5 parts by weight, the coloring will be strong. CeO 2 + NaNO 3 and
When Fe 2 O 3 or CeO 2 + As 2 O 5 coexists with Fe 2 O 3 , the average transmittance does not decrease compared to the combination of one type of additive and Fe 2 O 3 , and the ultraviolet rays are further enhanced. Increase absorption. In any case, if it is less than 0.1 part by weight, there is no effect, and CeO 2 + NaNO 3 ,
In both combinations of CeO 2 +As 2 O 5 , if CeO 2 is 4.0 or more and the total additive exceeds 4.5 parts by weight, the average transmittance will decrease, which is not preferable. Generally, alkali-free borosilicate glass for glass fiber is required to have an alkali content of 0.8% by weight or less, so NaNO3 is not included in the glass.
Since it converts into Na 2 O, the amount added is limited to a maximum of 0.5 parts by weight. At this amount, even if it is coexisting with Fe 2 O 3 alone, the effect of converting Fe 2+ to Fe 3+ is weak. but,
When used in combination with CeO 2 and As 2 O 5 , a synergistic effect can be enhanced. [Example] A raw material mixture was prepared by adding and mixing the ultraviolet absorbing components shown in Table 1 to 100 parts by weight of alkali-free borosilicate glass having the following standard composition as a sample, and heating and melting at a temperature of 1500°C. After completely dissolving the raw material mixture, it was poured into a mold and slowly cooled at 600°C. This plate-shaped sample had a size of 40 x 10 x 8 mm thick, and after mirror polishing both sides, it was manufactured by Hitachi, Ltd.
360 nm and 228-inch double beam spectrophotometer
The average transmission from 400 to 780 nm was measured. Composition of alkali-free borosilicate glass used (wt%) SiO 2 54.5 Al 2 O 3 14.0 CaO 23.5 B 2 O 3 8.0

【表】【table】

【表】 第1表において、比較例は市販しているガラス
長繊維の原料である無アルカリホウケイ酸ガラス
組成だけの場合である。「3種」とあるのは
Fe2O3と、CeO2、As2O5およびNaNO3のうちの
2種との組み合わせを意味する。360nmでの透過
率が無アルカリホウケイ酸ガラス(比較例)のそ
れより1/10以下であれば本発明に適することが経
験的に知られており、400nm〜780nmでの平均透
過率が少なくとも比較例のそれよりも高いことが
ガラスの均熱熔融に必要であるから、第1表から
本発明に適した組成は明らかである。すなわち、
例えば、実験例1は平均透過率は十分であるが、
360nmでの透過率は高すぎるし、実験例4は
360nmででの透過率は十分であるが、平均透過率
が低すぎる。実験例10は透過率も不十分である
が、着色が強く不適である。 第1図は360nmでの透過率と添加量との関係
Lambert−beerの法則により片対数グラフにした
ものである。これによれば、各添加成分の添加量
と360nmでの透過率との関係の一例としてFe2O3
のみの添加の場合をみると、 Fe2O3の量による紫外線吸収率の変化は急激で
製造工程で紫外線吸収率を一定のコントロールす
ることが困難であることを示しており、一方実施
例のグラフからはその変化がゆるやかで紫外線吸
収率を容易にコントロールできることが判る。 〔発明の効果〕 本発明のガラスは、無アルカリホウケイ酸ガラ
スと比べ、透過限界波長と平均透過率は同程度
で、更に360nmの紫外線透過率を、経験的に好ま
しいとされる約1/10以下にするには、Fe3+
Ce3+のイオンが効果的である。Feは無アルカリ
ホウケイ酸ガラス中では通常Fe2+とFe3+の形で
共存するが、Fe2+は赤外部近くに吸収があり、
(青から青緑色に着色する)、Fe3+は無色で可視
光を通し、紫外部に吸収を持つことから、CeO2
As2O5、MnO2、NaNO3のような酸化作用を持つ
ものをFe2+と共存させると、 2FeO+2CeO2→Fe2O3+Ce2O3 2FeO+2TiO→Fe2O3+Ti2O3 2FeO+2MnO2→Fe2O3+Mn2O3 4FeO+As2O5→2Fe2O3+As2O3 6FeO+NaNO3→3Fe2O3+Na2O+2NO2 のように反応し、Fe2+→Fe3+となり、Fe2+の量
が減少し、可視域での光線吸収量が減るため、平
均透過率は上昇し、またFe3+イオン量が増加す
るので紫外線の吸収が強められ、一般に使用され
ているガラス繊維用無アルカリホウケイ酸ガラス
の1/10以下の紫外線透過率とすることができる。
[Table] In Table 1, the comparative example is a case where only an alkali-free borosilicate glass composition, which is a raw material for commercially available long glass fibers, is used. What does it say “3 types”?
It means a combination of Fe 2 O 3 and two of CeO 2 , As 2 O 5 and NaNO 3 . It is empirically known that it is suitable for the present invention if the transmittance at 360 nm is 1/10 or less than that of alkali-free borosilicate glass (comparative example), and the average transmittance at 400 nm to 780 nm is at least 1/10 that of non-alkali borosilicate glass (comparative example). From Table 1 the compositions suitable for the present invention are clear, since a higher than that of the example is necessary for the soaked melting of the glass. That is,
For example, in Experimental Example 1, the average transmittance is sufficient, but
The transmittance at 360nm is too high, and Experimental Example 4
Although the transmittance at 360 nm is sufficient, the average transmittance is too low. Experimental Example 10 had insufficient transmittance, but was strongly colored and unsuitable. Figure 1 shows the relationship between the transmittance at 360nm and the amount added.
This is a semi-log graph based on the Lambert-beer law. According to this, as an example of the relationship between the amount of each additive component added and the transmittance at 360 nm, Fe 2 O 3
Looking at the case where only Fe 2 O 3 is added, the change in ultraviolet absorption rate depending on the amount of Fe 2 O 3 is rapid, indicating that it is difficult to control the ultraviolet absorption rate at a constant level in the manufacturing process. The graph shows that the change is gradual and that the ultraviolet absorption rate can be easily controlled. [Effects of the Invention] Compared to alkali-free borosilicate glass, the glass of the present invention has a transmission limit wavelength and an average transmittance of the same level, and furthermore, the ultraviolet transmittance of 360 nm is about 1/10 of that of alkali-free borosilicate glass. To make Fe 3+ ,
Ce 3+ ions are effective. Fe usually coexists in the form of Fe 2+ and Fe 3+ in alkali-free borosilicate glass, but Fe 2+ has absorption near the infrared;
(colors from blue to blue-green), Fe 3+ is colorless and transmits visible light, but absorbs in the ultraviolet region, so CeO 2 ,
When oxidizing substances such as As 2 O 5 , MnO 2 , and NaNO 3 coexist with Fe 2+ , 2FeO + 2CeO 2 →Fe 2 O 3 +Ce 2 O 3 2FeO + 2TiO → Fe 2 O 3 +Ti 2 O 3 2FeO + 2MnO 2 →Fe 2 O 3 +Mn 2 O 3 4FeO+As 2 O 5 →2Fe 2 O 3 +As 2 O 3 6FeO+NaNO 3 →3Fe 2 O 3 +Na 2 O+2NO 2 Reacts as follows, becomes Fe 2+ →Fe 3+ , and Fe 2 The average transmittance increases because the amount of Fe 3+ ions decreases and the amount of light absorbed in the visible range decreases, and the amount of Fe 3+ ions increases, which strengthens the absorption of ultraviolet rays. Ultraviolet transmittance can be 1/10 or less of alkali-free borosilicate glass.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は360nmでの透過率を添加量との関係を
Lambert−beerの法則により片対数グラフにした
ものである。
Figure 1 shows the relationship between the transmittance at 360nm and the amount of addition.
This is a semi-log graph based on the Lambert-beer law.

Claims (1)

【特許請求の範囲】 1 それぞれ重量%で表して、 SiO2 52〜56 Al2O3 12〜16 B2O3 6〜11 CaO 16〜25 MgO 0〜 6 ただし、CaO+MgO 18〜25 からなる無アルカリホウケイ酸ガラス組成物100
重量部に対して、重量部で、Fe2O3を0.1〜0.4と、 CeO2 0.05〜4.0 MnO2 0.05〜0.5 As2O5 0.2〜0.5 からなる群から選ばれた一種または CeO2+As2O5 0.1〜4.5 CeO2+NaNO3 0.1〜4.5 からなる群から選ばれた一種とを添加熔融させて
得たしかもNa2Oが、得られたガラス組成物の0.8
重量%以下であることを特徴とする、繊維用紫外
線吸収ガラス組成物。
[Claims] 1. SiO 2 52-56 Al 2 O 3 12-16 B 2 O 3 6-11 CaO 16-25 MgO 0-6, each expressed in weight %. Alkaline borosilicate glass composition 100
One type selected from the group consisting of Fe 2 O 3 0.1 to 0.4, CeO 2 0.05 to 4.0 MnO 2 0.05 to 0.5 As 2 O 5 0.2 to 0.5, or CeO 2 +As 2 O 5 0.1 to 4.5 CeO 2 + one selected from the group consisting of NaNO 3 0.1 to 4.5.
% or less by weight.
JP5849987A 1987-03-13 1987-03-13 Glass composition absorbing ultraviolet ray for fiber Granted JPS63225552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5849987A JPS63225552A (en) 1987-03-13 1987-03-13 Glass composition absorbing ultraviolet ray for fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5849987A JPS63225552A (en) 1987-03-13 1987-03-13 Glass composition absorbing ultraviolet ray for fiber

Publications (2)

Publication Number Publication Date
JPS63225552A JPS63225552A (en) 1988-09-20
JPH0446911B2 true JPH0446911B2 (en) 1992-07-31

Family

ID=13086113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5849987A Granted JPS63225552A (en) 1987-03-13 1987-03-13 Glass composition absorbing ultraviolet ray for fiber

Country Status (1)

Country Link
JP (1) JPS63225552A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822764B2 (en) * 1989-06-30 1996-03-06 日本電気硝子株式会社 Glass composition for long fibers
FR2652078B1 (en) * 1989-09-18 1992-05-22 Saint Gobain Rech PROCESS FOR THE PREPARATION OF A GLASS TO BE CONVERTED INTO CONTINUOUS OR DISCONTINUOUS FIBERS.
US5179613A (en) * 1989-11-13 1993-01-12 Minnesota Mining And Manufacturing Company Self-supporting coil of optical fiber and method of forming the coil
JPH0822762B2 (en) * 1990-01-23 1996-03-06 東芝硝子株式会社 UV transparent glass
JPH04104920A (en) * 1990-08-23 1992-04-07 Nippon Electric Glass Co Ltd Ultraviolet ray shielding glass fiber composition
US5366940A (en) * 1994-01-28 1994-11-22 Bausch & Lomb Incorporated Transparent, fixed tint glass lenses
TW450948B (en) 1996-10-16 2001-08-21 Nitto Glass Fiber Mfg Glass fiber of low dielectric constant
US6838400B1 (en) * 1998-03-23 2005-01-04 International Business Machines Corporation UV absorbing glass cloth and use thereof
CA2375015A1 (en) * 1999-05-27 2000-12-07 Frederick T. Wallenberger Glass fiber composition
US6686304B1 (en) 1999-05-28 2004-02-03 Ppg Industries Ohio, Inc. Glass fiber composition
US6962886B2 (en) 1999-05-28 2005-11-08 Ppg Industries Ohio, Inc. Glass Fiber forming compositions
WO2000073231A1 (en) * 1999-05-28 2000-12-07 Ppg Industries Ohio, Inc. Glass fiber composition
JP2002212319A (en) * 2001-01-23 2002-07-31 Hitachi Chem Co Ltd Prepreg, laminated plate and printed circuit board
US7449419B2 (en) 2003-09-09 2008-11-11 Ppg Industries Ohio, Inc. Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
JP2007217192A (en) * 2004-01-30 2007-08-30 Nippon Sheet Glass Co Ltd Glass article and method for producing the same
JP5429091B2 (en) * 2010-07-21 2014-02-26 日本電気硝子株式会社 Glass ceramic dielectric material and method for producing the same

Also Published As

Publication number Publication date
JPS63225552A (en) 1988-09-20

Similar Documents

Publication Publication Date Title
JPH0446911B2 (en)
US6150028A (en) Glass sheets intended for the manufacture of glazing panels
JP2525700B2 (en) Copper (II) oxide-containing alumophosphate glass
KR100208922B1 (en) Glass panes for vehicles
JP5954328B2 (en) Glass and glass frame for chemical strengthening
RU2145309C1 (en) Glass composition intended for glazing, and glazing
KR101517257B1 (en) Silico-sodo-calcic glass sheet
KR100491239B1 (en) Infrared and ultraviolet radiation absorbing blue glass composition
US7670977B2 (en) Blue glass composition intended for the manufacture of windows
US6395659B2 (en) Ultraviolet/infrared absorbent glass
US7435696B2 (en) Glass composition with high visible light transmission and low ultraviolet light transmission
US8017537B2 (en) Glass article and method of producing the same
WO1996004212A1 (en) Glass compositions
US7582582B2 (en) Composition for gray silica-sodium calcic glass for producing glazing
PL191956B1 (en) Glass sheets for making window panels
CN101155763A (en) Glass composition for production of glazing absorbing ultraviolet and infrared radiation
BRPI0809363A2 (en) FLAT GLASS IN PLATE FORMAT, AND GLASS
JPH044259B2 (en)
JPS6344695B2 (en)
JPH0455136B2 (en)
KR19990072543A (en) Glass compositions of the silica-soda- lime type
JPH06345482A (en) Ultraviolet-absorbing colored glass
US20170174553A1 (en) Ultraviolet-absorbing glass article
JP2617223B2 (en) Heat absorbing glass
WO2015118964A1 (en) Near-infrared absorbing/high-contrast glass lens