JPH0446893B2 - - Google Patents

Info

Publication number
JPH0446893B2
JPH0446893B2 JP10553784A JP10553784A JPH0446893B2 JP H0446893 B2 JPH0446893 B2 JP H0446893B2 JP 10553784 A JP10553784 A JP 10553784A JP 10553784 A JP10553784 A JP 10553784A JP H0446893 B2 JPH0446893 B2 JP H0446893B2
Authority
JP
Japan
Prior art keywords
zsm
type zeolite
catalyst
zeolite
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10553784A
Other languages
Japanese (ja)
Other versions
JPS60251121A (en
Inventor
Yoshimichi Kyozumi
Kunio Suzuki
Shigemitsu Shin
Hideo Okado
Kazumi Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP10553784A priority Critical patent/JPS60251121A/en
Publication of JPS60251121A publication Critical patent/JPS60251121A/en
Publication of JPH0446893B2 publication Critical patent/JPH0446893B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、サブミクロンオーダ以下の微結晶
ZSM−5型ゼオライト(シリカライトを含む)
の製造方法に関するものである。 1970年代にモービルオイル社はメタノールやジ
メチルエーテルから高品質ガソリンを主成分とす
る炭化水素を製造する形状選択性触媒として
ZSM−5型ゼオライト触媒を開発した。このゼ
オライトは従来のゼオライトと異なり組成
SiO2/Al2O3比を自由自在に制御できることや耐
熱性が極めて高いなどの優れた性質をもつてお
り、その特長を生かすことにより、メタノールや
ジメチルエーテルの転化反応の主生成物を低級オ
レフインとすることも可能である。例えば、Ger.
Pat.,2935863号明細書によれば、SiO2/Al2O3
=35〜1600の活性型ゼオライト(H−ZSM−5)
は、350℃から600℃までの温度範囲のメタノール
転化反応において最高収率70.1wt%で低級オレフ
イン(炭素数2〜4)を与えることが知られてい
る。この場合のZSM−5型ゼオライト触媒の最
適組成並びに反応温度はそれぞれSiO2/Al2O3
298〜500及び550℃であることがその実施例で明
示されている。従つて、メタノールやジメチルエ
ーテルから低級オレフインを主成分とする炭化水
素を製造するには、反応温度をできるだけ高くす
る方が有利であることがわかるが、同時にこのよ
うな高温下のメタノール転化反応においては、耐
熱性の高いZSM−5型ゼオライト触媒といえど
も、反応温度550℃近傍を境にして急速な触媒劣
化現象が見られる場合が多い。従つて、500℃以
上の高温下でメタノールやジメチルエーテルを原
料として低級オレフインを高収率でしかも急速な
触媒劣化を伴うことなく長時間に製造するために
は、550℃以上の温度で容易に活性劣化を起こさ
ないようなZSM−5型ゼオライトを巧みに製造
する必要がある。 本発明者らは、このような観点から、500℃以
上の高温下で低級オレフインの生成が有利となる
メタノール及び/又はジメチルエーテルの転化反
応において高温劣化し難いZSM−5型ゼオライ
トの開発に関して鋭意検討を行つた結果、サブミ
クロンオーダー以下の結晶粒子径をもつ微結晶
ZSM−5型ゼオライトがその目的に適合し、ま
たこのような結晶粒子径をもつZSM−5型ゼオ
ライトを活性化処理したZSM−5型ゼオライト
を主成分とする触媒は、500℃以上の高温下での
メタノール及び/又はジメチルエーテルの転化反
応において、コーク析出量がきわめて少なく、従
つて、低級オレフイン収率も高く、また触媒寿命
の観点からも低級オレフインの製造にきわめて有
利であるとの知見を得て、本発明を完成するに至
つた。特にその効果について言及するならば、後
の実施例14でも示されるように、本発明で製造さ
れるZSM−5型ゼオライト触媒のいくつかは、
550℃近傍の高温下でのメタノール転化反応にお
いて、前記のGer.Pat.,2935863号明細書に明示
されている低級オレフイン収率の最高値70.1wt%
をはるかに上廻り〔たとえば、後記試料番号12の
触媒は560℃で89.36wt%(炭素基準換算では
88.97%)〕、しかも600℃のより高温域においても
さらに高い低級オレフイン収率を与えているこ
と、並びに実施例15で示される触媒は5550℃での
メタノール転化反応において113時間後において
もなお、低級オレフイン収率を前記特許方法の最
高値より高い値71.30wt%(炭素基準換算では
71.49%)を維持していたことが強調される。 従来、ZSM−5型ゼオライトに関する多数の
特許文献や内外の研究論文にも見られるように、
メタノールやジメチルエーテルを原料とした低級
オレフインを含む炭化水素の製造用触媒の調製法
としては、通常結晶化速度を上げるためオートク
レーブを用いて150℃近傍の高温高圧下の水熱合
成条件下で結晶化させることが多い。この方法
は、高圧反応容器(オートクレーブ)を用いなけ
ればならないこと、反応温度が天然堆積性ゼオラ
イトの生成温度よりも高くしなければならないこ
となど苛酷な合成条件と経費を必要とするが、比
較的短時間で目的のゼオライトが合成できるこ
と、またミクロンオーダー以上の高品質自形
ZSM−5型ゼオライト結晶が合成できるなどの
利点をもつている。しかも、モービルオイル社の
特許に係るUSP4083888号及びUSP4083889号明
細書に開示されているように、このような方法で
得られた大きなZSM−5型ゼオライト結晶を触
媒としてメタノール転化反応を行うと、生成炭化
水素中のエチレンの選択率が高くなるという形状
選択性触媒としての優れた特長が触媒反応面で見
られる。本発明者らも、本発明に至る研究途上に
おいては、低級オレフインを高選択性で得る
ZSM−5ゼオライト触媒を得るために、オート
クレーブを使用したり、仕込みH2O/SiO2比を
高くして自形をした高品質大結晶ZSM−5型結
晶の合成を行つて、メタノール及び/又はジメチ
ルエーテルの転化反応を行つた。その結果、上記
モービル社特許明細書に明示されているようなエ
チレンへの選択性が高くなるという形状選択性効
果が大結晶ZSM−5型ゼオライト触媒に見られ
ることが確認されたが、低級オレフイン収率が最
も高くなる550℃近傍又はそれ以上の高温域の反
応では、急速な活性劣化を伴うことが見い出され
た。そこで、本発明者らは、ZSM−5型ゼオラ
イトの結晶粒子径をなるべく小さくするよう鋭意
工夫を行つた結果、常圧下で第4級アルキルアン
モニウム塩を含むシリカやシリカ−アルミナのア
ルカリ性溶液である出発原料混合物を還流加熱し
てZSM−5型ゼオライトを合成するという経済
的で簡便な方法において、その仕込みH2O/
SiO2比を適切に選ぶことにより、サブミクロン
オーダー以下の微結晶ZSM−5型ゼオライトが
得られることがわかつた。このような微結晶
ZSM−5型ゼオライトを通常行われているよう
なイオン交換等の活性化処理を施すことにより得
られる触媒は、メタノール及び/又はジメチルエ
ーテルを原料とした炭化水素合成反応において、
500℃以上の高温反応領域においても活性劣化が
きわめて小さいことがわかつた。またZSM−5
型ゼオライトの結晶粒子径は仕込みH2O/SiO2
モル比に大きく依存して一義的にその大きさが決
まるが、結晶化時間も触媒反応にとつては重要な
因子となつており、適切な結晶化時間を選ぶこと
が炭化水素生成反応の高温劣化を小さくするのに
重要であることもわかつた。なお、ここでいう適
切な結晶化時間とは出発原料混合物ゲル溶液が次
第に結晶化してゆき、生成したZSM−5型ゼオ
ライトの結晶化状態が、X線回析図形、BET比
表面積、並びにヘキサン異性体吸着分離特性など
の測定から完全になつたと考えられる時点までの
合成時間あるいはその近傍数日間までの合成時間
を指す。結晶化時間をこれより長くすると、
ZSM−5型ゼオライト自体の結晶粒子径は変ら
ないが、炭化水素生成反応においては、結晶粒子
径が大きくなつたのと同様な効果が見られ、結晶
化時間が長いほどコーク折出に伴う高温劣化現象
の顕著になつてくるので、触媒寿命の点から結晶
化時間を適切に選ぶことが重要である。本発明者
の研究によれば、前記の最適結晶化状態を得るに
は、一般的に、反応開始後6日〜13日間、好まし
くは7〜9日間にわたつて加熱還流を継続すれば
よいことが見出された。 以下、本発明のサブミクロンオーダー以下の結
晶粒子をもつ微結晶ZSM−5型ゼオライトの製
造方法及びそのようにして得られた微結晶ZSM
−5型ゼオライトを活性化処理することによつて
得られる活性化ZSM−5型ゼオライトを主成分
とする触媒上でのメタノール及び/又はジメチル
エーテルの転化反応について詳述する。 本発明のZSM−5型ゼオライトは、シリカ又
はシリカ−アルミナのアルカリ性溶液と第4級ア
ルキルアンモニウム塩の水性混合物を出発原料と
して、常圧下100℃近傍において還流加熱処理す
ることによつて合成されるが、重要なのはその系
のH2O/SiO2の仕込みモル比と結晶化時間であ
る。従つて、この系の出発原料のアルカリ源、シ
リカ源、アルミナ源、第4級アルキルアンモニウ
ム源としては、通常のZSM−5型ゼオライトの
合成に用いられているものが使用可能である。即
ち、NaOH、KOH、NaCl、KCl、水ガラス、コ
ロイダルシリカ、シリカゾル、シリカゲル、ケイ
酸ナトリウム、ケイ砂、アルミニウム、水酸化ア
ルミニウム、塩化アルミニウム、硝酸アルミニウ
ム、硫酸アルミニウム、オキシ水酸化アルミニウ
ム、ベーマイト、プソイドベーマイト、カオリ
ン、メタカオリン、酸性白土、ハロイサイト、メ
タハロイサイト、TPAOH、TPACl、TPABr、
TPAI、TBAOH、TBACl、TBABr〔TPA=
(n−C3H74N+、TBA=(n−C4H94N+〕など
を所要の組合せで選ぶことが可能である。出発物
質の混合比は仕込みモル比でSiO2/Al2O3=50〜
∞、より好ましくは200〜1200、H2O/SiO2=5
〜20、より好ましくは7〜11、OH-/SiO2=0.1
〜0.5、より好ましくは0.2〜0.4、R+/SiO2(R=
TPA及び/又はTBA)=0.01〜0.2、より好まし
くは0.03〜0.07となるようにする。この出発原料
混合物を、還流冷却器と撹拌器を組み込んだ反応
容器に入れ、100±20℃の温度に設定した油浴あ
るいは湯浴を用いて常圧下で6〜13日間、より好
ましくは7〜9日間還流加熱する。得られた生成
物であるZSM−5型ゼオライトはただちに水洗
しながら遠心分離器や濾過器も用いて母液より分
離し、乾燥を行う。このような方法でサブミクロ
ンオーダー以下の結晶粒子径をもつZSM−5型
ゼオライトの微結晶集合体を得ることができる。 低級オレフインの合成を目的としたメタノール
やジメチルエーテルの転化反応に、この微結晶
ZSM−5型ゼオライトを用いる場合には、500℃
近傍の温度で有機結晶化剤である第4級アルキル
アンモニウム塩を分解除去した後、通常行われて
いるようなアンモニウム塩や鉱酸で焼成ZSM−
5型ゼオライト中に含まれているアルカリイオン
をNH4 +やH+でイオン交換処理し、500℃近傍の
温度で焼成することにより、活性なH−ZSM−
5型ゼオライトに変える。また低級オレフインの
収率を高めたり、高温劣化をできるだけ少なくす
るために、このH−ZSM−5型ゼオライトをア
ルカリ土類元素、希土類元素、マンガン、リン化
合物等を単独又は組み合わせて修飾することも可
能である。このような手法で得られた活性化
ZSM−5型ゼオライトを触媒とするメタノール
やジメチルエーテルの転化反応は、0.01〜50気圧
のメタノール分圧、LHSV=0.1〜1000h-1、反応
温度300〜700℃の操作条件の下で行うことができ
る。本発明によつて合成されたZSM−5型ゼオ
ライトを用いることにより、例えば、メタノール
分圧0.5気圧、LHSV=2h-1、反応温度560〜600
℃において、収率66%(炭素基準)及び87%(炭
素基準)以上の高収率で低級オレフイン(炭素数
2〜4)を製造することができ、メタノール転化
用実用触媒として使用可能である。 一方、本発明以外の方法で合成されたZSM−
5型ゼオライト触媒は、後記比較例1で示される
ように、550℃近傍の反応温度で低級オレフイン
の収率が急激に低下し始め、実用触媒としての価
値は低い。 以下、本発明のさらに詳細な説明を実施例及び
比較例に基いて説明する。 実施例 1 本例では、SiO2源として触媒化成(株)市販のシ
リカゾルCataloid SI−30(SiO2:30wt%、
H2O:70wt%)、Al2O3源として市販特級試薬Al
(NO33・9H2O、アルカリ源として市販特級試薬
NaOH、有機結晶化剤として市販特級試薬臭化
テトラ−n−プロピルアンモニウム(TPA)を
選んだ。出発原料混合物ゲル溶液は下記のような
方法で調製した。 テフロン製磁気撹拌子を入れた内容積500mlの
ポリプロピレン三角フラスコに158.4gの
Cataloid SI−30を採取し、この溶液を撹拌しな
がら、1.698gのAl(NO33・9H2O、10.2gの
HaOH、10.8gのTPAの順に加えて行く。この
ようにして得られる流動性のある均一ゲル白濁溶
液のPHは室温で、約13.5であり、出発混合物の各
組成物のモル比は SiO2/Al2O3=350 OH-/SiO2=0.322 TPA/SiO2=0.0513 H2O/SiO2=7.83 の仕込比となつている。 次に、この出発混合物の入つた三角フラスコに
還流冷却器を取り付け、マグネチツク・スターラ
ーを取り付けた油浴(110℃にセツト)上で三角
フラスコ内の内容物を11日間還流撹拌加熱を行
う。得られた生成物は水洗を繰り返しながら遠心
分離器で母液から分離し、CuKα線を用いるX線
回折測定(XRD)による相の同定と走査型電子
顕微鏡観察(SEM)で結晶粒子の大きさを測定
した。 XRDの結果、得られた生成物は典形的なNa−
TPA−ZSM−5型ゼオライトの回折図形を示し
た。またSEMから求めた平均結晶粒子径は0.3μ
m程度であり、本法によりサブミクロンオーダー
のZSM−5型ゼオライト微結晶が得られること
がわかつた。 このようにして得られた微結晶ZSM−5型ゼ
オライト触媒物性及びメタノール転化反応に関す
る触媒性能を評価するために、以下の活性化処理
を行つた。Na−TPA−ZSM−5型ゼオライトを
空気中500℃で2時間焼成し、TPAを熱分解して
Na−H−ZSM−5型ゼオライトを得た。つい
で、このNa−H−ZSM−5型ゼオライトを室温
において、0.6NHClでイオン交換処理を行つた
後、再度500℃、20時間加熱処理してH−ZSM−
5型ゼオライトを得た。この活性化ZSM−5型
ゼオライト触媒について、下記のような物性測定
を行つた。 BET比表面積の測定: 500mgのH−ZSM−5型ゼオライトを
10-4Torr、150℃の条件下で30分間真空脱気処理
を行つた後、液体窒素温度下でN2ガスの吸着平
衡実験を行つて試料の比表面積を求めた。このよ
うな方法から求めた実施例の試料H−ZSM−5
型ゼオライトのBET比表面積は294.8m2/gであ
つた。 ヘキサン異性体吸着分離特性: 100mgのH−ZSM−5型ゼオライトを内径3mm
φのステンレス製カラムに詰め、He気流中500℃
で1時間脱気処理を行う。ついでこのカラムに分
子径の異なる3種の(1:1:1)ヘキサン異性
体混合物〔2,2−ジメチルブタン(有効分子径
7.0Å)、3−メチルペンタン(5.6Å)、n−ヘキ
サン(3.1Å)〕を2μずつパルス法で注入し、試
料カラムからの流出成分をガスクロマトグラフに
より分析し、各異性体の吸着容量をパルス回数と
して測定した。このような方法から求めた試料の
ヘキサン異性体吸着容量(2,2−ジメチルブタ
ン/3−メチルペンタン/n−ヘキサンの吸着パ
ルス数)は0−7−19であつた。 酸性質測定: 1gのH−ZSM−5型ゼオライトを10-4Torr、
450℃の条件下で2時間真空排気処理した後、100
℃まで試料温度を下げ、続いてNH3ガスを14〜
16Torrで試料中に導入し1時間保持した。つい
で同一温度で1時間真空(10-4Torr)排気した
後、昇温速度5℃/分で600℃までプログラム昇
温し、各温度におけるNH3脱離量を測定し、100
〜600℃間のNH3脱離量の差を全酸量とした。こ
のような方法で求められた試料H−ZSM−5型
ゼオライトの脱酸量は0.29meq/gであつた。 H−ZSM−5型ゼオライト結晶のバルクの化
学組成(SiO2/Al2O3): 試料300mgを47%HF2mlに溶解し、原子吸光光
度法によりSiとAlの濃度を求め、バルクの
SiO2/Al2O3比を算出した。このような方法で求
められた試料の実側SiO2/Al2O3比は271であつ
た。 実施例 2 本例は出発原料混合物中の仕込みH2O/SiO2
比が10.6であることと結晶化時間が7日間である
こと以外は実施例1と同等の合成条件でZSM−
5型ゼオライトの結晶化を行つた。得られた生成
物は0.3μm程度の微結晶ZSM−5型ゼオライト
であつた。また、このもののH−ZSM−5型ゼ
オライトへの活性化は、1M NH4NO3の代りに
0.6N HClを使用した以外は実施例1と同じ方法
で行つた。この活性比ZSM−5型ゼオライト触
媒のBET比表面積、ヘキサン異性体吸着容量、
全酸量はそれぞれ306.1m2/g、0−7−21であ
つた。 実施例 3 本例は結晶化時間が8日間である以外はZSM
−5型ゼオライトの合成条件も活性化処理条件も
実施例2と同じである。得られた生成物は0.3μm
程度の微結晶ZSM−5型ゼオライトであつた。
また、このZSM−5型ゼオライトのBET比表面
積、ヘキサン異性体吸着容量、脱酸量、実測
SiO2/Al2O3比はそれぞれ310.7m2/g、0−7−
21、0.24meq/g、466であつた。 実施例 4 本例は結晶化時間が9日間であつた以外は
ZSM−5型ゼオライトの合成条件も活性化処理
条件も実施例2と同じである。得られた生成物は
0.3μmの微結晶ZSM−5型ゼオライトであつた。
また、このH−ZSM−5型ゼオライトのBET比
表面積、ヘキサン異性体吸着容量、全酸量はそれ
ぞれ313.3m2/g、0−9−23、0.28meq/gであ
つた。 実施例 5 本例は結晶化時間が13日間であつた以外は
ZSM−5型ゼオライトの合成条件も活性化処理
条件も実施例2と同じである。得られた生成物は
0.3μm程度の微結晶ZSM−5型ゼオライトであ
つた。またこのH−ZSM−5型ゼオライトの
BET比表面積、ヘキサン異性体吸着容量、全酸
量はそれぞれ335.0m2/g、0−7−21、
0.23meq/gであつた。 実施例 6 本例は出発原料混合物の仕込みH2O/SiO2
が20、結晶化時間が6日間である以外はZSM−
5型ゼオライトの合成条件も活性化処理条件も実
施例2と同じである。得られた生成物は0.6μm程
度の微結晶ZSM−5型ゼオライトであつた。ま
た、H−ZSM−5型ゼオライトのBET比表面積、
ヘキサン異性体吸着容量、全酸量はそれぞれ
412.5m2/g、0−9−23、0.24meq/gであつ
た。 実施例 7 本例は結晶化時間が8時間である以外はZSM
−5型ゼオライトの合成条件も活性化処理条件も
実施例6と同じである。得られた生成物は0.6μm
程度の微結晶ZSM−5型ゼオライトであつた。
またこのH−ZSM−5型ゼオライトのBET比表
面積、ヘキサン異性体吸着容量、全酸量はそれぞ
れ309.3m2/g、0−7−19、0.24meq/gであつ
た。 実施例 8 本例は仕込みSiO2/Al2O3比が500である以外
はZSM−5型ゼオライトの合成条件も活性化処
理条件も実施例3と同じである。得られた生成物
は0.3μm程度の微結晶ZSM−5型ゼオライトで
あつた。またこのH−ZSM−5型ゼオライトの
BET比表面積、ヘキサン異性体吸着容量、全酸
量はそれぞれ289.5m2/g、0−7−20、
0.23meq/gであつた。 実施例 9 本例では仕込みSiO2/Al2O3比が800、H2O/
Si比が8である以外はZSM−5型ゼオライトの
合成条件も活性化処理条件も実施例3と同じであ
る。得られた生成物は0.2μm程度の微結晶ZSM
−5型ゼオライトであつた。またこのH−ZSM
−5型ゼオライトのBET比表面積、ヘキサン異
性体吸着容量、全酸量、実測SiO2/Al2O3比はそ
れぞれ359.4m2/g、0−9−27、0.185meq/g
であつた。 実施例 10 本例では仕込みH2O/SiO2比が10.6である以外
はZSM−5型ゼオライトの合成条件も活性化処
理条件も実施例9と同じである。得られた生成物
は0.3μm程度の微結晶ZSM−5型ゼオライトで
あつた。(また、H−ZSM−5型ゼオライトの
BET比表面積、ヘキサン異性体吸着容量、全酸
量、実測SiO2/Al2O3比はそれぞれ315.7m2/g、
0−9−23、0.155meq/g、874であつた。 実施例 11 本例はイオン交換溶液に0.6N HClを用いる代
りに温6N HClを用いた以外はZSM−5型ゼオラ
イトの合成条件も活性化処理条件も実施例3と同
じである。得られた生成物は0.3μm程度の微結晶
ZSM−5型ゼオライトであつた。また、この
ZSM−5型ゼオライトのBET比表面積、ヘキサ
ン異性体吸着容量、全酸量、実測SiO2/Al2O3
はそれぞれ261.1m2/g、0−7−19、0.20meq/
g、478であつた。 実施例 12 本例は実施例11で活性化処理することによつて
得られたZSM−5型ゼオライトの5gを500mlの
1M−Ca(OCOCH32水溶液に含浸し、100℃の湯
浴上で1時間還流加熱を行つた後、得られた生成
物を真空アスピレータを使つて濾別し100℃で乾
燥した。このCa含量ZSM−5型ゼオライト触媒
中の実測Ca量は0.214wt%であり、またBET比表
面積、ヘキサン異性体吸着容量、全酸量、実測
SiO2/Al2O3比はそれぞれ256.7m2/g、0−7−
21、0.20meq/g、557であつた。 実施例 13 本例は出発原料混合物に積極的にAl2O3源を加
えなかつたことと、結晶化時間が12日間である以
外は合成条件も活性化処理条件も、実施例2と同
じである。得られた生成物は0.3μm程度の微結晶
シリカライトであつた。またこのH−シリカライ
トのBET比表面積、ヘキサン異性体吸着容量、
全酸量はそれぞれ324m2/g、0−7−21、
0.107meq/gであつた。 実施例 14 実施例1〜13で得られたZSM−5型ゼオライ
ト、Ca−ZSM−5型ゼオライト、H−シリカラ
イト型ゼオライトを触媒(それぞれ実施例の番号
にしたがつて試料番号1〜13と以降呼ぶことにす
る)として用い、固定床常圧下流通方式でメタノ
ール転化反応試験を行つた。反応条件は次のよう
である。メタノール分圧が0.5気圧になるように
アルゴンで希釈した原料をメタノール換算LHSV
=2h-1で触媒2mlを含む触媒層に通した。反応温
度は320℃から開始し、2時間おきに340℃、360
℃、400℃、440℃、500℃、560℃、600℃に設定
し、各温度下での生成物分布をガスクロマトグラ
フで分析した。表−1には低級オレフインの収率
が高くなる反応温度500℃から600℃の間の各触媒
によるメタノール転化率、有効転化率、各生成物
の選択率を炭素基準%で表わした。これらの結果
から明らかなように、本発明で合成されたZSM
−5型ゼオライト触媒(Ca含有ZSM−5型ゼオ
ライト、H−シリカライトも含めて)は、550℃
近傍の反応温度を越えても高温劣化現象をほとん
ど伴わず、低級オレフインの収率は、より高温の
600℃の反応温度下でむしろ向上している場合が
多い。従つて、高温劣化を起こすことなく高収率
で低級オレフインをメタノール及び/又はジメチ
ルエーテルから製造するためには、本発明の方法
で合成されるサブミクロンオーダー以下の微小粒
子径をもつZSM−5型ゼオライトを触媒として
用いる方が後述する比較例で得られるZSM−5
型ゼオライトを触媒とするよりも有利であると結
論される。 なお、表−1及び以下において示した次の事項
の意味は下記の通りである。 有効転化率:メタノール転化物の中、ジメチルエ
ーテルを除く炭素質生成物の炭素基準収率 選択率(%):有効転化生成物中の各生成物の炭
素基準選択率 C−%:炭素基準で表わした% C2′+C3′:エチレン+プロピレンの合計収率 C2′〜C4′:エチレン+プロピレン+ブテンの合計
収率 C2′:エチレン C2:エタル C3′:プロピレン C3:プロパン C4′:ブテン i−C4:イソブタン n−C4:n−ブタン C5′:ペンテン C5:ペンタン
The present invention provides microcrystals of submicron order or less.
ZSM-5 type zeolite (including silicalite)
The present invention relates to a manufacturing method. In the 1970s, Mobil Oil developed a shape-selective catalyst for producing high-quality gasoline-based hydrocarbons from methanol and dimethyl ether.
We have developed ZSM-5 type zeolite catalyst. This zeolite has a different composition from conventional zeolites.
It has excellent properties such as the ability to freely control the SiO 2 /Al 2 O 3 ratio and extremely high heat resistance. It is also possible to do this. For example, Ger.
According to Pat. No. 2935863, SiO 2 /Al 2 O 3
=35~1600 activated zeolite (H-ZSM-5)
is known to give lower olefins (having 2 to 4 carbon atoms) with a maximum yield of 70.1 wt% in a methanol conversion reaction in the temperature range from 350°C to 600°C. In this case, the optimal composition and reaction temperature of the ZSM-5 type zeolite catalyst are SiO 2 /Al 2 O 3 =
298-500 and 550°C are specified in the examples. Therefore, in order to produce hydrocarbons mainly composed of lower olefins from methanol or dimethyl ether, it is found that it is advantageous to raise the reaction temperature as high as possible, but at the same time, in methanol conversion reactions at such high temperatures, Even with ZSM-5 type zeolite catalysts, which have high heat resistance, rapid catalyst deterioration is often observed at reaction temperatures of around 550°C. Therefore, in order to produce lower olefins in high yield and over a long period of time without rapid catalyst deterioration using methanol or dimethyl ether as raw materials at high temperatures of 500°C or higher, it is necessary to easily activate them at temperatures of 550°C or higher. It is necessary to skillfully manufacture ZSM-5 type zeolite that does not cause deterioration. From this perspective, the present inventors have conducted intensive studies regarding the development of ZSM-5 type zeolite, which is resistant to high-temperature deterioration in methanol and/or dimethyl ether conversion reactions, which are advantageous in producing lower olefins at high temperatures of 500°C or higher. As a result, microcrystals with a crystal particle size of submicron order or less were obtained.
ZSM-5 type zeolite is suitable for this purpose, and a catalyst whose main component is ZSM-5 type zeolite, which is activated ZSM-5 type zeolite with such a crystal particle size, can be used at high temperatures of 500℃ or higher. It was found that in the conversion reaction of methanol and/or dimethyl ether, the amount of coke deposited is extremely small, the yield of lower olefins is high, and it is extremely advantageous for the production of lower olefins from the viewpoint of catalyst life. As a result, the present invention was completed. In particular, as shown in Example 14, some of the ZSM-5 type zeolite catalysts produced in the present invention have the following effects:
In the methanol conversion reaction at a high temperature around 550°C, the highest yield of lower olefins is 70.1wt% as specified in the above-mentioned Ger.Pat., 2935863 specification.
[For example, the catalyst of sample number 12 mentioned below is 89.36wt% at 560℃ (in terms of carbon standard)
88.97%)], and even at a higher temperature range of 600°C, the catalyst shown in Example 15 still gave a higher yield of lower olefins even after 113 hours in the methanol conversion reaction at 5550°C. The yield of lower olefins was 71.30wt% (based on carbon), which is higher than the highest value of the patented method.
71.49%) was maintained. Conventionally, as seen in numerous patent documents and domestic and foreign research papers regarding ZSM-5 type zeolite,
The method for preparing catalysts for producing hydrocarbons containing lower olefins using methanol or dimethyl ether as raw materials is to crystallize them under hydrothermal synthesis conditions at high temperatures and pressures around 150°C using an autoclave to increase the crystallization rate. I often let them do it. This method requires harsh synthesis conditions and costs, such as the need to use a high-pressure reaction vessel (autoclave) and the reaction temperature higher than the formation temperature of natural sedimentary zeolite, but it is relatively expensive. The desired zeolite can be synthesized in a short time, and high-quality euhedral material of micron order or higher
It has the advantage of being able to synthesize ZSM-5 type zeolite crystals. Moreover, as disclosed in USP 4,083,888 and USP 4,083,889 patented by Mobil Oil, when a methanol conversion reaction is carried out using large ZSM-5 type zeolite crystals obtained by such a method as a catalyst, It has an excellent feature as a shape-selective catalyst in terms of catalytic reactions, such as a high selectivity of ethylene in hydrocarbons. The present inventors also obtained lower olefins with high selectivity during the research process leading to the present invention.
In order to obtain ZSM-5 zeolite catalyst, high-quality large ZSM-5 type crystals with euhedral shape are synthesized using an autoclave or by increasing the charged H 2 O / SiO 2 ratio. Alternatively, a conversion reaction of dimethyl ether was carried out. As a result, it was confirmed that the large-crystal ZSM-5 type zeolite catalyst has the shape-selectivity effect of increasing the selectivity to ethylene as specified in the above-mentioned Mobil patent specification. It has been found that reactions at high temperatures near or above 550°C, where the yield is highest, are accompanied by rapid activity deterioration. Therefore, the present inventors made intensive efforts to reduce the crystal particle size of ZSM-5 type zeolite as much as possible, and as a result, it was found that an alkaline solution of silica or silica-alumina containing a quaternary alkyl ammonium salt under normal pressure. In the economical and simple method of synthesizing ZSM-5 type zeolite by heating the starting material mixture under reflux, the charging H 2 O/
It has been found that by appropriately selecting the SiO 2 ratio, microcrystalline ZSM-5 type zeolite of submicron order or less can be obtained. Such microcrystals
The catalyst obtained by subjecting ZSM-5 type zeolite to a commonly used activation treatment such as ion exchange can be used in hydrocarbon synthesis reactions using methanol and/or dimethyl ether as raw materials.
It was found that activity deterioration was extremely small even in the high temperature reaction range of 500°C or higher. Also ZSM-5
The crystal particle size of type zeolite is determined by the preparation H 2 O/SiO 2
Although its size is uniquely determined depending largely on the molar ratio, the crystallization time is also an important factor for the catalytic reaction, and selecting an appropriate crystallization time is key to maintaining the high temperature of the hydrocarbon production reaction. It was also found that this is important in minimizing deterioration. The appropriate crystallization time here means that the starting material mixture gel solution gradually crystallizes, and the crystallization state of the ZSM-5 type zeolite produced is determined by the X-ray diffraction pattern, BET specific surface area, and hexane isomer. Refers to the synthesis time from the measurement of adsorption/separation characteristics to the point at which it is considered to be complete, or the synthesis time up to several days in the vicinity. If the crystallization time is longer than this,
The crystal particle size of ZSM-5 type zeolite itself does not change, but in the hydrocarbon production reaction, the same effect as the crystal particle size increases is seen, and the longer the crystallization time, the higher the temperature associated with coke precipitation. Since the deterioration phenomenon becomes noticeable, it is important to appropriately select the crystallization time from the viewpoint of catalyst life. According to the research of the present inventors, in order to obtain the above-mentioned optimal crystallization state, it is generally sufficient to continue heating and refluxing for 6 to 13 days, preferably 7 to 9 days after the start of the reaction. was discovered. Hereinafter, the method for producing microcrystalline ZSM-5 type zeolite having crystal grains of submicron order or less according to the present invention and the microcrystalline ZSM obtained in this way will be described.
The conversion reaction of methanol and/or dimethyl ether on a catalyst mainly composed of activated ZSM-5 type zeolite obtained by activation treatment of type-5 zeolite will be described in detail. The ZSM-5 type zeolite of the present invention is synthesized by heating an aqueous mixture of an alkaline solution of silica or silica-alumina and a quaternary alkyl ammonium salt as a starting material under reflux at around 100°C under normal pressure. However, what is important is the H 2 O/SiO 2 molar ratio of the system and the crystallization time. Therefore, as the starting materials for this system, such as the alkali source, silica source, alumina source, and quaternary alkyl ammonium source, those used in the synthesis of ordinary ZSM-5 type zeolite can be used. Namely, NaOH, KOH, NaCl, KCl, water glass, colloidal silica, silica sol, silica gel, sodium silicate, silica sand, aluminum, aluminum hydroxide, aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum oxyhydroxide, boehmite, plastic. Soid boehmite, kaolin, metakaolin, acid clay, halloysite, metahalloysite, TPAOH, TPACl, TPABr,
TPAI, TBAOH, TBACl, TBABr [TPA=
(n-C 3 H 7 ) 4 N + , TBA=(n-C 4 H 9 ) 4 N + ], etc. can be selected in a desired combination. The mixing ratio of the starting materials is the molar ratio of SiO 2 /Al 2 O 3 = 50 ~
∞, more preferably 200-1200, H2O / SiO2 = 5
~20, more preferably 7-11, OH - / SiO2 = 0.1
~0.5, more preferably 0.2-0.4, R + / SiO2 (R=
TPA and/or TBA) = 0.01 to 0.2, more preferably 0.03 to 0.07. This starting material mixture is placed in a reaction vessel equipped with a reflux condenser and a stirrer, and heated under normal pressure using an oil bath or water bath set at a temperature of 100±20°C for 6 to 13 days, more preferably 7 to 7 days. Heat at reflux for 9 days. The obtained product, ZSM-5 type zeolite, is immediately separated from the mother liquor using a centrifuge or filter while being washed with water, and then dried. By such a method, it is possible to obtain a microcrystalline aggregate of ZSM-5 type zeolite having a crystal grain size of submicron order or less. This microcrystal is used in the conversion reaction of methanol and dimethyl ether for the synthesis of lower olefins.
When using ZSM-5 type zeolite, 500℃
After decomposing and removing the quaternary alkyl ammonium salt, which is an organic crystallizing agent, at a nearby temperature, ZSM-
By ion-exchanging the alkali ions contained in type 5 zeolite with NH 4 + or H + and firing at a temperature around 500°C, active H-ZSM-
Change to type 5 zeolite. In addition, in order to increase the yield of lower olefins and minimize high-temperature deterioration, this H-ZSM-5 type zeolite may be modified with alkaline earth elements, rare earth elements, manganese, phosphorus compounds, etc., singly or in combination. It is possible. Activation obtained with such a technique
The conversion reaction of methanol and dimethyl ether using ZSM-5 type zeolite as a catalyst can be carried out under the operating conditions of methanol partial pressure of 0.01 to 50 atm, LHSV = 0.1 to 1000 h -1 , and reaction temperature of 300 to 700 °C. . By using the ZSM-5 type zeolite synthesized according to the present invention, for example, methanol partial pressure is 0.5 atm, LHSV=2 h -1 , reaction temperature is 560 to 600
It can produce lower olefins (2 to 4 carbon atoms) at high yields of 66% (carbon basis) and 87% (carbon basis) at ℃, and can be used as a practical catalyst for methanol conversion. . On the other hand, ZSM− synthesized by a method other than the present invention
Type 5 zeolite catalyst, as shown in Comparative Example 1 below, begins to rapidly reduce the yield of lower olefins at a reaction temperature of around 550°C, and has low value as a practical catalyst. Hereinafter, a more detailed explanation of the present invention will be given based on Examples and Comparative Examples. Example 1 In this example, a commercially available silica sol Cataloid SI-30 (SiO 2 : 30 wt %,
H 2 O: 70wt%), commercially available special grade reagent Al as Al 2 O 3 source
(NO 3 ) 3・9H 2 O, commercially available special grade reagent as an alkali source
NaOH and a commercially available special grade reagent tetra-n-propylammonium bromide (TPA) were selected as the organic crystallization agent. A starting material mixture gel solution was prepared in the following manner. 158.4 g of polypropylene Erlenmeyer flask with internal volume of 500 ml containing a Teflon magnetic stirrer.
Cataloid SI-30 was collected, and while stirring this solution, 1.698 g of Al(NO 3 ) 3・9H 2 O, 10.2 g of
Add HaOH and 10.8 g of TPA in this order. The pH of the fluid homogeneous gel-white solution thus obtained is approximately 13.5 at room temperature, and the molar ratio of each composition of the starting mixture is SiO 2 /Al 2 O 3 = 350 OH - /SiO 2 = The charging ratio was 0.322 TPA/SiO 2 = 0.0513 H 2 O/SiO 2 = 7.83. Next, a reflux condenser is attached to the Erlenmeyer flask containing this starting mixture, and the contents of the Erlenmeyer flask are stirred and heated under reflux for 11 days on an oil bath (set at 110°C) equipped with a magnetic stirrer. The obtained product was separated from the mother liquor using a centrifuge while being repeatedly washed with water, and the phase was identified by X-ray diffraction measurement (XRD) using CuKα rays, and the size of the crystal particles was determined by scanning electron microscopy (SEM). It was measured. As a result of XRD, the obtained product was a typical Na-
The diffraction pattern of TPA-ZSM-5 type zeolite is shown. In addition, the average crystal grain size determined by SEM was 0.3μ.
It was found that submicron-order ZSM-5 type zeolite microcrystals can be obtained by this method. In order to evaluate the physical properties of the thus obtained microcrystalline ZSM-5 type zeolite catalyst and the catalyst performance regarding the methanol conversion reaction, the following activation treatment was performed. Na-TPA-ZSM-5 type zeolite was calcined in air at 500℃ for 2 hours to thermally decompose TPA.
Na-H-ZSM-5 type zeolite was obtained. Next, this Na-H-ZSM-5 type zeolite was subjected to ion exchange treatment with 0.6NHCl at room temperature, and then heat-treated again at 500°C for 20 hours to form H-ZSM-
Type 5 zeolite was obtained. The following physical properties were measured for this activated ZSM-5 type zeolite catalyst. Measurement of BET specific surface area: 500 mg of H-ZSM-5 type zeolite
After vacuum degassing for 30 minutes at 10 -4 Torr and 150°C, an N 2 gas adsorption equilibrium experiment was performed at liquid nitrogen temperature to determine the specific surface area of the sample. Example sample H-ZSM-5 obtained using this method
The BET specific surface area of the type zeolite was 294.8 m 2 /g. Hexane isomer adsorption separation characteristics: 100mg of H-ZSM-5 type zeolite with an inner diameter of 3mm
Packed into a φ stainless steel column and heated at 500℃ in a He stream.
Perform deaeration treatment for 1 hour. Next, a mixture of three (1:1:1) hexane isomers with different molecular diameters [2,2-dimethylbutane (effective molecular diameter)] was added to this column.
7.0 Å), 3-methylpentane (5.6 Å), and n-hexane (3.1 Å)] were injected in 2μ increments using a pulse method, and the components flowing out from the sample column were analyzed by gas chromatography to determine the adsorption capacity of each isomer. It was measured as the number of pulses. The hexane isomer adsorption capacity (number of adsorption pulses of 2,2-dimethylbutane/3-methylpentane/n-hexane) of the sample determined by this method was 0-7-19. Acidity measurement: 1g of H-ZSM-5 type zeolite at 10 -4 Torr,
After vacuum evacuation treatment for 2 hours at 450℃, 100℃
Lower the sample temperature to 14°C, followed by NH3 gas to 14°C.
It was introduced into the sample at 16 Torr and held for 1 hour. Then, after evacuation at the same temperature for 1 hour (10 -4 Torr), the temperature was programmed to rise to 600°C at a heating rate of 5°C/min, and the amount of NH 3 desorbed at each temperature was measured.
The difference in the amount of NH 3 desorbed between 600°C and 600°C was defined as the total acid amount. The amount of deoxidation of sample H-ZSM-5 type zeolite determined by this method was 0.29 meq/g. Bulk chemical composition of H-ZSM-5 type zeolite crystal (SiO 2 /Al 2 O 3 ): Dissolve 300 mg of sample in 2 ml of 47% HF, determine the concentration of Si and Al by atomic absorption spectrophotometry, and
The SiO 2 /Al 2 O 3 ratio was calculated. The actual SiO 2 /Al 2 O 3 ratio of the sample determined by this method was 271. Example 2 This example shows the charge H 2 O/SiO 2 in the starting material mixture.
ZSM-
Type 5 zeolite was crystallized. The obtained product was a microcrystalline ZSM-5 type zeolite of about 0.3 μm. In addition, the activation of this product to H-ZSM-5 type zeolite was performed using 1M NH 4 NO 3 instead of 1M NH 4 NO 3.
The procedure was the same as in Example 1 except that 0.6N HCl was used. This activity ratio, BET specific surface area of ZSM-5 type zeolite catalyst, hexane isomer adsorption capacity,
The total acid content was 306.1 m 2 /g and 0-7-21, respectively. Example 3 This example uses ZSM except that the crystallization time is 8 days.
The synthesis conditions and activation treatment conditions for type-5 zeolite are the same as in Example 2. The obtained product is 0.3μm
It was a moderately microcrystalline ZSM-5 type zeolite.
In addition, the BET specific surface area, hexane isomer adsorption capacity, deoxidation amount, and actual measurement of this ZSM-5 type zeolite are
The SiO 2 /Al 2 O 3 ratio is 310.7 m 2 /g and 0-7-
21, 0.24meq/g, 466. Example 4 In this example, the crystallization time was 9 days.
The synthesis conditions and activation treatment conditions for ZSM-5 type zeolite are the same as in Example 2. The product obtained is
It was 0.3 μm microcrystalline ZSM-5 type zeolite.
The BET specific surface area, hexane isomer adsorption capacity, and total acid content of this H-ZSM-5 type zeolite were 313.3 m 2 /g, 0-9-23, and 0.28 meq/g, respectively. Example 5 In this example, the crystallization time was 13 days.
The synthesis conditions and activation treatment conditions for ZSM-5 type zeolite are the same as in Example 2. The product obtained is
It was microcrystalline ZSM-5 type zeolite with a size of about 0.3 μm. In addition, this H-ZSM-5 type zeolite
BET specific surface area, hexane isomer adsorption capacity, and total acid content are 335.0 m 2 /g, 0-7-21, respectively.
It was 0.23meq/g. Example 6 This example is based on ZSM-1 except that the charging H2O / SiO2 ratio of the starting material mixture is 20 and the crystallization time is 6 days.
The synthesis conditions and activation treatment conditions for type 5 zeolite are the same as in Example 2. The obtained product was a microcrystalline ZSM-5 type zeolite of about 0.6 μm. In addition, the BET specific surface area of H-ZSM-5 type zeolite,
Hexane isomer adsorption capacity and total acid amount are respectively
It was 412.5m 2 /g, 0-9-23, 0.24meq/g. Example 7 This example uses ZSM except that the crystallization time is 8 hours.
The synthesis conditions and activation treatment conditions for type-5 zeolite are the same as in Example 6. The obtained product is 0.6μm
It was a moderately microcrystalline ZSM-5 type zeolite.
The BET specific surface area, hexane isomer adsorption capacity, and total acid content of this H-ZSM-5 type zeolite were 309.3 m 2 /g, 0-7-19, and 0.24 meq/g, respectively. Example 8 In this example, the synthesis conditions and activation treatment conditions for ZSM-5 type zeolite were the same as in Example 3, except that the SiO 2 /Al 2 O 3 ratio was 500. The obtained product was a microcrystalline ZSM-5 type zeolite of about 0.3 μm. In addition, this H-ZSM-5 type zeolite
BET specific surface area, hexane isomer adsorption capacity, and total acid amount are 289.5 m 2 /g, 0-7-20, respectively.
It was 0.23meq/g. Example 9 In this example, the SiO 2 /Al 2 O 3 ratio was 800, and the H 2 O/
The synthesis conditions and activation treatment conditions for ZSM-5 type zeolite were the same as in Example 3, except that the Si ratio was 8. The obtained product is microcrystalline ZSM of about 0.2 μm.
-5 type zeolite. Also this H-ZSM
The BET specific surface area, hexane isomer adsorption capacity, total acid content, and measured SiO 2 /Al 2 O 3 ratio of Type-5 zeolite are 359.4 m 2 /g, 0-9-27, and 0.185 meq/g, respectively.
It was hot. Example 10 In this example, the synthesis conditions and activation treatment conditions for ZSM-5 type zeolite were the same as in Example 9, except that the charged H 2 O/SiO 2 ratio was 10.6. The obtained product was a microcrystalline ZSM-5 type zeolite of about 0.3 μm. (Also, H-ZSM-5 type zeolite
The BET specific surface area, hexane isomer adsorption capacity, total acid content, and measured SiO 2 /Al 2 O 3 ratio were 315.7 m 2 /g, respectively.
It was 0-9-23, 0.155meq/g, 874. Example 11 In this example, the synthesis conditions and activation treatment conditions for ZSM-5 type zeolite were the same as in Example 3, except that warm 6N HCl was used instead of 0.6N HCl as the ion exchange solution. The obtained product is a microcrystal of about 0.3 μm.
It was ZSM-5 type zeolite. Also, this
The BET specific surface area, hexane isomer adsorption capacity, total acid content, and measured SiO 2 /Al 2 O 3 ratio of ZSM-5 type zeolite were 261.1 m 2 /g, 0-7-19, and 0.20 meq/, respectively.
g, 478. Example 12 In this example, 5 g of ZSM-5 type zeolite obtained by the activation treatment in Example 11 was added to 500 ml.
The product was impregnated with a 1M-Ca( OCOCH3 ) 2 aqueous solution and heated under reflux on a 100°C water bath for 1 hour, and then the obtained product was filtered using a vacuum aspirator and dried at 100°C. The measured amount of Ca in this Ca content ZSM-5 type zeolite catalyst is 0.214wt%, and the BET specific surface area, hexane isomer adsorption capacity, total acid content, and
The SiO 2 /Al 2 O 3 ratio is 256.7 m 2 /g and 0-7-
21, 0.20meq/g, 557. Example 13 In this example, the synthesis conditions and activation treatment conditions were the same as in Example 2, except that no Al 2 O 3 source was actively added to the starting material mixture and the crystallization time was 12 days. be. The obtained product was microcrystalline silicalite of about 0.3 μm. In addition, the BET specific surface area of this H-silicalite, hexane isomer adsorption capacity,
The total acid content is 324 m 2 /g, 0-7-21, respectively.
It was 0.107meq/g. Example 14 The ZSM-5 type zeolite, Ca-ZSM-5 type zeolite, and H-silicalite type zeolite obtained in Examples 1 to 13 were used as catalysts (sample numbers 1 to 13 according to the numbers in Examples, respectively). (hereinafter referred to as), and a methanol conversion reaction test was conducted using a fixed bed flow system under normal pressure. The reaction conditions are as follows. The raw material diluted with argon so that the methanol partial pressure becomes 0.5 atm is converted to methanol equivalent LHSV.
= 2 h -1 through a catalyst bed containing 2 ml of catalyst. The reaction temperature started at 320℃, then increased to 340℃ and 360℃ every 2 hours.
The product distribution at each temperature was analyzed using a gas chromatograph. Table 1 shows the methanol conversion rate, effective conversion rate, and selectivity of each product in % carbon based on each catalyst at a reaction temperature of 500°C to 600°C at which the yield of lower olefins is high. As is clear from these results, the ZSM synthesized by the present invention
-5 type zeolite catalyst (including Ca-containing ZSM-5 type zeolite and H-silicalite) at 550℃
There is almost no high-temperature deterioration phenomenon even when the reaction temperature is exceeded, and the yield of lower olefins is higher than that at higher temperatures.
In many cases, it actually improves at a reaction temperature of 600°C. Therefore, in order to produce lower olefins from methanol and/or dimethyl ether in high yield without high-temperature deterioration, ZSM-5 type synthesized by the method of the present invention and having a microparticle size of submicron order or less is required. ZSM-5 obtained in the comparative example described later using zeolite as a catalyst
It is concluded that this is more advantageous than using type zeolite as a catalyst. The meanings of the following items shown in Table 1 and below are as follows. Effective conversion rate: Carbon based yield of carbonaceous products excluding dimethyl ether among methanol conversion products Selectivity (%): Carbon based selectivity of each product in effective conversion products C-%: Expressed on carbon basis % C2'+C3': Total yield of ethylene + propylene C2'-C4': Total yield of ethylene + propylene + butene C2': Ethylene C2: Etal C3': Propylene C3: Propane C4': Butene i-C4 : Isobutane n-C4: n-butane C5': Pentene C5: Pentane

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例 15 実施例9で得られたH−ZSM−5型ゼオライ
トの5gを500mlの1M NH4H2PO4水溶液に含浸
し、100℃の湯浴上で1時間還流加熱を行つた後、
ただちに生成物を真空アスピレーターを使つて濾
別し、100℃で乾燥した。このようにして得られ
たP−ZSM−型ゼオライトをさらに500℃で20時
間焼成を行つて活性なP−ZSM−5型ゼオライ
トゼオライト触媒を得た。この試料のP含有量、
BET比表面積、ヘキサン異性体吸着容量、全酸
量、実測SiO2/Al2O3比はそれぞれ0.668wt%、
338.3m2/g、0−9−23、0.24meq/g、872で
あつた。次いで、この試料2mlを常圧流通式固定
床メタノール転化反応用石英反応管に詰め、メタ
ノール/アルゴン比=1:1、メタノール換算
LHSV=2h-1、反応温度550℃の反応条件下で触
媒寿命試験を行つた。その結果、表−2に示され
るようにメタノールの炭化水素への有効転化率は
131時間もの間ほぼ100%(炭素基準)の値を維持
し、131時間目の(C2′+C3′)の収率は50.38、
C2′〜C4′の収率は62.02%(炭素基準)を維持し
ていた。また113時間目まで(C2′〜C4′)収率は
モービルオイル社の特許明細書(Ger,Pat.,
2935863)に明示されている最高収率70.1wt%を
上廻る71.30wt%(炭素基準換算では71.49%)以
上を維持しており、本発明の触媒は高温劣化に強
い高選択性触媒であることがわかる。
[Table] Example 15 5 g of H-ZSM-5 type zeolite obtained in Example 9 was impregnated with 500 ml of 1M NH 4 H 2 PO 4 aqueous solution, and heated under reflux on a 100°C water bath for 1 hour. After ivy,
The product was immediately filtered off using a vacuum aspirator and dried at 100°C. The P-ZSM-type zeolite thus obtained was further calcined at 500°C for 20 hours to obtain an active P-ZSM-5 type zeolite zeolite catalyst. P content of this sample,
The BET specific surface area, hexane isomer adsorption capacity, total acid content, and measured SiO 2 /Al 2 O 3 ratio were 0.668 wt%, respectively.
It was 338.3m 2 /g, 0-9-23, 0.24meq/g, 872. Next, 2 ml of this sample was packed into a quartz reaction tube for fixed bed methanol conversion reaction using normal pressure flow, and methanol/argon ratio = 1:1, methanol equivalent.
A catalyst life test was conducted under the reaction conditions of LHSV = 2h -1 and reaction temperature of 550°C. As a result, as shown in Table 2, the effective conversion rate of methanol to hydrocarbons is
The value of almost 100% (carbon basis) was maintained for 131 hours, and the yield of (C2′ + C3′) at the 131st hour was 50.38.
The yield of C2' to C4' was maintained at 62.02% (carbon basis). Furthermore, the yield up to the 113th hour (C2' to C4') is shown in Mobil Oil's patent specification (Ger, Pat.
The catalyst of the present invention maintains a yield of 71.30 wt% or more (71.49% on carbon basis), which is higher than the maximum yield of 70.1 wt% specified in 2935863), and the catalyst of the present invention is a highly selective catalyst that is resistant to high-temperature deterioration. I understand.

【表】【table】

【表】 実施例 16 実施例10で得られた微結晶H−ZSM−5型ゼ
オライト触媒について、実施例15と同一のメタノ
ール転化反応条件下で触媒寿命試験を行つた。そ
の結果は、実施例15のP含有ZSM−5型ゼオラ
イトの反応結果と比べると、(C2′+C3′)の選択
率の経時変化は121時間後もほぼ100%を維持して
おり、従つて、サブミクロンオーダー以下の微結
晶集合体であるH−ZSM−5型ゼオライト触媒
は高温劣化に強いことがわかる。また比較のため
に、ミクロンオーダーの粒子径サイズをもつH−
ZSM−5型ゼオライト触媒(比較例1のゼオラ
イト試料番号6′)についても同様のメタノール転
化反応寿命試験を行つたところ、この場合には、
反応時間が20時間を超えると、急速な活性劣化現
象が見られた。 比較例 1 比較のために、種々のH−ZSM−5型ゼオラ
イト触媒(試料番号1′〜8′)を表−4に示す合成
条件で合成した。このH−ZSM−5型ゼオライ
トの触媒物性は表−3に示される通りである。試
料番号1′〜4′はオートクレーブを用いて水熱合成
したものであるのに対し、試料番号5′〜8′は常圧
下還流撹拌加熱方式で合成したものである。な
お、活性処理は実施例2に準じて行つた。また、
表−4にはこれら各触媒のメタノール転化反応を
実施例14に基いて行つた結果を示した。表−3と
表−4の結果から明らかなように、一般に結晶粒
子径が大きいものほど高温劣化が起こり易いこ
と、特にオートクレーブ法で合成したH−ZSM
−5型ゼオライト触媒は550℃近傍の反応温度を
越えると急激な劣化現象が見られること、また常
圧下還流加熱方式で合成したH−ZSM−5型ゼ
オライト触媒はたとえ結晶粒子が小さくても結晶
化時間が本発明で規定した範囲から逸脱するとや
はり高温劣化が起こることがわかる。
[Table] Example 16 The microcrystalline H-ZSM-5 type zeolite catalyst obtained in Example 10 was subjected to a catalyst life test under the same methanol conversion reaction conditions as in Example 15. The results show that when compared with the reaction results for the P-containing ZSM-5 type zeolite in Example 15, the change in the selectivity of (C2'+C3') over time maintains almost 100% even after 121 hours. It can be seen that the H-ZSM-5 type zeolite catalyst, which is a microcrystalline aggregate of submicron order or less, is resistant to high-temperature deterioration. For comparison, H-
A similar methanol conversion reaction life test was conducted on the ZSM-5 type zeolite catalyst (zeolite sample number 6' of Comparative Example 1), and in this case,
When the reaction time exceeded 20 hours, a rapid activity deterioration phenomenon was observed. Comparative Example 1 For comparison, various H-ZSM-5 type zeolite catalysts (sample numbers 1' to 8') were synthesized under the synthesis conditions shown in Table 4. The catalytic properties of this H-ZSM-5 type zeolite are shown in Table 3. Sample numbers 1' to 4' were synthesized hydrothermally using an autoclave, while sample numbers 5' to 8' were synthesized using a reflux stirring heating method under normal pressure. Note that the activation treatment was performed according to Example 2. Also,
Table 4 shows the results of the methanol conversion reaction of each of these catalysts based on Example 14. As is clear from the results in Tables 3 and 4, in general, the larger the crystal particle size, the more likely high temperature deterioration occurs, especially for H-ZSM synthesized by the autoclave method.
It is known that the -5 type zeolite catalyst shows a rapid deterioration phenomenon when the reaction temperature exceeds around 550℃, and that the H-ZSM-5 type zeolite catalyst synthesized by the reflux heating method under normal pressure has crystals even if the crystal particles are small. It can be seen that high-temperature deterioration still occurs when the curing time deviates from the range specified in the present invention.

【表】 粒子径を記載した。
[Table] Particle diameters are listed.

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 シリカ源、アルミナ源、アルカリ源及び第4
級アルキルアンモニウム塩を含有する水性溶液を
常圧下で加熱還流するにあたり、シリカ源と水の
モル比SiO2/H2Oを5〜20の範囲に規定し、か
つ前記加熱還流を6日〜13日間継続することを特
徴とする微結晶ZSM−5型ゼオライトの製造方
法。 2 シリカ源、アルカリ源及び第4級アルキルア
ンモニウム塩を含有する溶液を常圧下で加熱還流
するにあたり、シリカ源と水のモル比SiO2
H2Oを5〜20の範囲に規定し、かつ前記加熱還
流を6日〜13日間継続することを特徴とする微結
晶ZSM−5型ゼオライト(シリカライトを含む)
の製造方法。
[Claims] 1. Silica source, alumina source, alkali source, and 4.
When heating and refluxing an aqueous solution containing an alkyl ammonium salt under normal pressure, the molar ratio SiO 2 /H 2 O of the silica source and water is defined in the range of 5 to 20, and the heating and refluxing is carried out for 6 to 13 days. A method for producing microcrystalline ZSM-5 type zeolite, which continues for several days. 2. When heating and refluxing a solution containing a silica source, an alkali source, and a quaternary alkyl ammonium salt under normal pressure, the molar ratio of silica source and water is SiO 2 /
Microcrystalline ZSM-5 type zeolite (including silicalite), characterized in that H 2 O is defined in the range of 5 to 20, and the heating and refluxing is continued for 6 to 13 days.
manufacturing method.
JP10553784A 1984-05-24 1984-05-24 Manufacture of microcrystalline zsm-5 type zeolite Granted JPS60251121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10553784A JPS60251121A (en) 1984-05-24 1984-05-24 Manufacture of microcrystalline zsm-5 type zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10553784A JPS60251121A (en) 1984-05-24 1984-05-24 Manufacture of microcrystalline zsm-5 type zeolite

Publications (2)

Publication Number Publication Date
JPS60251121A JPS60251121A (en) 1985-12-11
JPH0446893B2 true JPH0446893B2 (en) 1992-07-31

Family

ID=14410331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10553784A Granted JPS60251121A (en) 1984-05-24 1984-05-24 Manufacture of microcrystalline zsm-5 type zeolite

Country Status (1)

Country Link
JP (1) JPS60251121A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131514A (en) * 1989-10-18 1991-06-05 Tokushu Kika Kogyo Kk Ultrafine particulate aluminosilicate having function such as ion exchange capacity
EP0514715B1 (en) * 1991-05-17 1997-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing a particulate zeolite
FR2808519B1 (en) * 2000-05-05 2002-08-02 Inst Francais Du Petrole LOW SI / AL EUO STRUCTURAL TYPE ZEOLITE AND ITS USE AS A CATALYST FOR ISOMERIZING C8 AROMATIC CUTS
JP2005138000A (en) * 2003-11-05 2005-06-02 Jgc Corp Catalyst, method for preparing catalyst and method for producing lower hydrocarbon using the same catalyst
JP6398448B2 (en) 2013-08-30 2018-10-03 東ソー株式会社 Pentasil-type zeolite and method for producing the same

Also Published As

Publication number Publication date
JPS60251121A (en) 1985-12-11

Similar Documents

Publication Publication Date Title
JP2512679B2 (en) MFI-type zeolite catalyst and method for preparing and using the same
JPS6052084B2 (en) Crystalline zeolite with an aluminum-free outer shell
JP5588973B2 (en) Method for producing crystalline metallosilicate
US5185138A (en) Transistion-metal-aluminosilicate hydrocarbon conversion catalysts having an L type structure, ECR-22-D
US5073673A (en) Process for the production of high-octane gasoline blending stock
DK152574B (en) SILICREATED MATERIAL, MANUFACTURING THIS MATERIAL AND MANUFACTURING HYDROCARBONES
JPH024526B2 (en)
US4394362A (en) Crystalline silicate particle having an aluminum-containing outer shell
JP2005138000A (en) Catalyst, method for preparing catalyst and method for producing lower hydrocarbon using the same catalyst
JPS6115848A (en) Production of lower olefin using zeolite catalyst modified with calcium phosphate
JPH043366B2 (en)
US4299686A (en) Shape selective catalyst from zeolite alpha and use thereof
JP2559066B2 (en) Method for synthesizing crystalline silicate ZSM-11
EP0152485A1 (en) Binder-free zeolite catalyst, process for its preparation, and catalytic reaction using same
JPS632937B2 (en)
JPH0446893B2 (en)
US4548705A (en) Hydrocracking with catalytically active amorphous silica and zeolites
KR101052136B1 (en) Process for preparing doped pentasil zeolite using doped reactant
JPH064485B2 (en) Method for producing composite crystalline aluminum silicate
US6130363A (en) Catalyst with a base of modified MFI zeolite, and its use in the isomerization of a C8 aromatic cut
US4926006A (en) Aluminoborosilicate containing alkaline earth metal, a method for the preparation thereof and a method for the catalytic preparation of a lower olefin therewith
JPH0674134B2 (en) Alkaline earth metal-containing aluminophosphosilicate, method for producing the same, and method for producing lower olefin using the same
US4417090A (en) Process for the isomerization of paraffins
JPH06192135A (en) Method for converting light hydrocarbon
JPS61200928A (en) Production of lower olefin

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term