JPH0446383B2 - - Google Patents

Info

Publication number
JPH0446383B2
JPH0446383B2 JP60067306A JP6730685A JPH0446383B2 JP H0446383 B2 JPH0446383 B2 JP H0446383B2 JP 60067306 A JP60067306 A JP 60067306A JP 6730685 A JP6730685 A JP 6730685A JP H0446383 B2 JPH0446383 B2 JP H0446383B2
Authority
JP
Japan
Prior art keywords
column
hap
hplc
pressure
packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60067306A
Other languages
Japanese (ja)
Other versions
JPS61226657A (en
Inventor
Akihiko Nakamura
Shinji Iino
Takehisa Nakanishi
Yoshiaki Hizuka
Koji Tomikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP60067306A priority Critical patent/JPS61226657A/en
Publication of JPS61226657A publication Critical patent/JPS61226657A/en
Publication of JPH0446383B2 publication Critical patent/JPH0446383B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/281Sorbents specially adapted for preparative, analytical or investigative chromatography
    • B01J20/282Porous sorbents

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は高速液体クロマトグラフイー用カラム
に関するものである。 (従来の技術) 高速液体クロマトグラフイー(以下HPLCと略
記する)は、通常のカラムクロマトグラフイーに
比べ、少量の試料で短時間のうちに分離が終了す
るという特長から、近年急速に普及し広範囲に使
用されている。 HPLCで使われているカラムには、充填剤とし
てシリカ系、セルロース系、イオン交換樹脂系な
ど種々のものがあり、被検物の種類により充填剤
の使い分けがなされている。この中で、ヒドロキ
シアパタイト(以下HApと略記する)は、生体
高分子の分離に優れた性質を示し、特に他の充填
剤では分離が困難とされている試料、例えば
DNAの1本鎖、2本鎖やプラスミドDNAを容易
に純度良く分離精製できることから、HPLC用の
充填剤としても利用されている。 例えばこのような、従来型のHPLC用HAp充
填剤には、A.Tiseliusらが発表した合成法
(Arch Biochem.Biophys.,65,132(1956))を
もとに、適宜改良を加えた方法により製造したも
のをさらにHPLC用に粒径、結晶形状を調整した
ものがある。これは一般に次のような物性を示
す。 Ca/P比(グラムアトム比) 1.40〜1.55 X線回折 回折ピークが弱い 比表面積 60〜150m2/g 結晶形状 薄板状結晶 (発明が解決しようとする問題点) しかしこのHPLC用に使用された従来型の
HApのカラムは、短時間のうちに少量の試料を
シヤープに分離するという目的を達成する上でま
だ必ずしも十分なものとはいえなかつた。また、
通常HPLCの性質上展開背圧をより高く維持する
ことが望まれるが、HAp結晶は加圧下で破壊を
起す懸念があり、そのため高々5Kg/cm2程度の背
圧で使用されるに留つていた。しかも、HPLC用
としてのHApは結晶形状が薄板状であるためカ
ラムへの通常の充填方法では容易に破壊されて微
粒となり、目づまりを起しやすくなるという欠点
がある。そこでこのHApを使用する際は、結晶
が破壊されないように結晶を配向させながら、
HPLC用カラムに充填しなければならず、この作
業が非常に煩雑であつた。 (問題点を解決するための手段) 本発明者らは上記の状況に鑑み、HPLC用とし
て好適なカラムの開発のため鋭意研究を重ねた結
果、従来知られているHPLC用HApとは全く異
なる、X線回折的に結晶性に優れ、比表面積が50
m2/g以下という小さな値を示すHApを用いれ
ば従来達し得なかつた0.5g/cm3以上という高密
度に充填することができること、そしてこの高密
度充填カラムがHPLC用カラムとして極めて分離
能が高いことを見出し、この知見に基づき本発明
をなすに至つた。 すなわち本発明は、比表面積50m2/g以下のヒ
ドロキシアパタイトを0.5g/cm3以上の高密度を
充填してなることを特徴とする高速液体をクロマ
トグラフイー用カラムを提供するものである。 なお、本発明における上記「ヒドロキシアパタ
イトの充填密度」とは、カラム中のヒドロキシア
パタイトを温度110℃にて2時間乾燥させて得ら
れた重量をカラムの有効容積で除した値を示すも
のである。 本発明において、その目的を達成するにはカラ
ム中のHAp充填密度を0.5g/cm3以上とすること
が必要である。密度が0.5g/cm3未満ではHPLC
におけるシヤープな分離が実現できない。 このとき用いられるHApは好ましくは柱状結
晶である。ここで柱状結晶としては六角柱状もし
くは円柱状結晶が代表的なものとしてあげられ
る。なお、比表面積の下限はとくに限定されない
が、通常1m2/g程度以上であることが好まし
い。 本発明で用いられるHApの製造方法には特に
制限はないが、本発明者らが先に提案した水と
二相を形成しうる有機溶媒を含む反応媒体中でカ
ルシウム化合物とリン化合物とを反応させる方法
(特開昭58−190807号)有機溶媒を含む反応媒
体中でリン酸又は/及びそのカルシウム塩と炭酸
カルシウムとを反応させる方法(特開昭59−
107912号)などを採用することができる。これら
の方法で製造されるHApは、製造ロツト間の吸
着能力の差もほとんどなく、単純な操作で製造で
き、優れた物性を持つた粉末である。このものは
HPLCのみならず通常のカラムクロマトグラフイ
ーにも十分使用可能である。 上記方法によれば充填密度を0.5g/cm3以上と
することができる比表面積が50m2/g以下で六角
柱状又は円柱状結晶の集合体であるHApが製造
され、これはカラム充填して耐圧強度が10g/cm2
以上とできる。これは集合体が球状に近い形を示
し、HPLCとしての優れた実用耐圧強度を有する
ものである。 本発明に使用される好ましいHApの諸物性を
示すと次の通りである。 Ca/P比(グラムアトム比) 1.30〜1.90 X線回折 回折ピークが強い。 比表面積 50m2/g以下 結晶形状 六角柱状結晶の集合体 カラム充填時耐圧強度 10Kg/cm2以上 (発明の効果) 従来のHPLC用のHApのカラムは分離能がほ
ぼ限界に達しており、HApの充填密度は高くて
も0.3g/cm3であつたのに対し、本発明のHPLC
用カラムはHApの充填密度を0.5g/cm3以上とな
すもので、HPLC特有の展開条件下、特に高い展
開背圧で一層向上した分離能を示す。 さらに従来品カラムは、耐圧・耐久性に劣るの
に対し本発明のカラムにおいてHApは、結晶の
集合体が球状に近く、またX線的にも良好な結晶
性のものを使用しうることから、結晶が破壊され
にくく容易に0.5g/cm3以上の密度で充填するこ
とができ、カラムの強度も大で少なくともHPLC
の実用的な充填圧力10Kg/cm2を満足し、さらに
500Kg/cm2以上の高い圧力をかけても全く支障が
ない。 また、本発明のHApのカラムは従来品と異な
り結晶を配向させながらHPLC用カラムに充填す
る煩雑な操作を必要としないので、簡易にカラム
充填が行えるという利点がある。さらに上述のよ
うに耐圧性が向上したことからカラムとしての寿
命が長くなり、200回以上の繰返し使用が可能で、
優れた耐久性を持つ。また圧力の調整により流速
制御ができるので展開液も従来品に比べ少量で済
むという利点もある。さらにこのHApのカラム
は分析を目的としたHPLC以外に、分取を目的と
した分取用HPLCカラムとしても利用でき、必要
とされる試料を短時間のうちに純度よく分離・精
製することが可能であることからその価値も大き
い。 (実施例) 以下、本発明を製造例、実施例および比較例に
より詳ししく説明する。 製造例 1 第一リン酸カルシウム・一水塩 (Ca(H2PO42・H2O)75.6g、炭酸カルシウ
ム(CaCO3)40.0g、水100g及びn−ヘキサン
350gを1容のフラスコに仕込み、撹拌しなが
ら昇温させ還流温度(63℃)以下で約2時間加熱
した後、反応系内の水分とn−ヘキサンを蒸発さ
せ留出したn−ヘキサンと水に相当する容量のn
−ヘキサンを系内に加えながら加熱を行つた。操
作が進行するに従つて内温が上昇し、内温が68℃
を越えた時点で加熱を中止して、冷却後生成物を
溶媒よりろ別し、これを乾燥して白色の粉末を得
た。この粉末のX線回折図を第9図に示す。 第9図より明らかなようにV線回折図は回折角
度2θ=31.7、32.2、32.8に主ピークを有し、
ASTMカード9−432に記載のHApの特性回折
ピークと一致した。粒形は第11図に示すごとく
球状もしくはそれに類似した形状を示し、微細な
六角柱状結晶の集合したものである。また物性分
析結果を第2表に示す。 製造例 2〜4 無水リン酸二カルシウム、リン酸二カルシウ
ム・二水塩、水酸化カルシウム、炭酸カルシウ
ム、水、有機溶媒を第1表に示した条件で仕込
み、第1表以外の条件については、実施例1と同
様な操作によりHApを得た。その物性を第2表
に示す。
(Industrial Application Field) The present invention relates to a column for high performance liquid chromatography. (Prior art) High performance liquid chromatography (hereinafter abbreviated as HPLC) has rapidly become popular in recent years due to its ability to complete separation in a short time with a small amount of sample compared to ordinary column chromatography. Widely used. Columns used in HPLC have various types of packing materials, such as silica-based, cellulose-based, and ion exchange resin-based, and the packing materials are used depending on the type of analyte. Among these, hydroxyapatite (hereinafter abbreviated as HAp) exhibits excellent properties for separating biopolymers, especially samples that are difficult to separate using other packing materials, such as
Because it can easily separate and purify single-stranded and double-stranded DNA and plasmid DNA with high purity, it is also used as a filler for HPLC. For example, such a conventional HPLC HAp packing material is produced using a method based on the synthesis method published by A. Tiselius et al. (Arch Biochem. Biophys., 65 , 132 (1956)), with appropriate improvements. There are products manufactured by the above method that have been further adjusted in particle size and crystal shape for HPLC use. It generally exhibits the following physical properties. Ca/P ratio (gram atom ratio) 1.40 to 1.55 X-ray diffraction Specific surface area with weak diffraction peaks 60 to 150 m 2 /g Crystal shape Thin plate crystal (problem to be solved by the invention) However, the material used for this HPLC Conventional
HAp columns were not yet fully capable of achieving the goal of sharply separating a small amount of sample in a short period of time. Also,
Normally, due to the nature of HPLC, it is desirable to maintain a higher development back pressure, but there is a concern that HAp crystals may break under pressure, so they can only be used with a back pressure of about 5 kg/cm 2 at most. Ta. Furthermore, since HAp for HPLC has a thin plate-like crystal shape, it easily breaks down into fine particles when packed into a column using the usual method of filling the column, and has the drawback that it is prone to clogging. Therefore, when using this HAp, while orienting the crystal so as not to destroy it,
It had to be packed into an HPLC column, and this work was very complicated. (Means for Solving the Problems) In view of the above circumstances, the present inventors have conducted intensive research to develop a column suitable for HPLC, and as a result, they have found that it is completely different from the conventionally known HAp for HPLC. , has excellent crystallinity in X-ray diffraction, and has a specific surface area of 50
By using HAp, which has a small value of less than m 2 /g, it is possible to pack at a high density of 0.5 g/cm 3 or more, which was previously unattainable, and this highly densely packed column has extremely high separation performance as an HPLC column. Based on this knowledge, the present invention was developed. That is, the present invention provides a column for chromatography using a high-speed liquid, which is characterized by being packed with hydroxyapatite having a specific surface area of 50 m 2 /g or less at a high density of 0.5 g/cm 3 or more. In addition, the above-mentioned "packing density of hydroxyapatite" in the present invention refers to the value obtained by drying the hydroxyapatite in the column at a temperature of 110 ° C. for 2 hours and dividing the weight obtained by the effective volume of the column. . In the present invention, in order to achieve the objective, it is necessary to set the packing density of HAp in the column to 0.5 g/cm 3 or more. HPLC if density is less than 0.5g/ cm3
It is not possible to achieve sharp separation. The HAp used at this time is preferably a columnar crystal. Here, typical columnar crystals include hexagonal columnar or cylindrical crystals. Note that the lower limit of the specific surface area is not particularly limited, but it is usually preferably about 1 m 2 /g or more. There are no particular limitations on the method for producing HAp used in the present invention, but the method previously proposed by the present inventors involves reacting a calcium compound and a phosphorus compound in a reaction medium containing an organic solvent capable of forming two phases with water. A method of reacting phosphoric acid or/and its calcium salt with calcium carbonate in a reaction medium containing an organic solvent (Japanese Unexamined Patent Publication No. 59-190807)
107912) etc. can be adopted. HAp produced by these methods has little difference in adsorption capacity between production lots, can be produced by simple operations, and is a powder with excellent physical properties. This thing is
It can be used not only for HPLC but also for ordinary column chromatography. According to the above method, HAp, which is an aggregate of hexagonal columnar or cylindrical crystals with a specific surface area of 50 m 2 /g or less and which can have a packing density of 0.5 g/cm 3 or more, is produced, which is packed in a column. Compressive strength is 10g/cm 2
The above can be done. This aggregate has a nearly spherical shape and has excellent practical pressure strength for HPLC. Preferred physical properties of HAp used in the present invention are as follows. Ca/P ratio (gram atom ratio) 1.30-1.90 X-ray diffraction Strong diffraction peak. Specific surface area: 50 m 2 /g or less Crystal shape: Aggregate of hexagonal columnar crystals Compressive strength when packed in column: 10 Kg/cm 2 or more (effects of the invention) Conventional HAp columns for HPLC have almost reached their limit in separation ability, and HAp The packing density of HPLC of the present invention was 0.3 g/cm 3 at the highest.
The column has a packing density of HAp of 0.5 g/cm 3 or more, and exhibits further improved separation performance under development conditions unique to HPLC, especially at high development back pressures. Furthermore, whereas conventional columns are inferior in pressure resistance and durability, in the column of the present invention, HAp has crystal aggregates that are close to spherical, and it is possible to use crystalline materials that are good in X-rays. The crystals are not easily destroyed and can be easily packed at a density of 0.5 g/ cm
satisfies the practical filling pressure of 10Kg/ cm2 , and
There is no problem at all even if high pressure of 500Kg/cm 2 or more is applied. Furthermore, unlike conventional products, the HAp column of the present invention does not require the complicated operation of orienting the crystals while filling the HPLC column, so it has the advantage that the column can be easily filled. Furthermore, as mentioned above, the improved pressure resistance means that the column has a longer lifespan and can be used over 200 times.
Has excellent durability. Another advantage is that the flow rate can be controlled by adjusting the pressure, so a smaller amount of developing liquid is required compared to conventional products. Furthermore, this HAp column can be used not only for analytical HPLC purposes, but also as a preparative HPLC column for preparative separation purposes, making it possible to separate and purify the required sample with high purity in a short period of time. Since it is possible, its value is also great. (Examples) Hereinafter, the present invention will be explained in detail with reference to production examples, examples, and comparative examples. Production example 1 Monobasic calcium phosphate monohydrate (Ca(H 2 PO 4 ) 2 H 2 O) 75.6 g, calcium carbonate (CaCO 3 ) 40.0 g, water 100 g and n-hexane
Pour 350g into a 1-volume flask, raise the temperature while stirring, and heat for about 2 hours below the reflux temperature (63℃), then evaporate the water and n-hexane in the reaction system and distill the n-hexane and water. n of capacity corresponding to
- Heating was performed while adding hexane to the system. As the operation progresses, the internal temperature rises and reaches 68℃.
Heating was stopped when the temperature exceeded 100 mL, and after cooling, the product was filtered from the solvent and dried to obtain a white powder. The X-ray diffraction pattern of this powder is shown in FIG. As is clear from Figure 9, the V-ray diffraction diagram has main peaks at diffraction angles 2θ = 31.7, 32.2, and 32.8,
This coincided with the characteristic diffraction peak of HAp described in ASTM Card 9-432. The grain shape is spherical or similar as shown in FIG. 11, and is an aggregation of fine hexagonal columnar crystals. The physical property analysis results are shown in Table 2. Production Examples 2 to 4 Anhydrous dicalcium phosphate, dicalcium phosphate dihydrate, calcium hydroxide, calcium carbonate, water, and organic solvent were prepared under the conditions shown in Table 1. For conditions other than Table 1, , HAp was obtained by the same operation as in Example 1. Its physical properties are shown in Table 2.

【表】【table】

【表】 製造例 5 従来法によるHAp合成法(A.テイセリウス
(A.Tiselius))らの方法Arch.Biochem.
Biophys.、65、132(1956))。 3容フラスコへ0.5mol/のCaCl2水溶液1
と0.5mol/のNa2HPO4水溶液1を毎分
120滴の割合で同時に滴下し、撹拌棒でゆつくり
と撹拌しながら反応を行つた。滴下終了後、上澄
み液をデカンテーシヨンにより除去し、残留した
沈殿物を4回、各々2の蒸留水で洗浄した。次
にこの沈殿物に2の蒸留水を入れ、さらに40重
量%のNaOHを50ml加えた後1時間煮沸した。
冷却後再びデカンテーシヨンにより上澄み液を除
き、再度2の蒸留水で4回洗浄した。次にPH
6.8の0.01mol/リン酸ナトリウム緩衡液を2
加え沸騰する直前まで加熱した。この操作を2度
繰返すが、沸騰時間は各々5分と15分にした。次
にPH6.8の0.001mol/のリン酸ナトリウム緩衡
液を2加え2度沸騰(15分間)させた。このよ
うにして得られたHApはPH6.8の0.001mol/の
リン酸ナトリウム緩衡液に入れ、、冷蔵庫中にて
保存した。 その結果第2表に示す物性のHApを得た。ま
た、X線回折図を第10図、電子顕微鏡写真を第
12図に示した。 実施例 1 内径8mm、長さ10cmのHPLC用金属カラムへ製
造例1により得られたHApを定常の方法により
10Kg/cm2の圧で充填し、充填終了後HPLC装置に
このカラムを装着した。充填密度は0.52g/cm3
あつた。製造例1により得たHApの電子顕微鏡
写真を第11図に示す。これからもわかる通りこ
のHApは六角柱状結晶の集合体が略球状である。
またカラムの分離能の評価を行うためトリプトフ
アン(0.16重量%)、牛血清アルブミン(4.6重量
%)、リゾチウム(2.0重量%)、チトクロムC
(1.0重量%)を含有する混合溶液を標準試料とし
て用いて展開を行つた。展開はリン酸緩衡液10m
M(PH6.8)と350mM(PH6.8)による直線密度匂
配法により行い、上記標準試料を10.0μ注入し
た。また流速は1ml/minになるように7.5Kg/
cm2の展開圧とした。 タンパク質の検出は280nmの吸光度を測定し
た。このカラムにより得られたクロマトグラムを
第1図に示す。第1図からも明らかなように主な
ピークが4カ所にあらわれ標準試料である4成分
がきれいに分離されていることがわかる。各ピー
クは左側からトリプトフアン、牛血清アルブミ
ン、リゾチウム、チトクロムCに対応するピーク
であることを確認した。なおチトクロムCには、
2種の異性体がありピークが2つに分離してい
る。 実施例 2 内径8mm、長さ10cmのHPLC用カラムに80Kg/
cm2の圧で製造例3より得られたHApを充填し、
それ以降の操作は、実施例1と同様にしてHPLC
用カラムの操作を行つた。充填密度は0.60g/cm3
であつた。その結果を第2図に示す。第2図から
わかる通り、実施例1で得られたクロマトグラム
と同じ結果を示した。 実施例 3 実施例2で使用したカラムに対し、標準試料の
分離を200回に行つた。200回目に得られたクロマ
トグラムを第3図に示す。第3図からもわかる通
り、本発明のカラムは200回の繰返し使用に対し
ても良い分離能を示し、優れた耐久性を持つ。 実施例 4 内径8mm、長さ10cmのHPLC用カラムに500
Kg/cm2の圧で製造例4により得られたHApを密
度1.03g/cm3に充填し、それ以降の操作は実施例
1と同様な操作でHPLC用カラムの操作を行つ
た。その結果を第4図に示す。 第4図から、高い圧力でHApをカラムへ充填
しているにも拘らず、実施例1、2で得られたク
ロマトグラムと同じ結果を示し、耐圧性に優れて
いることがわかる。 実施例 5 内径20mm、長さ25cmの分取用カラムに、80Kg/
cm2の圧で製造例2に従つて得たHApを密度0.61
cm3に充填し、操作法は実施例1と同様な方法で
HPLC用カラムの操作を行つた。ただし標準試料
は70μ注入した。これにより得られたクロマト
グラムを第5図に示す。第5図の結果から本発明
のカラムによれば通常のHPLCと同じ結果が得ら
れ、分取用としても十分に使用可能であることが
わかつた。 実施例 6 内径8mm、長さ10cmのHPLC用カラムに、80
Kg/cm2の圧で製造例4に従い得たHApを密度
0.58g/cm3に充填し、それ以降の操作は実施例1
と同様に行つた。ただし展開中の3.4ml/minに
なるよう圧力を50Kg/cm2に調整した。これにより
得られたクロマトグラムを第6図に示す。第6図
からもわかる通り、分離が短時間で行われたにも
拘らず、各々の4つのピークがきれいに分離して
いることがわかる。 実施例 7 実施例1と同条件で充填したカラムで、LDH
(乳酸脱水素酵素)の分離を行つた。 展開は標準試料の時と同じ条件で行い、試料は
8μ注入した。タンパク質の検出は280nmの吸
光度を、酵素活性の測定は340nmの吸光度を測
定することにより行つた。 これにより得られたクロマトグラムを第7図に
示す。第7図からもわかる通り、タンパク質の溶
出を示すピークと酵素活性を示すピークが右側の
所で一致し、ここにLDHが分離されていること
がわかる。また試料中に含まれる不純なタンパク
が左側にあらわれていることより、LDHが純度
良く分離・精製されていることもわかる。 比較例 1 製造例5に従つて得たHApを内径8mm、長さ
10cmのカラムに充填し、その後の操作は実施例1
と同様な操作で標準試料の分離を行つた。なお、
この時の充填密度は0.28g/cm3であつた。また流
速を1ml/minにするため、1Kg/cm2の圧になる
よう調整を行つたが、HPLCとしては低圧になる
ため、操作に困難をきたした。 これにより得られたクロマトグラムを第8図に
示す。第8図と第1図の比較からもわかる通り、
従来品を充填したものは、全体的にプロードなピ
ークを示した。 比較例 2 製造例5のHApを内径8mm、長さ10cmのカラ
ムに充填圧15Kg/cm2で充填した。しかし内部で結
晶が破壊され目づまりが生じ、展開を行うことが
できなかつた。
[Table] Production example 5 Conventional HAp synthesis method (A. Tiselius et al. Arch.Biochem.
Biophys., 65, 132 (1956)). Add 0.5 mol/CaCl 2 aqueous solution 1 to 3 volume flask
and 0.5 mol/Na 2 HPO 4 aqueous solution 1 per minute.
The mixture was added dropwise at the same time at a rate of 120 drops, and the reaction was carried out while stirring slowly with a stirring rod. After the dropwise addition was completed, the supernatant liquid was removed by decantation, and the remaining precipitate was washed four times with two portions of distilled water each time. Next, distilled water from Step 2 was added to this precipitate, and 50 ml of 40% by weight NaOH was added thereto, followed by boiling for 1 hour.
After cooling, the supernatant liquid was removed again by decantation, and the mixture was again washed four times with distilled water from step 2. Then PH
6.8 0.01mol/sodium phosphate buffer solution
Add and heat until just before boiling. This operation was repeated twice, with boiling times of 5 minutes and 15 minutes, respectively. Next, two 0.001 mol/sodium phosphate buffer solutions with a pH of 6.8 were added and the mixture was boiled twice (for 15 minutes). The thus obtained HAp was placed in a 0.001 mol/sodium phosphate buffer solution with a pH of 6.8 and stored in a refrigerator. As a result, HAp with the physical properties shown in Table 2 was obtained. Further, an X-ray diffraction diagram is shown in FIG. 10, and an electron micrograph is shown in FIG. 12. Example 1 HAp obtained in Production Example 1 was transferred to a metal column for HPLC with an inner diameter of 8 mm and a length of 10 cm using a routine method.
The column was packed at a pressure of 10 Kg/cm 2 , and after filling was completed, the column was attached to an HPLC device. The packing density was 0.52 g/cm 3 . An electron micrograph of HAp obtained in Production Example 1 is shown in FIG. As can be seen from this, this HAp has a roughly spherical aggregate of hexagonal columnar crystals.
In addition, to evaluate the separation ability of the column, tryptophan (0.16% by weight), bovine serum albumin (4.6% by weight), lysotium (2.0% by weight), and cytochrome C
(1.0% by weight) was used as a standard sample for development. Deployed with 10m of phosphate buffer
The measurement was carried out by the linear density gradient method using M (PH6.8) and 350mM (PH6.8), and 10.0μ of the above standard sample was injected. Also, the flow rate is 7.5Kg/min so that it is 1ml/min.
The development pressure was set at cm2 . Protein was detected by measuring absorbance at 280 nm. A chromatogram obtained with this column is shown in FIG. As is clear from FIG. 1, main peaks appear at four locations, indicating that the four components of the standard sample are clearly separated. It was confirmed that each peak corresponds to tryptophan, bovine serum albumin, lysotium, and cytochrome C from the left side. Furthermore, cytochrome C has
There are two types of isomers, and the peaks are separated into two. Example 2 80Kg/inner diameter 8mm, length 10cm HPLC column
Filled with HAp obtained from Production Example 3 at a pressure of cm 2 ,
The subsequent operations were performed using HPLC in the same manner as in Example 1.
The operation of the column was carried out. Packing density is 0.60g/ cm3
It was hot. The results are shown in FIG. As can be seen from FIG. 2, the same results as the chromatogram obtained in Example 1 were shown. Example 3 Using the column used in Example 2, standard sample separation was performed 200 times. The chromatogram obtained at the 200th time is shown in Figure 3. As can be seen from Figure 3, the column of the present invention exhibits good separation performance even after repeated use 200 times, and has excellent durability. Example 4 500 ml in an HPLC column with an inner diameter of 8 mm and a length of 10 cm.
The HAp obtained in Production Example 4 was packed at a pressure of Kg/cm 2 to a density of 1.03 g/cm 3 , and the subsequent operations were performed in the same manner as in Example 1 to operate the HPLC column. The results are shown in FIG. From FIG. 4, it can be seen that even though the column was filled with HAp at high pressure, the chromatograms showed the same results as those obtained in Examples 1 and 2, indicating that the column had excellent pressure resistance. Example 5 A preparative column with an inner diameter of 20 mm and a length of 25 cm was loaded with 80 kg/
HAp obtained according to Preparation Example 2 at a pressure of cm 2 with a density of 0.61
cm 3 and operated in the same manner as in Example 1.
Manipulated HPLC columns. However, the standard sample was injected at 70μ. The chromatogram thus obtained is shown in FIG. From the results shown in FIG. 5, it was found that the column of the present invention gave the same results as conventional HPLC and could be sufficiently used for preparative separation. Example 6 A HPLC column with an inner diameter of 8 mm and a length of 10 cm was
The density of HAp obtained according to Preparation Example 4 at a pressure of Kg/cm 2 was
Filled to 0.58g/cm 3 and the subsequent operations were as in Example 1.
I went in the same way. However, the pressure was adjusted to 50 Kg/cm 2 so that the pressure was 3.4 ml/min during development. The chromatogram thus obtained is shown in FIG. As can be seen from FIG. 6, each of the four peaks was clearly separated even though the separation was performed in a short time. Example 7 Using a column packed under the same conditions as Example 1, LDH
(lactate dehydrogenase) was separated. The development was carried out under the same conditions as for the standard sample, and the sample was
8μ was injected. Protein was detected by measuring absorbance at 280 nm, and enzyme activity was measured by measuring absorbance at 340 nm. The chromatogram thus obtained is shown in FIG. As can be seen from Figure 7, the peak indicating protein elution and the peak indicating enzyme activity coincide on the right side, indicating that LDH is separated here. Furthermore, since the impure protein contained in the sample appears on the left side, it can be seen that LDH has been separated and purified to a high degree of purity. Comparative Example 1 HAp obtained according to Production Example 5 was prepared with an inner diameter of 8 mm and a length of
Packed into a 10cm column, and the subsequent operations were as in Example 1.
The standard sample was separated using the same procedure. In addition,
The packing density at this time was 0.28 g/cm 3 . Further, in order to set the flow rate to 1 ml/min, the pressure was adjusted to 1 Kg/cm 2 , but the pressure was too low for HPLC, making the operation difficult. The chromatogram thus obtained is shown in FIG. As can be seen from the comparison between Figure 8 and Figure 1,
The sample filled with the conventional product showed a broad peak overall. Comparative Example 2 HAp from Production Example 5 was packed into a column with an inner diameter of 8 mm and a length of 10 cm at a packing pressure of 15 Kg/cm 2 . However, the crystals inside were destroyed and clogged, making it impossible to deploy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図より第7図は実施例1から7により得ら
れたクロマトグラムをそれぞれ示すものである。
第8図は比較例1により得られたクロマトグラム
を示すものである。第9図及び第10図は製造例
1及び製造例5で得たHApのX線回折図をそれ
ぞれ示すものである。第11図及び第12図は図
面に代る写真であり、製造例1及び製造例5で得
たHAp(ヒドロキシアパタイト)の結晶の構造を
それぞれ示す電子顕微鏡写真である。
1 to 7 show chromatograms obtained in Examples 1 to 7, respectively.
FIG. 8 shows a chromatogram obtained in Comparative Example 1. 9 and 10 show X-ray diffraction patterns of HAp obtained in Production Example 1 and Production Example 5, respectively. FIGS. 11 and 12 are photographs in place of drawings, and are electron micrographs showing the crystal structures of HAp (hydroxyapatite) obtained in Production Examples 1 and 5, respectively.

Claims (1)

【特許請求の範囲】 1 比表面積50m2/g以下のヒドロキシアパタイ
トを0.5g/cm3以上の高密度で充填してなること
を特徴とする高速液体クロマトグラフイー用カラ
ム。 2 ヒドロキシアパタイトが柱状結晶であること
を特徴とする特許請求の範囲第1項記載の高速液
体クロマトグラフイー用カラム。 3 柱状結晶の集合体が略球状であることを特徴
とする特許請求の範囲第2項記載の高速液体クロ
マトグラフイー用カラム。
[Scope of Claims] 1. A column for high performance liquid chromatography, characterized in that it is packed with hydroxyapatite having a specific surface area of 50 m 2 /g or less at a high density of 0.5 g/cm 3 or more. 2. The column for high performance liquid chromatography according to claim 1, wherein the hydroxyapatite is a columnar crystal. 3. The column for high performance liquid chromatography according to claim 2, wherein the aggregate of columnar crystals is approximately spherical.
JP60067306A 1985-03-30 1985-03-30 Column for high-speed liquid chromatography Granted JPS61226657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60067306A JPS61226657A (en) 1985-03-30 1985-03-30 Column for high-speed liquid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60067306A JPS61226657A (en) 1985-03-30 1985-03-30 Column for high-speed liquid chromatography

Publications (2)

Publication Number Publication Date
JPS61226657A JPS61226657A (en) 1986-10-08
JPH0446383B2 true JPH0446383B2 (en) 1992-07-29

Family

ID=13341196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60067306A Granted JPS61226657A (en) 1985-03-30 1985-03-30 Column for high-speed liquid chromatography

Country Status (1)

Country Link
JP (1) JPS61226657A (en)

Also Published As

Publication number Publication date
JPS61226657A (en) 1986-10-08

Similar Documents

Publication Publication Date Title
US4667018A (en) Process for the purification of proteins using acidic polysaccharide gels
JP6183580B2 (en) Agglomerated zeolite adsorbent, process for its production and use thereof
JP4822030B2 (en) Method for separating betaine
JPH0337706B2 (en)
JPH0380139B2 (en)
EP2898944B1 (en) Adsorption separation method by using an apatite crystal
US5707516A (en) Column packings for liquid chromatography
JPH0446383B2 (en)
JPS63215509A (en) Spherical aluminum hydroxide
JPS6316046A (en) Globular packing agent for liquid chromatography
EP0342932A1 (en) Solid support and column for liquid chromatography
EP0256517A2 (en) Process for producing stable alpha-L-aspartyl-L-phenylalanine methyl ester
EP0679655B1 (en) Process for producing ascorbic acid derivatives
JP2989925B2 (en) Method for purifying 1,1,1,2-tetrafluoroethane
JP3840672B2 (en) Method for producing ascorbic acid derivative
EP0398544B1 (en) Hydrolysed protein purification
JPS6136186A (en) Plant activator and manufacture
RU2077380C1 (en) Method of production of granulated filter medium
JPH0218906B2 (en)
JPH0426509A (en) Hydroxyapatite fine crystal and its production
JPH08198610A (en) Column agent using hydroxylapatite having oh-group carbonate
JP2756568B2 (en) Method for producing A-type zeolite molded body
JP2989926B2 (en) Method for removing chlorotrifluoroethane in chlorodifluoroethane
JPS6240283B2 (en)
JPS58199090A (en) Production of seed crystal material for crystallization treatment of phosphate in liquid