JPH0337706B2 - - Google Patents

Info

Publication number
JPH0337706B2
JPH0337706B2 JP58183161A JP18316183A JPH0337706B2 JP H0337706 B2 JPH0337706 B2 JP H0337706B2 JP 58183161 A JP58183161 A JP 58183161A JP 18316183 A JP18316183 A JP 18316183A JP H0337706 B2 JPH0337706 B2 JP H0337706B2
Authority
JP
Japan
Prior art keywords
hap
chromatography
reaction
water
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58183161A
Other languages
Japanese (ja)
Other versions
JPS60143762A (en
Inventor
Akihiko Nakamura
Shinji Iino
Kensaku Maruyama
Shinji Myata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP58183161A priority Critical patent/JPS60143762A/en
Publication of JPS60143762A publication Critical patent/JPS60143762A/en
Publication of JPH0337706B2 publication Critical patent/JPH0337706B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はクロマトグラフイー用ヒドロキシアパ
タイトに関するものである。 ヒドロキシアパタイト(以下、ヒドロキシアパ
タイトをHApと略記する)は、一般にCa10
(PO46(OH)2で表わされる化合物で、骨や歯の
無機質と組成が近似していることから、近年バイ
オセラミツクス用の材料として注目されている。 さらには、アルコールの脱水等に用いられる触
媒、蛍光体材料、無機イオン交換体及びHApの
もつ生体親和性の良さを利用して、タンパク質、
核酸、酸素、ウイルス等の高分子物質の分離を目
的としたクロマトグラフイー用の充填剤としての
用途が有望視されている。 この中で、クロマトグラフイー用の充填剤とし
てのHApの利用は、近年の遺伝子交換技術等の
生化学分野の発達に伴つて増加する趨勢にある。 従来のクロマトグラフイー用HApは、A.
Tise/Iius,et.al.,により発表された、水溶性
のカルシウム塩と水溶性のリン酸塩を反応させる
湿式合成法(Arch.Biochem.Biophys.,65=,
132(1956))をもとに適宜改良を加えた方法で製
造されたものが一般的である。これらは現在のと
ころ、クロマトグラフイー用としての性能がすぐ
れているといわれているものであつて、つぎのよ
うな物性を示すのが通常である。 Ca/P比 1.4〜1.55 X線回折 回折ピークが弱い。 比表面積 60〜120m2/g 粒 形 薄板状結晶 しかし、このようなHApを製造する従来の方法
は、試料の調整、PH管理、撹拌状態、温度管理等
の反応及びその後の後処理等に非常に煩雑な操作
を必要とする。 しかも、この方法の再現性は乏しく、HApを
合成することさえ非常に困難であることも事実で
ある。さらには、この方法を工業的にスケールア
ツプすると、フラスコ実験と比較してその再現性
が著しく乏しくなり、工業的実施には不向きな方
法である。 その上、得られた前記物性のHApは、リン酸
ナトリウム緩衝液中で冷所保存しなければ、その
物性を維持できない。 以上のように物性のすぐれたクロマトグラフイ
ー用のHApは従来公知の方法では定量的に合成
することが困難であり、製造上の難点から高価な
ものとなつている。そのため、HApは生体高分
子用充填剤として、すぐれた吸着性が知られてい
るにも拘らず、他の生体高分子用充填剤と比較し
て使用頻度が極度に少なく、限られた分野で使用
されているのが実情である。 本発明者等は、クロマトグラフイー用として品
位のすぐれたHApについて鋭意検討した結果、
従来知られているHApとは全く異なる、すなわ
ち、X線回折的に結晶性にすぐれ、比表面積が15
m2/g以下という小さな値を示すにも拘らず、ク
ロマトグラフイー用としてすぐれた性能を持つた
HApを見出し、本発明に到つた。 すなわち、本発明はクロマトグラフイー用ヒド
ロキシアパタイトであつて比表面積が15m2/g以
下で、六角柱状結晶集合体であることを特徴とす
るものであり、本発明のHApは、通常のオープ
ンカラムや高速液体クロマトグラフ用の充填剤と
して使用可能なものである。本発明のHApの諸
物性はつぎのようである。 Ca/P比 1.30〜1.90 X線回折 回折ピークが強い。 比表面積 5〜15m2/g 粒 形 六角柱状結晶集合体 本発明のHApは、上記のように良好な結晶性
を示し、また比表面積も小さい。その上、物性の
経時変化が少ない。このような特性は従来のクロ
マトグラフイー用HApがX線回折では回折ピー
クが弱く、また比表面積も60m2/g以上で薄板状
結晶であるものとは異なる。 従来のクロマトグラフイー用HApは比表面積
が大きいほど、その吸着量も大きいという点を利
用したものである。したがつて、従来はクロマト
グラフイー用HApは、その比表面積が60m2/g
以上大きなものが賞用されてきた。比表面積の小
さなHApは吸着量および回収率が比表面積の大
きいものと比較して、大きく低下するということ
が知られている(M.Spencer,etol,J.
Chromatog.,166,423〜434(1978))。 しかしながら、本発明のHApは、比表面積が
5〜15m2/gと従来の常識からはクロマトグラフ
イー用充填剤としては不向きと考えられるにもか
かわらず、すぐれた性能を示すものである。 本発明のクロマトグラフイー用HApはリン酸
および/またはそのカルシウム塩とカルシウム化
合物を有機溶媒を含む反応媒体中で反応させる方
法により得ることができる。 この方法において原料として使用されるリン酸
および/またはそのカルシウム塩としては
H3PO4,HPO3,H4P2O7,P2O5,Ca
(H2PO42・H2O,CaHPO4,CaHPO4・2H2O,
Ca3(PO42等が、またカルシウム化合物としては
CaCl2,CaO,Ca(OH)2,Ca(NO32,CaCO3
Ca(COO)2等が好適である。しかしながら、これ
らの化合物は、使用可能な原料の一例であつて、
これらに限定する必要はない。また使用する原料
の純度が高い程純度が高い製品が得易く、クロマ
トグラフイー用の充填剤として好ましいが、特に
限定する趣旨のものではない。 これらの原料化合物は反応時のカルシウムとリ
ンとの比がCa/Pの原子比で1.3〜1.9、好ましく
は1.45〜1.75の範囲となるように2種以上の化合
物を使用する。 反応に使用する有機溶媒は、例えば、ベンゼ
ン、トルエン、キシレン、ペンタン、オクタン、
デカン、各種石油ナフサや工業ガソリン等の芳香
族及び脂肪族炭化水素類、iso−ブタノール、n
−アミルアルコール等のアルコール類、エチルエ
ーテル、エチルブチルエーテルや各種セロソルブ
類、カルビトール類等のエーテル類、メチルエチ
ルケトン、メチルイソブチルケトン等のケトン類
が挙げられる。このような有機溶媒を、反応条
件、目的に応じ適宜選択して使用する。 有機溶媒の使用量は、その種類、反応時の原料
の種類、反応時の撹拌条件などによりそれぞれ適
正値が異なるが、いずれの条件においてもスラリ
ー濃度として50%以下となる量を添加することが
望ましい。 反応を実施するには、リン酸および/またはそ
のカルシウム塩とカルシウム化合物とを所望の
Ca/P比に予め反応槽内に仕込み、適度の水を
添加しスラリー化する。次に有機溶媒を加え加熱
還流する。還流時間としては約2時間もあれば十
分である。なお加熱還流時間及び反応槽への有機
溶媒を含む原料の仕込順序は通常上記の通り実施
されるが必ずしもこれに限定する必要はない。 加熱終了後は生成したHApが析出しスラリー
状となつているのでこれを分離すればよい。分離
方法は通常実施される別のみによる方法と、水
を有機溶媒と共に蒸発させた後にHApを別す
る方法が適用できる。特に後者では留出した水と
有機溶媒に相当する容量の有機溶媒を加えながら
反応を行い、この操作により反応系内の水分が実
質上除去された後有機溶媒とHApを別により
分離する方法である。 この方法によれば比較的低温度で、単純な操作
により短時間で再現性良く、またスケールアツプ
に対する再現性も充分であり、クロマトグラフイ
ー用としてその物性がすぐれた粉末のHApを得
る事ができる。 既述の様に従来のクロマトグラフイー用HAp
の製造方法が再現性に乏しく、煩雑な操作を必要
するのに対し、前記の方法では有機溶媒を共存さ
せ、低温で反応を行い、得られた結晶を別、乾
燥する方法であるので、製造装置も簡素でかつ安
価なものですみ、単純な操作ですぐれた物性をも
つた粉末のHApが得られ、工業的に大きな価値
がある。 以下、本発明を実施例および参考例により詳し
く説明する。 実施例 1 リン酸水素カルシウム・2水塩(CaHPO4
2H2O)103.2g、水酸化カルシウム(Ca(OH)2
29.6g、水100g、n−ヘキサン350gを1のフ
ラスコに仕込み、撹拌しながら昇温させ還流温度
(63℃)以下で約2時間加熱した後、反応系内の
水分とn−ヘキサンを蒸発させ留出したn−ヘキ
サンと水に相当する容量のn−ヘキサンを系内に
加えながら反応を行つた。反応が進行するに従つ
て内温が上昇し、内温が68℃を越えた時点で加熱
を中止して、冷却後生成物を溶媒より別し、こ
れを乾燥して白色の粉末を得た。この粉末のX線
回折図を第1図に示す。 第1図より明らかなように回折角度2θ=31.7、
32.2、32.8に主ピークを有し、ASTMカード9−
432に記載のHApの特性回折ピークと一致した。
粒形は球状もしくはそれに類似した形状を示し、
微細な六角柱状結晶の集合したものである。また
物性分析結果を第2表に示す。 実施例 2〜4 リン酸1カルシウム・1水塩、無水リン酸2カ
ルシウム、リン酸2カルシウム・2水塩、水酸化
カルシウム、炭酸カルシウム、水、有機溶媒を第
1表に示した条件で仕込み、第1表以外の条件に
ついては、実施例1と同様な操作によりHApを
得た。その物性を第2表に示す。 実施例 5 実施例1を50倍スケールアツプしてその再現性
を確認した。 リン酸水素カルシウム・2水塩5.16Kg、水酸化
カルシウム1.48Kg、水5Kg、n−ヘキサン17.5Kg
を50のステンレス製反応槽へ仕込み、以下は実
施例1と同様の操作で反応を行つた。 その結果第2表に示す物性を与え、クロマトグ
ラフイー用充填剤としても良い性能を示した。 比較例 従来法によるHAp合成法(A.Tiselius,et.al
の方法Arch.Biochem.Biophys.,65,132
(1956))。 3のフラスコへ0.5mol/のCaCl2水溶液1
と0.5mol/のNa2HPO4水溶液1を毎分
120滴の割合で同時に滴下し、撹拌棒でゆつくり
と撹拌しながら反応を行つた。滴下終了後、上澄
みをデカンテーシヨンにより除去し、残留した沈
殿物を4回、各々2の蒸溜水で洗浄した。次に
この沈殿物に2の蒸溜水を入れ、さらに40重量
%のNaOHを50ml加えた後1時間煮沸した。冷
却後再びデカンテーシヨンにより上澄み液を除
き、再度2の蒸溜水で4回洗浄した。次にPH
6.8の0.01mol/リン酸ナトリウム緩衝液を2
加え沸騰する直前まで加熱した。この操作を2度
繰返すが、沸騰時間は各々5分と15分にした。次
にPH6.8の0.001mol/のリン酸ナトリウム緩衝
液を2加え2度沸騰(15分間)させた。 この様にして得られたHApはPH6.8の
0.001mol/のリン酸ナトリウム緩衝液に入れ、
冷蔵庫中にて保存した。 その結果第2表に示す物性のHApを得た。 実施例 6 実施例1,5および比較例で得られたHApを
用い、以下に示すカラムクロマトの操作手順に従
つて牛血清アルブミンの分離を行つた。
The present invention relates to hydroxyapatite for chromatography. Hydroxyapatite (hereinafter abbreviated as HAp) generally contains Ca 10
It is a compound represented by (PO 4 ) 6 (OH) 2 and has recently attracted attention as a material for bioceramics because its composition is similar to the minerals in bones and teeth. Furthermore, by utilizing the good biocompatibility of catalysts, phosphor materials, inorganic ion exchangers, and HAp used in alcohol dehydration, proteins,
It is expected to be used as a packing material for chromatography to separate macromolecular substances such as nucleic acids, oxygen, and viruses. Among these, the use of HAp as a packing material for chromatography is on the rise with the recent development of biochemical fields such as gene exchange technology. Conventional HAp for chromatography is A.
Wet synthesis method of reacting a water-soluble calcium salt with a water-soluble phosphate (Arch.Biochem.Biophys., 65=, published by Tise/Iius, et.al.,
132 (1956)), with appropriate improvements made. These are currently said to have excellent performance for chromatography, and usually exhibit the following physical properties. Ca/P ratio 1.4-1.55 X-ray diffraction Diffraction peak is weak. Specific surface area: 60 to 120 m 2 /g Grain shape: Thin plate-like crystals However, the conventional method for producing HAp is extremely difficult to prepare the sample, PH control, stirring conditions, temperature control, etc., and subsequent post-processing. requires complicated operations. Moreover, the reproducibility of this method is poor, and it is also true that it is extremely difficult to even synthesize HAp. Furthermore, when this method is industrially scaled up, its reproducibility becomes significantly poorer than in flask experiments, making the method unsuitable for industrial implementation. Moreover, the obtained HAp with the above-mentioned physical properties cannot maintain its physical properties unless it is stored in a cold place in a sodium phosphate buffer. As described above, HAp for chromatography, which has excellent physical properties, is difficult to synthesize quantitatively by conventionally known methods, and is expensive due to manufacturing difficulties. Therefore, although HAp is known for its excellent adsorption properties as a biopolymer filler, it is used extremely less frequently than other biopolymer fillers, and is only used in limited fields. The reality is that it is being used. As a result of intensive study on HAp with excellent quality for use in chromatography, the present inventors found that
It is completely different from conventionally known HAp, in other words, it has excellent crystallinity in terms of X-ray diffraction and has a specific surface area of 15
Although it exhibits a small value of less than m 2 /g, it has excellent performance for chromatography.
We discovered HAp and arrived at the present invention. That is, the present invention is a hydroxyapatite for chromatography, which is characterized by having a specific surface area of 15 m 2 /g or less and being a hexagonal columnar crystal aggregate. It can also be used as a packing material for high performance liquid chromatography. The physical properties of HAp of the present invention are as follows. Ca/P ratio 1.30-1.90 X-ray diffraction Strong diffraction peak. Specific surface area: 5 to 15 m 2 /g Grain shape: Hexagonal columnar crystal aggregate The HAp of the present invention exhibits good crystallinity as described above, and also has a small specific surface area. Moreover, there is little change in physical properties over time. These characteristics are different from those of conventional HAp for chromatography, which has a weak diffraction peak in X-ray diffraction and has a specific surface area of 60 m 2 /g or more, which is a thin plate-like crystal. Conventional HAp for chromatography takes advantage of the fact that the larger the specific surface area, the larger the adsorption amount. Therefore, conventionally, HAp for chromatography has a specific surface area of 60 m 2 /g.
Larger items have been awarded. It is known that the adsorption amount and recovery rate of HAp with a small specific surface area are significantly lower than those with a large specific surface area (M.Spencer, etol, J.
Chromatog., 166, 423-434 (1978)). However, although the HAp of the present invention has a specific surface area of 5 to 15 m 2 /g and is considered unsuitable as a packing material for chromatography based on conventional wisdom, it exhibits excellent performance. The HAp for chromatography of the present invention can be obtained by a method of reacting phosphoric acid and/or its calcium salt with a calcium compound in a reaction medium containing an organic solvent. Phosphoric acid and/or its calcium salt used as raw materials in this method include
H 3 PO 4 , HPO 3 , H 4 P 2 O 7 , P 2 O 5 , Ca
(H 2 PO 4 ) 2・H 2 O, CaHPO 4 , CaHPO 4・2H 2 O,
Ca 3 (PO 4 ) 2, etc., and as a calcium compound
CaCl 2 , CaO, Ca(OH) 2 , Ca(NO 3 ) 2 , CaCO 3 ,
Ca(COO) 2 etc. are suitable. However, these compounds are only examples of raw materials that can be used.
There is no need to limit it to these. Further, the higher the purity of the raw materials used, the easier it is to obtain a product with higher purity, which is preferable as a packing material for chromatography, but this is not intended to be particularly limiting. Two or more of these raw material compounds are used so that the ratio of calcium to phosphorus during the reaction is in the range of 1.3 to 1.9, preferably 1.45 to 1.75 in terms of Ca/P atomic ratio. Examples of organic solvents used in the reaction include benzene, toluene, xylene, pentane, octane,
Decane, aromatic and aliphatic hydrocarbons such as various petroleum naphthas and industrial gasoline, iso-butanol, n
-Alcohols such as amyl alcohol, ethers such as ethyl ether, ethyl butyl ether, various cellosolves, carbitols, and ketones such as methyl ethyl ketone and methyl isobutyl ketone. Such organic solvents are appropriately selected and used depending on the reaction conditions and purpose. The appropriate amount of organic solvent to be used differs depending on the type of organic solvent, the type of raw material used during the reaction, the stirring conditions during the reaction, etc., but under all conditions, it is recommended to add an amount that will result in a slurry concentration of 50% or less. desirable. To carry out the reaction, phosphoric acid and/or its calcium salt and the desired calcium compound are combined.
The Ca/P ratio is charged in advance into a reaction tank, and an appropriate amount of water is added to form a slurry. Next, add an organic solvent and heat to reflux. A reflux time of about 2 hours is sufficient. Note that the heating reflux time and the order of charging raw materials containing organic solvents to the reaction tank are usually carried out as described above, but are not necessarily limited thereto. After heating, the generated HAp precipitates and becomes a slurry, which can be separated. The separation method can be a commonly used separation method or a method in which water is evaporated together with an organic solvent and then HAp is separated. In particular, in the latter case, the reaction is carried out while adding a volume of organic solvent equivalent to the distilled water and the organic solvent, and after this operation substantially removes the water in the reaction system, the organic solvent and HAp are separated separately. be. According to this method, it is possible to obtain powdered HAp with excellent physical properties for use in chromatography, using relatively low temperatures, simple operations in a short time, and good reproducibility, and sufficient reproducibility against scale-up. can. As mentioned above, HAp for conventional chromatography
While the production method of 2018 lacks reproducibility and requires complicated operations, the above method involves coexisting an organic solvent, conducting the reaction at low temperature, and drying the resulting crystals separately. The equipment is simple and inexpensive, and powdered HAp with excellent physical properties can be obtained through simple operations, making it of great industrial value. Hereinafter, the present invention will be explained in detail with reference to Examples and Reference Examples. Example 1 Calcium hydrogen phosphate dihydrate (CaHPO 4
2H2O ) 103.2g, calcium hydroxide (Ca(OH) 2 )
29.6 g, water 100 g, and n-hexane 350 g were placed in flask 1, and the temperature was raised while stirring. After heating for about 2 hours below the reflux temperature (63°C), the water and n-hexane in the reaction system were evaporated. The reaction was carried out while adding n-hexane in a volume equivalent to the distilled n-hexane and water into the system. As the reaction progressed, the internal temperature rose, and when the internal temperature exceeded 68°C, heating was stopped, and after cooling, the product was separated from the solvent and dried to obtain a white powder. . The X-ray diffraction pattern of this powder is shown in FIG. As is clear from Figure 1, the diffraction angle 2θ = 31.7,
Has main peaks at 32.2 and 32.8, ASTM card 9-
This coincided with the characteristic diffraction peak of HAp described in 432.
The grain shape is spherical or similar,
It is a collection of fine hexagonal columnar crystals. The results of physical property analysis are also shown in Table 2. Examples 2 to 4 Monocalcium phosphate monohydrate, anhydrous dicalcium phosphate, dicalcium phosphate dihydrate, calcium hydroxide, calcium carbonate, water, and organic solvent were prepared under the conditions shown in Table 1. , HAp was obtained by the same operations as in Example 1 except for conditions other than those in Table 1. Its physical properties are shown in Table 2. Example 5 Example 1 was scaled up 50 times and its reproducibility was confirmed. Calcium hydrogen phosphate dihydrate 5.16Kg, calcium hydroxide 1.48Kg, water 5Kg, n-hexane 17.5Kg
was charged into a 50 stainless steel reaction tank, and the reaction was carried out in the same manner as in Example 1. As a result, it gave the physical properties shown in Table 2 and showed good performance as a chromatography packing material. Comparative example Conventional HAp synthesis method (A.Tiselius, et.al
Method of Arch.Biochem.Biophys., 65 , 132
(1956)). 0.5mol/CaCl 2 aqueous solution 1 to flask 3
and 0.5mol/Na 2 HPO 4 aqueous solution 1 per minute.
The mixture was added dropwise at the same time at a rate of 120 drops, and the reaction was carried out while stirring slowly with a stirring rod. After the dropwise addition was completed, the supernatant was removed by decantation, and the remaining precipitate was washed four times with two portions of distilled water each time. Next, distilled water from step 2 was added to this precipitate, and 50 ml of 40% by weight NaOH was added thereto, followed by boiling for 1 hour. After cooling, the supernatant liquid was removed again by decantation, and the mixture was washed again four times with distilled water from step 2. Then PH
0.01mol of 6.8/2 sodium phosphate buffer
Add and heat until just before boiling. This operation was repeated twice, with boiling times of 5 minutes and 15 minutes, respectively. Next, two doses of 0.001 mol/sodium phosphate buffer with a pH of 6.8 were added and the mixture was boiled twice (15 minutes). The HAp obtained in this way has a pH of 6.8.
Put it in 0.001mol/sodium phosphate buffer,
Stored in the refrigerator. As a result, HAp with the physical properties shown in Table 2 was obtained. Example 6 Using HAp obtained in Examples 1 and 5 and Comparative Example, bovine serum albumin was separated according to the column chromatography procedure shown below.

【表】【table】

【表】 HAp10gを500mlのビーカーにとり、イオン交
換水(これより水と略する)を静かに加え、ゆつ
くり撹拌する。10分静置後デカンテーシヨンす
る。この操作を上澄みが清澄になる迄繰りかえ
す。その後1cm〓のクロマト用のガラスカラムに
懸濁したHApを重層する(高さ10〜12cm)。その
後カラムの洗浄を水で行い同時に流速の測定を行
う(約10ml/hrになる様に充填する)。次に1重
量%になる様水に溶かした牛血清アルブミンを1
mlHApカラムに吸着させる。この時の操作はす
べて室温で行う。次に吸着させた牛血清アルブミ
ンを分離する為リン酸ナトリウム緩衝液(PH6.8)
で展開を行なう。溶出液は重量分画型のフラクシ
ヨンコレクターで収集する(1試験管あたり2.5
gの溶出液)。得られた溶出液の吸光度は紫外部
280nmで測定した。これより得られた結果を図
3〜5に示す。第3図、第4図から本発明の
HApはすぐれた分解能を示し、吸脱着にすぐれ
るのに対し、比較例の従来法に従つて合成した
HApは第5図から回収率が劣ることが明らかで
ある。 実施例 7 内径8mm、長さ10cmの高速液体クロマトグラフ
イー用カラム実施例1により得られたHApを5
Kg/cm2の圧で充填し、充填終了後高速液体クロマ
トグラフ装置にこのカラムを装置した。このカラ
ムの分離能の評価は、参考例1と同様に牛血清ア
ルブミンの分離により行つた。 溶出液はリン酸ナトリウム緩衝液(PH6.8)を
用い、流速は1ml/minになる様に圧力を1.5
Kg/cm2に調整した。得られた溶出液の吸光度は紫
外部280nmで測定した。これより得られたクロマ
トグラムを第6図に示す。これから本発明の
HApは高速液体クロマトグラフイーに対しても
優れた分解能を示すことが明らかである。
[Table] Place 10g of HAp in a 500ml beaker, gently add ion exchange water (hereinafter abbreviated as water), and stir gently. Let stand for 10 minutes and then decant. Repeat this operation until the supernatant becomes clear. Then, layer the suspended HAp on a 1 cm glass column for chromatography (height: 10 to 12 cm). Afterwards, wash the column with water and measure the flow rate at the same time (fill it to approximately 10 ml/hr). Next, add 1% bovine serum albumin dissolved in water to 1% by weight.
Adsorb to mlHAp column. All operations at this time are performed at room temperature. Next, sodium phosphate buffer (PH6.8) was used to separate the adsorbed bovine serum albumin.
Expand with . The eluate is collected in a gravimetric fraction collector (2.5 g/tube).
g eluate). The absorbance of the obtained eluate is in the ultraviolet region.
Measured at 280nm. The results obtained are shown in FIGS. 3 to 5. From FIGS. 3 and 4, the present invention
HAp shows excellent resolution and is excellent in adsorption and desorption, whereas HAp synthesized according to the conventional method in the comparative example
It is clear from FIG. 5 that the recovery rate of HAp is inferior. Example 7 A column for high performance liquid chromatography with an inner diameter of 8 mm and a length of 10 cm.
The column was packed at a pressure of Kg/cm 2 , and after the filling was completed, the column was installed in a high performance liquid chromatography device. The separation ability of this column was evaluated in the same manner as in Reference Example 1 by separating bovine serum albumin. The eluent used was sodium phosphate buffer (PH6.8), and the pressure was adjusted to 1.5 so that the flow rate was 1 ml/min.
Adjusted to Kg/ cm2 . The absorbance of the obtained eluate was measured under ultraviolet light at 280 nm. The chromatogram obtained from this is shown in FIG. From now on, the present invention
It is clear that HAp also exhibits excellent resolution for high performance liquid chromatography.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は実施例1および比較例に
よつて得られたHApのX線回折図をそれぞれ示
すものである。第3図は実施例1に従つて得られ
たHApにより実施例6の操作法に従つて牛血清
のクロマトグラフイー分離を行つた結果を示すグ
ラフである。第4図は実施例5に従つて得られた
HApにより実施例6の操作法に従つて牛血清の
クロマトグラフイー分離を行つた結果を示すグラ
フである。第5図は比較例に従つて得られた
HApにより実施例6の操作法に従つて牛血清の
クロマトグラフイー分離を行つた結果を示すグラ
フである。第6図は参考例2により得られた牛血
清アルブミンの分離クロマトグラムである。
FIGS. 1 and 2 show X-ray diffraction patterns of HAp obtained in Example 1 and Comparative Example, respectively. FIG. 3 is a graph showing the results of chromatographic separation of bovine serum using HAp obtained according to Example 1 according to the procedure of Example 6. Figure 4 was obtained according to Example 5.
2 is a graph showing the results of chromatographic separation of bovine serum using HAp according to the procedure of Example 6. Figure 5 was obtained according to the comparative example.
2 is a graph showing the results of chromatographic separation of bovine serum using HAp according to the procedure of Example 6. FIG. 6 is a separation chromatogram of bovine serum albumin obtained in Reference Example 2.

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積が5〜15m2/gの範囲であり、かつ
六角柱状結晶集合体であることを特徴とするクロ
マトグラフイー用ヒドロキシアパタイト。
1. Hydroxyapatite for chromatography, which has a specific surface area of 5 to 15 m 2 /g and is a hexagonal columnar crystal aggregate.
JP58183161A 1983-10-03 1983-10-03 Hydroxy apatite for chromatography Granted JPS60143762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183161A JPS60143762A (en) 1983-10-03 1983-10-03 Hydroxy apatite for chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183161A JPS60143762A (en) 1983-10-03 1983-10-03 Hydroxy apatite for chromatography

Publications (2)

Publication Number Publication Date
JPS60143762A JPS60143762A (en) 1985-07-30
JPH0337706B2 true JPH0337706B2 (en) 1991-06-06

Family

ID=16130860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183161A Granted JPS60143762A (en) 1983-10-03 1983-10-03 Hydroxy apatite for chromatography

Country Status (1)

Country Link
JP (1) JPS60143762A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306297B1 (en) 1968-07-08 2001-10-23 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography and process for producing the same
US5039408A (en) * 1986-07-05 1991-08-13 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
JPH07104332B2 (en) * 1986-07-05 1995-11-13 旭光学工業株式会社 Column packing material
US5441635A (en) * 1986-07-05 1995-08-15 Asahi Kogaku Kogyo Kabushiki Kaisha Packing material for liquid chromatography
JPS62231163A (en) * 1986-03-31 1987-10-09 Toa Nenryo Kogyo Kk Column for liquid chromatography and its production
USRE35340E (en) * 1986-07-05 1996-10-01 Asahi Kogaku Kogyo K.K. Packing material for liquid chromatography
US5047031A (en) * 1988-04-20 1991-09-10 Norian Corporation In situ calcium phosphate minerals method
US5129905A (en) * 1988-04-20 1992-07-14 Norian Corporation Methods for in situ prepared calcium phosphate minerals
JPH0743358B2 (en) * 1988-05-16 1995-05-15 三井東圧化学株式会社 Packing material and column for liquid chromatography
JPH0832551B2 (en) * 1989-06-24 1996-03-29 旭光学工業株式会社 Porous calcium phosphate-based compound particles and method for producing the same
JPH04303766A (en) * 1991-03-30 1992-10-27 Kobe Steel Ltd Method of forming pores in surface of separation material for liquid chromatography
WO1994003801A1 (en) * 1992-08-07 1994-02-17 Kanto Kagaku Kabushiki Kaisha Material of chromatographic stationary phase
US5728463A (en) * 1992-08-07 1998-03-17 Kanto Kagaku Kabushiki Kaisha Stationary phase material for chromatography
CN1035869C (en) * 1993-12-15 1997-09-17 中国科学院化工冶金研究所 Method for prepn. of ball shaped hydroxy-apatite with homogeneous precipitation
FR2885525B1 (en) * 2005-05-13 2009-09-18 Urodelia Sa MEDICAMENT PARTICULARLY ANTI-CANCER, FOR IMMUNOTHERAPY TREATMENT, PARTICULARLY AUTOLOGOUS

Also Published As

Publication number Publication date
JPS60143762A (en) 1985-07-30

Similar Documents

Publication Publication Date Title
JPH0337706B2 (en)
AU595238B2 (en) Calcium-phosphate type hydroxyapatite for chromatographic separation and process for producing same
US5427754A (en) Method for production of platelike hydroxyapatite
US5158756A (en) Porous particles of calcium phosphate compound and production process thereof
EP0216621B1 (en) Calcium-phosphate type hydroxyapatite and process for producing it
US6254845B1 (en) Synthesis method of spherical hollow aluminosilicate cluster
CN1037415C (en) Hydrophobic silicon zeolite adsorbent without cohesive agent and its preparation
JPS5819606B2 (en) Manufacturing method of zirconium phosphate
GB2452823A (en) Method of Producing Fluoroapatite
JPH0414748B2 (en)
US5073357A (en) Process for producing hydroxylapatites
EP0469682B1 (en) Mesoporous crystalline compound of a tetravalent metal
US5217699A (en) Calcium-phosphate type hydroxyapatite
CN110105190A (en) Method for producing acrylic acid based on lactic acid aqueous solution of ester
EP0342932A1 (en) Solid support and column for liquid chromatography
JPH04118047A (en) Adsorbent and filler for separation and refining and manufacture thereof
JP2725720B2 (en) Method for producing crystalline microporous body
JPH0426509A (en) Hydroxyapatite fine crystal and its production
KR101644310B1 (en) Aluminosilicates structure, manufacturing method thereof and use using the same
JPH0516368B2 (en)
JPS6240283B2 (en)
JPH105585A (en) Lithium ion adsorbing agent
JP2819572B2 (en) Crystalline aluminophosphate and method for producing the same
RU2681633C1 (en) Method of obtaining granulated aluminosilicate adsorbent for cleaning of aqueous media from cesium cations
JPH0446383B2 (en)