JPH0446596A - Generator output controller - Google Patents

Generator output controller

Info

Publication number
JPH0446596A
JPH0446596A JP2150460A JP15046090A JPH0446596A JP H0446596 A JPH0446596 A JP H0446596A JP 2150460 A JP2150460 A JP 2150460A JP 15046090 A JP15046090 A JP 15046090A JP H0446596 A JPH0446596 A JP H0446596A
Authority
JP
Japan
Prior art keywords
rotor
generator
temperature
output
rotor temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2150460A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
一浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2150460A priority Critical patent/JPH0446596A/en
Publication of JPH0446596A publication Critical patent/JPH0446596A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

PURPOSE:To widen operational range of generator by predicting rotor temperature based on reverse phase current and various state amounts and then controlling output, power factor, and the like of the generator based on allowable rotor temperature, generator output, external output command value, rotor field winding temperature, and the like. CONSTITUTION:A rotor temperature operating circuit 9 predicts temperature of a rotor 5 under steady state while a rotor temperature rise operating circuit 13 predicts rotor temperature rise due to reverse phase current and an output control circuit 14 predicts actual rotor temperature based on these predicted values and calculates a maximum generator output, within which rotor temperature does not exceed the allowable value, together with an allowable rotor temperature setter 15. Generator output is then set based on thus calculated generator output, an external generator output command value 16, and field winding temperature determined by a rotor field winding temperature operating circuit 18. According to the arrangement. generator output is automatically controlled so that the rotor temperature does not exceed the allowable value even if reverse phase current increases.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は発電機に流れる逆相電流を測定して発電機出力
を制御する発電機の出力制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Industrial Application Field) The present invention relates to a generator output control device that measures a negative sequence current flowing through the generator to control the generator output.

(従来の技術) タービン発電機において、発電機に逆゛相電流が流れる
と回転子には定格周波数の2倍の周波数の電気トルクが
働き、それが励振力となってタービンの軸と翼が互いに
影響しながら振動する翼軸連成板じれ振動が発生し、翼
の寿命消費が進むという問題がある。
(Prior art) In a turbine generator, when an anti-phase current flows through the generator, an electric torque with a frequency twice the rated frequency acts on the rotor, which becomes an excitation force that causes the shaft and blades of the turbine to move. There is a problem in that blade axis-coupled plate shear vibration occurs, which vibrates while influencing each other, which shortens the life of the blade.

そこで、従来ではこの対策としてタービン軸と翼による
固有振動数を定格周波数の2倍から離すことか考えられ
、各種の離調対策が採られている。
Conventionally, a countermeasure to this problem has been to deviate the natural frequency of the turbine shaft and blades from twice the rated frequency, and various detuning countermeasures have been taken.

一方、発電機側としては逆相耐量の問題が残り、逆相電
流の大きさに制限がある。
On the other hand, on the generator side, there remains the problem of negative sequence tolerance, and there is a limit to the magnitude of negative sequence current.

逆相耐量としては短時間の逆相電流により回転子表面に
蓄積される熱量で制限される短時間耐量と比較的長い又
は連続的な逆相電流で回転子表面温度が上昇することに
より制限される連続耐量とがある。しかし、近年のター
ビン発電機においては単機容量の増加が著しく、この大
容量化は冷却技術によるものが大きく、回転子の熱容量
が減少する傾向となっている。
The negative sequence withstand capacity is limited by the amount of heat accumulated on the rotor surface due to short-term negative sequence current, and the other is limited by the rise in rotor surface temperature due to relatively long or continuous negative sequence current. There is a continuous capacity. However, in recent years, the capacity of a single unit in turbine generators has increased significantly, and this increase in capacity is largely due to cooling technology, and the heat capacity of the rotor has tended to decrease.

現在、発電機運転時に逆相電流が流れたときの対策とし
ては、−船内に逆相保護装置により警報又はトリップを
行なうようにしており、その発電機の逆相保護装置は規
格値(JEC−114)より設定値を決めている。また
、規格値は発電機の定格出力時に許容する逆相電流を定
めているものである。
Currently, as a countermeasure when a reverse phase current flows during generator operation, an alarm or trip is issued by a reverse phase protection device inside the ship. 114). In addition, the standard value defines the negative sequence current that is allowed when the generator is at its rated output.

(発明が解決しようとする課題) しかし、逆相保護装置により発電機運転時に流れる逆相
電流が設定値を越えると発電機をトリップさせるもので
は、発電機の運転範囲が規格値により定まるため、運転
範囲が制限されるという問題があった。
(Problem to be Solved by the Invention) However, in the case of a reverse-phase protection device that trips the generator when the reverse-sequence current flowing during generator operation exceeds a set value, the operating range of the generator is determined by the standard value. There was a problem that the driving range was restricted.

本発明の目的は、逆相電流および諸状態量より回転子温
度を予測演算し、許容回転子温度、発電機出力、外部か
らの出力指令値、回転子界磁巻線温度等により発電機出
力、力率等を制御することにより、発電機の運転範囲を
広げることができる発電機の出力制御装置を提供するに
ある。
The purpose of the present invention is to predict and calculate the rotor temperature from the negative sequence current and various state quantities, and calculate the generator output based on the allowable rotor temperature, generator output, external output command value, rotor field winding temperature, etc. An object of the present invention is to provide a generator output control device that can expand the operating range of the generator by controlling the power factor and the like.

[発明の構成] (課題を解決するための手段) 本発明は上記の目的を達成するため、発電機の出力電流
を取込みこの電流より発電機に流れる逆相電流を求める
逆相電流演算手段と、この逆相電流演算手段により求め
られた逆相電流から前記発電機の回転子の逆相電流によ
る予測温度上昇値を求める回転子温度上昇値演算手段と
、前記発電機の諸状態量を取込みこの諸状態量より定常
状態の発電機の回転子温度の予測値を求める回転子温度
演算手段と、この回転子温度演算手段により求められた
定常状態の回転子温度予測値と前記回転子温度上昇値演
算手段で求められた逆相電流による予測温度上昇値とに
より回転子の実際の温度を予測し、この予測値を許容温
度値と比較して回転子温度が許容値を越えない発電機出
力を求めると共にその時点での発電機出力および回転子
の界磁巻線温度との関係から発電機出力を制御する出力
制御手段とを具備した構成とするものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention includes negative sequence current calculation means that receives the output current of the generator and calculates the negative sequence current flowing to the generator from this current. , a rotor temperature rise value calculating means for calculating a predicted temperature rise value due to the negative sequence current of the rotor of the generator from the negative sequence current obtained by the negative sequence current calculating means, and incorporating various state quantities of the generator. A rotor temperature calculation means for calculating a predicted value of the rotor temperature of the generator in a steady state from these state quantities, and a predicted value of the rotor temperature in a steady state obtained by the rotor temperature calculation means and the rotor temperature increase. The actual temperature of the rotor is predicted based on the predicted temperature rise value due to the negative sequence current obtained by the value calculation means, and this predicted value is compared with the allowable temperature value to determine the generator output so that the rotor temperature does not exceed the allowable value. The present invention is configured to include output control means for determining the generator output and controlling the generator output from the relationship between the generator output and the field winding temperature of the rotor at that time.

(作用) 発電機の連続逆相耐量の実効値は、発電機の回転子の定
常状態における温度に逆相電流による温度上昇分を加え
た温度が、回転子の材料の許容する温度と等しくなると
きの逆相電流値で示され、発電機の逆相耐量は定常状態
における回転子温度を低くできれば、その分逆相耐量を
上げることができる。定常状態における回転子温度は発
電機損失と冷却能力の関係から決まるもので、冷却能力
が一定であれば発電機損失を減らすことにより可能であ
る。
(Function) The effective value of the generator's continuous negative sequence withstand capability is the temperature of the generator's rotor in its steady state plus the temperature rise due to negative sequence current, which is equal to the temperature allowed by the material of the rotor. If the rotor temperature in a steady state can be lowered, the negative sequence withstand capability of a generator can be increased accordingly. The rotor temperature in a steady state is determined by the relationship between generator loss and cooling capacity, and if the cooling capacity is constant, it can be achieved by reducing generator loss.

従って、上記した構成の発電機の出力制御装置にあって
は、逆相電流および諸状態量より回転子温度が予測演算
され、回転子の許容温度を越えない発電機出力が求めら
れ、さらに発電機出力、回転子界磁巻線の温度との関係
により発電機出力、力率等を制御することにより、逆相
耐量を増やすことか可能となる。言い換えれば、逆相電
流の大きさに応じて発電機出力、力率等を制御すること
により、規格値(] EC−114)である逆相電流許
容値を越えての運転が可能となり、発電機の運転範囲を
広げた出ノj制御を行うことができる。
Therefore, in the generator output control device configured as described above, the rotor temperature is predicted and calculated from the negative sequence current and various state quantities, the generator output that does not exceed the rotor's allowable temperature is determined, and the By controlling the generator output, power factor, etc. in relation to the machine output and the temperature of the rotor field winding, it is possible to increase the negative phase withstand capacity. In other words, by controlling the generator output, power factor, etc. according to the magnitude of the negative sequence current, it is possible to operate the generator beyond the negative sequence current allowable value, which is the standard value (EC-114), and the power generation It is possible to perform outlet control that expands the operating range of the machine.

(実施例) 以下本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による発電機の出力制御装置の構成例を
示すものである。第1図において、1は送電系統で、こ
の送電系統1にタービンにより駆動される発電機4の出
力端が主変圧器3およびしゃ断器2を介して接続されて
いる。また、この発電機4はその三相各相の出力巻線の
中性点が中性点接地装置6に接続されている。7は発電
機4の出力電圧を検出する計器用変圧器、10は同しく
出力電流を検出する変流器である。また、8は計器用変
圧器7により検出された発M4″4の出力電圧と変流器
ユOにより検出された発電機4の出力電流を取込む入力
回路、9はこの入力回路8により取込まれた発電機の出
力電圧、出力電流の検出信号をもとに定常状態時の回転
子温度の予測値を求める回転子温度演算回路である。さ
らに、11は発電機4の出力電流を取込む入力回路、1
2はこの入力回路11に取込まれた発電機4の出力電流
をもとに逆相電流を求める逆相電流演算回路、13はこ
の逆相電流演算回路12で求められた逆相電流から回転
子温度上昇値を予測演算する回転子温度上昇値演算回路
である。また、18は温度検出器17により検出された
発電機4の回転子界磁巻線5の温度検出信号が入力され
、回転子界磁巻線温度を求める回転子界磁巻線温度演算
回路、15は回転子の許容温度を設定する回転子許容温
度設定器である。
FIG. 1 shows an example of the configuration of a generator output control device according to the present invention. In FIG. 1, reference numeral 1 denotes a power transmission system, to which the output end of a generator 4 driven by a turbine is connected via a main transformer 3 and a breaker 2. In FIG. Further, the neutral points of the output windings of each of the three phases of the generator 4 are connected to a neutral point grounding device 6. 7 is a voltage transformer for detecting the output voltage of the generator 4, and 10 is a current transformer for detecting the output current. In addition, 8 is an input circuit that takes in the output voltage of the generator M4''4 detected by the instrument transformer 7 and the output current of the generator 4 detected by the current transformer UO, and 9 is taken in by this input circuit 8. A rotor temperature calculation circuit calculates a predicted value of the rotor temperature in a steady state based on the output voltage and output current detection signals of the generator 4. Furthermore, 11 is a rotor temperature calculation circuit that calculates the predicted value of the rotor temperature in a steady state based on the output voltage and output current detection signals of the generator 4. input circuit, 1
2 is a negative sequence current calculation circuit that calculates a negative sequence current based on the output current of the generator 4 taken into this input circuit 11; This is a rotor temperature rise value calculation circuit that predicts and calculates a child temperature rise value. Further, 18 is a rotor field winding temperature calculation circuit into which the temperature detection signal of the rotor field winding 5 of the generator 4 detected by the temperature detector 17 is inputted, and calculates the rotor field winding temperature; 15 is a rotor allowable temperature setting device for setting the allowable temperature of the rotor.

一方、回転子温度演算回路9、回転子温度上昇値演算回
路13、回転子許容温度設定器15および回転子界磁巻
線温度演算回路18の出力信号がそれぞれ入力される出
力制御回路で、この出力制御回路14は回転子許容温度
との関係により回転子温度が許容値を越えない発電機出
力を算出し、その時の発電機出力と外部からの発電機出
力指令値16がある場合にはその指令値と回転子界磁巻
線温度演算回路18により求められた界磁巻線温度との
関係より発電機出力を設定し、出力回路19を介して発
電機の出力を制御するものである。
On the other hand, the output control circuit receives the output signals of the rotor temperature calculation circuit 9, the rotor temperature rise value calculation circuit 13, the rotor allowable temperature setting device 15, and the rotor field winding temperature calculation circuit 18, respectively. The output control circuit 14 calculates the generator output at which the rotor temperature does not exceed the allowable value based on the relationship with the rotor allowable temperature, and calculates the generator output at that time and the generator output command value 16 from the outside if there is one. The generator output is set based on the relationship between the command value and the field winding temperature determined by the rotor field winding temperature calculation circuit 18, and the generator output is controlled via the output circuit 19.

次に上記のように構成された発電機の出力制御装置の作
用を第2図に示すフローチャートを参照して述べる。発
電機4が運転されているものとすれば、そのときの発電
機4の出力電圧は計器用変圧器7により、また出力電流
は変流器10によりそれぞれ検出され、これらは諸法態
量入力回路8を通して回転子温度演算回路9に入力され
る。この回転子温度演算回路9では回転子5の定常状態
時における温度予測値を求め、出力制御回路14に入力
される。一方、発電機4の出力電流の検出信号は変流器
lOより電流入力回路11を通して逆相電流演算回路1
2に入力され、ここで発電機4に流れる逆相電流が求め
られ、回転子温度上昇値演算回路13に与えられる。こ
の回転子温度上昇値演算回路13では、逆相電流による
予測回転子温度上昇値を求め、出力制御回路14に入力
される。
Next, the operation of the generator output control device configured as described above will be described with reference to the flowchart shown in FIG. Assuming that the generator 4 is in operation, the output voltage of the generator 4 at that time is detected by the instrument transformer 7, and the output current is detected by the current transformer 10, and these are the inputs of various legal quantities. It is input to the rotor temperature calculation circuit 9 through the circuit 8. This rotor temperature calculation circuit 9 calculates a predicted temperature value of the rotor 5 in a steady state, and inputs it to the output control circuit 14. On the other hand, the detection signal of the output current of the generator 4 is transmitted from the current transformer IO through the current input circuit 11 to the negative phase current calculation circuit 1.
2, the negative sequence current flowing through the generator 4 is determined and provided to the rotor temperature rise value calculation circuit 13. The rotor temperature rise value calculation circuit 13 calculates a predicted rotor temperature rise value due to the negative sequence current, and inputs the predicted rotor temperature rise value to the output control circuit 14.

この出力制御回路14では第2図に示すフローのステッ
プS1により定常状態の回転子温度の予測値と予測回転
子温度上昇値が取込まれると、ステップS2により実際
の予測回転子温度を算出すると共に、ステップS3によ
り回転子許容温度設定器15より取込まれた回転子許容
温度設定値との関係によりステップS4で回転子温度が
許容値を越えない発電機最大出力を算出する。そして、
ステップS5ではそのときの発電機出力Aと、外部から
の発電機出力指令値16がある場合にはその指令値Bと
回転子界磁巻線温度演算回路18により求められた界磁
巻線温度Cとの関係から出力増であるか、現状維持であ
るか、出力域であるかを比較判定してステップS6にて
発電轡出力が設定される。
In this output control circuit 14, when the predicted value of the rotor temperature in the steady state and the predicted rotor temperature rise value are taken in in step S1 of the flow shown in FIG. 2, the actual predicted rotor temperature is calculated in step S2. At the same time, in step S4, the generator maximum output at which the rotor temperature does not exceed the permissible value is calculated based on the relationship with the rotor permissible temperature set value taken in from the rotor permissible temperature setting device 15 in step S3. and,
In step S5, the generator output A at that time, the command value B if there is a generator output command value 16 from the outside, and the field winding temperature calculated by the rotor field winding temperature calculation circuit 18. Based on the relationship with C, a comparison is made to determine whether the output is to be increased, the current level maintained, or within the output range, and the generator output is set in step S6.

このようにして発電機出力を設定すれば、逆相電流が大
きくなったときでも発電機回転子の温度が許容値を越え
ないように発電機出力が自動的に制御されるので、発電
機の運転範囲を広げた制御を行なうことができる。
By setting the generator output in this way, the generator output will be automatically controlled so that the temperature of the generator rotor does not exceed the allowable value even when the negative sequence current increases. It is possible to perform control over an expanded operating range.

上記実施例では定常状態の回転子温度演算回路8に諸法
態量入力回路8を通して発電機の出力電圧および出力電
流を与えるようにしたが、この諸法態量入力回路8とし
て第3図に示すように発電機の出力電圧および出力電流
を取込む入力部8Aと発電機の冷媒流量、冷媒温度およ
び冷媒圧力を取込む入力部8Bとを設け、これらの入力
部8A。
In the above embodiment, the output voltage and output current of the generator are supplied to the rotor temperature calculation circuit 8 in a steady state through the input circuit 8 for inputting various parameters. As shown, an input section 8A that takes in the output voltage and output current of the generator, and an input section 8B that takes in the refrigerant flow rate, refrigerant temperature, and refrigerant pressure of the generator are provided.

8Bを通して発電機の出力条件に加えて冷媒の状態を加
味することにより、冷却媒体の条件が変化した場合の発
電機回転子温度の変化を算出することか可能となり、よ
り細かい発電機の出力制御が可能となる。
By taking into account the refrigerant condition in addition to the generator output conditions through 8B, it is possible to calculate changes in the generator rotor temperature when the refrigerant conditions change, allowing for more precise generator output control. becomes possible.

この他、本発明はその要旨を変更しない範囲で種々変形
して実施することができる。
In addition, the present invention can be implemented with various modifications without changing the gist thereof.

[発明の効果コ 以上述べたように本発明によれば、逆相電流および諸状
態量より回転子温度を予測演算し、許容回転子温度、発
電機出力、回転子界磁巻線温度等との関係により発電機
出力、力率等を制御するようにしたので、発電機の運転
範囲を広げた制御を行なうことができる発電機の出力制
御装置を提供できる。
[Effects of the Invention] As described above, according to the present invention, the rotor temperature is predicted and calculated from the negative sequence current and various state quantities, and the allowable rotor temperature, generator output, rotor field winding temperature, etc. Since the generator output, power factor, etc. are controlled based on the following relationships, it is possible to provide a generator output control device that can perform control over a wider operating range of the generator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による発電機の出力制御装置の一実施例
を示す回路構成図、第2図は同実施例の作用を説明する
ためのフローチャートを示す図、第3図は本発明の他の
実施例における諸法態量入力回路と回転子予測温度演算
回路部の構成図である。 4・・・・・・発電機、5・・・・・・回転子界磁巻線
、7−0.−=計器用変圧器、8・・・・・・諸法態量
入力回路、9・・・・・。 回転子温度演算回路、10・・・・・・変流器、11電
流入力回路、12・・・・・・逆相電流演算回路、13
・・・・・・回転子温度上昇値演算回路、14・・・・
・・出力制御回路、15・・・・・・回転子許容温度設
定器、16・・・・・・外部出力指令値、17・・・・
・・回転子界磁巻線の温度検出器、18・・・・・・回
転子界磁巻線温度演算回路、19・・・・・・出力回路
FIG. 1 is a circuit configuration diagram showing one embodiment of a generator output control device according to the present invention, FIG. 2 is a flowchart for explaining the operation of the same embodiment, and FIG. 3 is a diagram showing an embodiment of a generator output control device according to the present invention. It is a block diagram of the various legal quantity input circuit and the rotor predicted temperature calculation circuit part in the Example. 4... Generator, 5... Rotor field winding, 7-0. −=Instrument transformer, 8... Various input circuits, 9... Rotor temperature calculation circuit, 10... Current transformer, 11 Current input circuit, 12... Negative sequence current calculation circuit, 13
...Rotor temperature rise value calculation circuit, 14...
... Output control circuit, 15 ... Rotor permissible temperature setting device, 16 ... External output command value, 17 ...
...Rotor field winding temperature detector, 18...Rotor field winding temperature calculation circuit, 19...Output circuit.

Claims (1)

【特許請求の範囲】[Claims] 発電機の出力電流を取込みこの電流より発電機に流れる
逆相電流を求める逆相電流演算手段と、この逆相電流演
算手段により求められた逆相電流から前記発電機の回転
子の逆相電流による予測温度上昇値を求める回転子温度
上昇値演算手段と、前記発電機の諸状態量を取込みこの
諸状態量より定常状態の発電機の回転子温度の予測値を
求める回転子温度演算手段と、この回転子温度演算手段
により求められた定常状態の回転子温度予測値と前記回
転子温度上昇値演算手段で求められた逆相電流による予
測温度上昇値とにより回転子の実際の温度を予測し、こ
の予測値を許容温度値と比較して回転子温度が許容値を
越えない発電機出力を求めると共にその時点での発電機
出力および回転子の界磁巻線温度との関係から発電機出
力を制御する出力制御手段とを具備したことを特徴とす
る発電機の出力制御装置。
Negative sequence current calculation means that takes in the output current of the generator and calculates a negative sequence current flowing through the generator from this current, and a negative sequence current of the rotor of the generator from the negative sequence current calculated by the negative sequence current calculation means. a rotor temperature rise value calculation means for calculating a predicted temperature rise value according to the method; and a rotor temperature calculation means for taking various state quantities of the generator and calculating a predicted value of the rotor temperature of the generator in a steady state from the various state quantities. , the actual temperature of the rotor is predicted based on the predicted steady-state rotor temperature value obtained by the rotor temperature calculation means and the predicted temperature rise value due to the negative sequence current obtained by the rotor temperature rise value calculation means. Then, compare this predicted value with the allowable temperature value to determine the generator output that does not cause the rotor temperature to exceed the allowable value. 1. An output control device for a generator, comprising an output control means for controlling output.
JP2150460A 1990-06-08 1990-06-08 Generator output controller Pending JPH0446596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150460A JPH0446596A (en) 1990-06-08 1990-06-08 Generator output controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150460A JPH0446596A (en) 1990-06-08 1990-06-08 Generator output controller

Publications (1)

Publication Number Publication Date
JPH0446596A true JPH0446596A (en) 1992-02-17

Family

ID=15497413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150460A Pending JPH0446596A (en) 1990-06-08 1990-06-08 Generator output controller

Country Status (1)

Country Link
JP (1) JPH0446596A (en)

Similar Documents

Publication Publication Date Title
US4816696A (en) Variable-speed pumped-storage power generating system
US6465978B2 (en) Dynamic motor drive torque control based on power switching device temperature feedback
JP2008199848A (en) Excitation controller of synchronous power generator
EP0313096B1 (en) Control system of pumping operation using ac exciting generator-motor
US7848854B2 (en) Prime mover output control system
JPH0446596A (en) Generator output controller
JPH04308442A (en) Controller for generator refrigrant of power generating facility
JPH05316797A (en) Output controller for generator
JP3345773B2 (en) Plant automatic controller
JPS59150982A (en) Generator protecting device for wind power plant
JP2635356B2 (en) Speed control device of turbine generator
JPS59170912A (en) Flow rate control device
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP2002218657A (en) Power generation system
JP2523520B2 (en) Control device for variable speed turbine generator
JP3907832B2 (en) Power transmission end output control device for thermal power plant
JP3853426B2 (en) AC excitation synchronous machine operation control device
JP3495140B2 (en) Voltage control device for wound induction machine
JP6296461B2 (en) Operation control device
JPH06233596A (en) Controller of winding wound rotor induction motor
JPS63218000A (en) Operation control system of variable speed pumped storage power generation system
JP2768688B2 (en) How to start a variable speed hydropower plant
JPS6153559B2 (en)
RU2433517C2 (en) Thyristor-controlled series capacitor damping subsynchronous resonances
JPS5939809Y2 (en) Power system stabilizer