JPH044624B2 - - Google Patents

Info

Publication number
JPH044624B2
JPH044624B2 JP16394986A JP16394986A JPH044624B2 JP H044624 B2 JPH044624 B2 JP H044624B2 JP 16394986 A JP16394986 A JP 16394986A JP 16394986 A JP16394986 A JP 16394986A JP H044624 B2 JPH044624 B2 JP H044624B2
Authority
JP
Japan
Prior art keywords
circuit
analysis interval
time
moving
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16394986A
Other languages
Japanese (ja)
Other versions
JPS6318465A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16394986A priority Critical patent/JPS6318465A/en
Publication of JPS6318465A publication Critical patent/JPS6318465A/en
Publication of JPH044624B2 publication Critical patent/JPH044624B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Complex Calculations (AREA)

Description

【発明の詳細な説明】 〔概要〕 本発明は信号に任意次数の関数を回帰計算する
信号処理装置において、パラメータの解析区間長
を定めて置き、パラメータの増加方法に解析区間
をずらして回帰計算を行わせた場合に、膨大な計
算量となつてしまう欠点を解決するために、解析
区間の積分を行う代わりに、解析区間長の遅延を
与える遅延回路の入力と出力の差を取り、その差
を積分することによつて、計算量を劇的に減少し
たものである。
[Detailed Description of the Invention] [Summary] The present invention is a signal processing device that performs regression calculation of a function of an arbitrary order on a signal, in which the analysis interval length of a parameter is determined, and the regression calculation is performed by shifting the analysis interval according to the method of increasing the parameter. In order to solve the problem of a huge amount of calculation when performing By integrating the difference, the amount of calculation is dramatically reduced.

〔産業上の利用分野〕[Industrial application field]

本発明は解析区間を移動させながら、最小二乗
法を用いてデータの関数回帰計算する回路に関す
るものである。
The present invention relates to a circuit that performs function regression calculation of data using the least squares method while moving an analysis interval.

例えば、超音波で生体の組織診断に用いる組織
性状診断装置等では、超音波信号を発射してその
反射を受信し、実時間で生体等を診断するため
に、受信した超音波信号を解析し生体等の音響特
性を画像化して表示する。
For example, a tissue characterization device that uses ultrasound to diagnose tissue in a living body emits an ultrasound signal, receives the reflection, and analyzes the received ultrasound signal in order to diagnose the living body in real time. Displays an image of the acoustic characteristics of a living body, etc.

この解析に移動最小二乗関数回帰計算が使用さ
れ、ノイズ成分により変化する測定値の一定区間
毎に最小二乗関数回帰計算(誤差の二乗和が最小
になる関数を求めること)を行つて、その区間の
理論関数を係数を求めて画像に表示する。
A moving least squares function regression calculation is used for this analysis, and a least squares function regression calculation (finding the function that minimizes the sum of squares of errors) is performed for each fixed interval of measured values that change due to noise components. Find the coefficients of the theoretical function and display them on an image.

この場合、移動最小二乗関数回帰計算は計算量
が膨大であるので、生体の運動に追随できなくな
る恐れがある。
In this case, since the moving least squares function regression calculation requires a huge amount of calculation, there is a possibility that it will not be possible to follow the movement of the living body.

超音波診断装置では、例えば、超音波信号の
200μsec程度の短い周期の信号を高速に信号処理
する必要がある。従つて、移動最小二乗関数回帰
計算が簡易に実行でき、高速処理できる計算回路
が要望されている。
In ultrasonic diagnostic equipment, for example, ultrasonic signal
It is necessary to process signals with a short period of about 200 μsec at high speed. Therefore, there is a need for a calculation circuit that can easily perform moving least squares function regression calculations and can perform high-speed processing.

〔従来の技術〕[Conventional technology]

簡易の為、入力信号yを等時間間隔で測定値を
サンプリングした離散時間信号とし、時刻t0
t1,t2,t3…tj…における入力信号の値をy0,y1
y2,y3…yj…とする。
For simplicity, the input signal y is assumed to be a discrete time signal obtained by sampling measurement values at equal time intervals, and time t 0 ,
The input signal values at t 1 , t 2 , t 3 ...t j ... are y 0 , y 1 ,
Let y 2 , y 3 …y j ….

ここでt0≦t≦tn-1の区間のm個のデータに対
してn次時間関数を最小二乗回帰させる。
Here, the n-th order time function is subjected to least squares regression on m pieces of data in the interval t 0 ≦t≦t n-1.

先ず、時刻tについてのn次時間関数を次式の
ように表せるものとする。
First, it is assumed that the n-dimensional time function for time t can be expressed as shown in the following equation.

y=aotn+ao-1tn-1+…+a2t2+a1t+a0 即ち、 y=oi=0 aiti (式1) とすると、 入力信号の値yjと時刻tjにおける(式1)の値
との差の二乗をt0≦tj≦tn-1の区間で合計した値、
即ち、信号の回帰二乗誤差の総和Eは次のように
なる。
y=a o t n +a o-1 t n-1 +...+a 2 t 2 +a 1 t+a 0 , that is, y= oi=0 a i t i (Formula 1), then the input signal value y j and the value of (Formula 1) at time t j , summed up in the interval t 0 ≦ t j ≦ t n-1 ,
That is, the sum E of regression square errors of the signal is as follows.

E=n-1j=0 (yjoi=0 aitj i2 ここで、このEを最小にするための条件は、 ∂E/∂ap=0 (p=0、1、…、n) であるから、この条件式の解の行列は次式に示さ
れる。そして、次式を解くことによつて、(式1)
の係数ap(p=0、1、…、n)を求めることが
できる。
E= n-1j=0 (y joi=0 a i t j i ) 2Here , the condition for minimizing this E is ∂E/∂a p = 0 (p= 0, 1,..., n), the matrix of solutions to this conditional expression is shown in the following equation. Then, by solving the following equation, (Equation 1)
The coefficient a p (p=0, 1,..., n) can be found.

例えば、n=1とすると、時間関数はy=a1t
+a0となり、その係数a1、a0は次式のようにな
る。
For example, if n=1, the time function is y=a 1 t
+a 0 , and its coefficients a 1 and a 0 are as shown in the following equation.

ここで、解析区間t0≦t≦tn-1においての係数
が求まつたのでこの解析区間を1データだけずら
したt1≦t≦tnについての係数を同様な手順によ
つて求める。
Here, since the coefficients for the analysis interval t 0 ≦t≦t n-1 have been found, the coefficients for t 1 ≦t≦t n , in which this analysis interval is shifted by one data, are found by the same procedure.

さらに、1データだけずらした解析区間t2≦t
≦tn+1についての係数を求める手順を繰り返し計
算を行うことによつて、時間tに関して係数を
時々刻々と求める。
Furthermore, the analysis interval t 2 ≦t is shifted by one data.
By repeatedly calculating the procedure for determining coefficients for ≦t n+1 , coefficients are determined moment by moment with respect to time t.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記方法によつて係数を求めると、それぞれの
解析区間において前記行列式の各要素を求めるた
めに上記記号Σに関するm回の加算が必要となつ
ている。
When the coefficients are determined using the above method, m additions regarding the symbol Σ are required in order to obtain each element of the determinant in each analysis interval.

このため計算量が膨大となり、この計算を実時
間で処理し、測定の画像表示するのが困難であつ
た。
Therefore, the amount of calculation becomes enormous, and it is difficult to process this calculation in real time and display the measurement image.

また、複数の処理装置で並列処理を行つて高速
化を図ると、必然的にハードウエアの量が膨大と
なる問題点があつた。
Furthermore, if multiple processing devices are used to perform parallel processing to increase speed, there is a problem in that the amount of hardware will inevitably increase.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、複数の信号レベルに対応するパ
ラメータのn乗の巾乗値を得る巾乗算回路と、 それぞれの信号レベルと、その信号レベルに対
応する前記パラメータの巾乗値との積を得る乗算
器と、 前記それぞれの回路の出力データを順次入力デ
ータとして所定時間遅延させる遅延回路と、 入力データと、遅延回路の出力との差の出力を
得る減算回路と、 減算回路の出力を積分する積分回路とを備えた
本発明の移動最小二乗関数回帰回路によつて解決
する。
The above problem is solved by a width multiplication circuit that obtains a power value of a parameter corresponding to a plurality of signal levels to the power of n, and a width multiplier circuit that obtains a product of each signal level and a power value of the parameter corresponding to that signal level. a multiplier; a delay circuit that sequentially delays the output data of each of the circuits as input data for a predetermined period of time; a subtraction circuit that obtains an output of the difference between the input data and the output of the delay circuit; and a subtraction circuit that integrates the output of the subtraction circuit. The problem is solved by the moving least squares function regression circuit of the present invention, which is equipped with an integrating circuit.

〔作用〕[Effect]

解析区間tj≦t≦tn-1+jのk次の時間関数の係
数をakj(k=0、1、2…n)とすると、 ここでt-i=0(i=1、2、3、…)とする
と、左辺の要素は次のようにして求まる。
If the coefficient of the k-th time function in the analysis interval t j ≦t≦t n-1+j is a kj (k=0, 1, 2...n), Here, if t -i = 0 (i = 1, 2, 3, ...), the elements on the left side are found as follows.

但し、mは解析区間内のデータ数で、j>0と
して、n-1+ji=j ti kn-1+ji=0 ti kj-1i=0 ti kn-1+ji=0 ti kn-1+ji=m ti-n kn-1+ji=0 ti kn-1+ji=0 ti-n kn-1+ji=0 (ti k−ti-n k) (式2) 同様に右辺の要素も次式で求まる。n-1+ji=j ti kn-1+ji=0 (yiti k−yi-nti-n k) (式3) これより、各解析区間においては、(式2、3)
のように、ti kもしくはyiti kのm個のサンプリング
が遅延した遅延回路の入力と出力との差を積分す
ることによつて、左辺、右辺の行列の要素が求ま
る。
However, m is the number of data in the analysis interval, and assuming j>0, n-1+ji=j t i k = n-1+ji=0 t i kj-1i=0 t i k = n-1+ji=0 t i kn-1+ji=m t in k = n-1+ji=0 t i kn-1+ji =0 t in k = n-1+ji=0 (t i k −t in k ) (Equation 2) Similarly, the elements on the right side can be found using the following equation. n-1+ji=j t i k = n-1+ji=0 (y i t i k −y in t in k ) (Equation 3) From this, in each analysis interval, (Equation 2, 3)
By integrating the difference between the input and output of the delay circuit in which m samplings of t i k or y i t i k are delayed, the elements of the matrices on the left and right sides are found.

(式2)の右辺はjが増加するにつれてti kとm
個のサンプリング前のti-n kの差を累積することを
表している。
The right side of (Equation 2) is t i k and m as j increases.
This represents the accumulation of the differences in t in k before sampling.

従つて、従来は各解析区間において各要素を求
めるためには、上記記号Σが示すようにm回の加
算が必要であつたが、本発明によつて1回の減算
と1回の加算で各要素を求めることができる。
Therefore, conventionally, in order to obtain each element in each analysis interval, m additions were required as indicated by the symbol Σ, but with the present invention, it can be done with one subtraction and one addition. Each element can be found.

〔実施例〕〔Example〕

第1図、第2図に本発明の一実施例を示す。 An embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

第1図において、全体のデータの流れを説明す
る。
Referring to FIG. 1, the overall data flow will be explained.

入力データyjに同期した時刻発生回路1より時
刻tjを巾乗算器2によつてtj k(k=2、3、4…
2n)を発生させる。
The width multiplier 2 converts the time t j from the time generation circuit 1 synchronized with the input data y j to t j k (k=2, 3, 4...
2n).

また、巾乗算回路2の出力とyjの積を乗算器3
で作り、以上のデータを解析区間内総和回路4に
入力する。
Also, the product of the output of width multiplier circuit 2 and y j is multiplier 3
and input the above data to the analysis interval summation circuit 4.

定数設定器5には、定数m(解析区間内データ
数)が格納される。
The constant setter 5 stores a constant m (the number of data within the analysis interval).

これによつて前記行列式の要素が求まり、これ
を係数計算回路6で前記行列式を解くことによつ
て求める移動最小二乗関数の各係数を得る。
As a result, the elements of the determinant are determined, and the coefficient calculation circuit 6 solves the determinant to obtain each coefficient of the moving least squares function.

次に第2図を用いて本特許の中心的な考えであ
る解析区間内総和回路4について説明する。
Next, the analysis interval summation circuit 4, which is the central idea of this patent, will be explained using FIG.

解析区間内総和回路4への入力は多数あるが、
tj kに注目すると入力tj kは遅延回路7によつてm
サンプル遅れ、tj-n kが得られる。
Although there are many inputs to the analysis interval summation circuit 4,
Focusing on t j k , the input t j k is m by the delay circuit 7.
The sample delay, t jn k , is obtained.

この遅延回路の入力と出力の差を減算回路8で
求め、積分回路9で累積することによつて前記行
列式の要素のm−1時点前の値、 ji=j-m+1 ti k が求まる。このように時刻tjにおいてtj-n+1≦t
≦tjの解析区間の係数、即ちa0(j-n+1)、a1(j-n+1)
a2(j-n+1)、……、ao(j-n+1)を求めることができる。
The difference between the input and output of this delay circuit is determined by the subtraction circuit 8 and accumulated by the integration circuit 9, thereby obtaining the value of the element of the determinant at time m-1 before, ji=j-m+1 t Find i k . In this way, at time t j , t j-n+1 ≦t
Coefficients of analysis interval of ≦t j , i.e. a 0(j-n+1) , a 1(j-n+1) ,
We can find a 2(j-n+1) , ..., a o(j-n+1) .

入力がyiti kであつても、解析区間内総和回路4
は同様に計算することができる。
Even if the input is y i t i k , the analysis interval summation circuit 4
can be calculated similarly.

なお、遅延回路7を構成するのに、インダクタ
ンス要素で作成された遅延線、あるいは、電荷結
合素子(CCD)、あるいは、フリツプフロツプ等
で構成される。
Note that the delay circuit 7 is constructed of a delay line made of an inductance element, a charge coupled device (CCD), a flip-flop, or the like.

また、減算回路8には差動アンプ、あるいは、
デイジタル計算に使用される加算回路が用いられ
る。
In addition, the subtraction circuit 8 includes a differential amplifier or
An adder circuit used for digital calculations is used.

積分回路9にはオペレーシヨナルアンプとコン
デンサとからなる回路を用いることができる。
As the integrating circuit 9, a circuit consisting of an operational amplifier and a capacitor can be used.

積分回路9に累算器を用いることができる。 An accumulator can be used in the integration circuit 9.

また、基準パラメータに重みづけをし、例えば
tnに重みqを付加してqtnあるいはqytnとし、測定
解析において最小二乗関数の回帰精度を上げるの
に使用される。
In addition, the reference parameters are weighted, e.g.
A weight q is added to t n to give qt n or qyt n , which is used to improve the regression accuracy of the least squares function in measurement analysis.

なお、パラメータと入力信号とは1対1の対応
にあつて、両者は一義的に決定される関係にある
ことは云うまでもない。
It goes without saying that the parameters and input signals have a one-to-one correspondence and are in a uniquely determined relationship.

〔発明の効果〕〔Effect of the invention〕

本発明によつて、従来はm回の加算が必要であ
つた計算が1回の減算と1回の加算で済むため
に、ハードウエアが減少するという利点が得られ
るとともにデータの移動最小二乗関数回帰が高速
に処理される。
According to the present invention, computations that conventionally required m additions can now be completed with one subtraction and one addition, which has the advantage of reducing hardware and requires a moving least squares function for data. Regressions are processed quickly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の移動最小二乗関数回帰回路の
一実施例の構成ブロツク図、第2図は解析区間内
総和回路のブロツク図である。 図において、1は時刻発生回路、2は巾乗算回
路、3は乗算器、4は解析区間内総和回路、5は
定数m設定器、6は係数計算回路、7は遅延回
路、8は減算回路、9は積分回路を示す。
FIG. 1 is a block diagram of the configuration of an embodiment of the moving least squares function regression circuit of the present invention, and FIG. 2 is a block diagram of an analysis interval summation circuit. In the figure, 1 is a time generation circuit, 2 is a width multiplication circuit, 3 is a multiplier, 4 is an analysis interval summation circuit, 5 is a constant m setter, 6 is a coefficient calculation circuit, 7 is a delay circuit, and 8 is a subtraction circuit , 9 indicates an integrating circuit.

Claims (1)

【特許請求の範囲】 1 信号変化の基準となる特定のパラメータに関
して信号レベルの移動最小二乗関数回帰を求める
回路であつて、 該パラメータの巾乗値を得る手段(2)と、 前記信号レベルと該信号レベルに対応する前記
パラメータの巾乗値との積を得る手段(3)と、 前記それぞれの手段によつて得られるデータを
順次入力データとして所定時間遅延させる遅延手
段(7)と、 該入力データと、該遅延手段(7)によつて得られ
たデータとの差の出力を得る減算手段(8)と、 該減算手段(8)の出力を積分する積分手段(9)とを
備えてなることを特徴とする移動最小二乗関数回
帰回路。
[Scope of Claims] 1. A circuit for calculating a moving least squares function regression of a signal level with respect to a specific parameter serving as a reference for signal change, comprising means (2) for obtaining a power value of the parameter; means (3) for obtaining the product of the signal level and the exponent value of the parameter corresponding to the parameter; and delay means (7) for sequentially delaying the data obtained by each of the means by a predetermined time as input data. A subtraction means (8) for obtaining an output of the difference between the input data and the data obtained by the delay means (7), and an integration means (9) for integrating the output of the subtraction means (8). A moving least squares function regression circuit characterized by:
JP16394986A 1986-07-10 1986-07-10 Moving least square function regression circuit Granted JPS6318465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16394986A JPS6318465A (en) 1986-07-10 1986-07-10 Moving least square function regression circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16394986A JPS6318465A (en) 1986-07-10 1986-07-10 Moving least square function regression circuit

Publications (2)

Publication Number Publication Date
JPS6318465A JPS6318465A (en) 1988-01-26
JPH044624B2 true JPH044624B2 (en) 1992-01-28

Family

ID=15783882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16394986A Granted JPS6318465A (en) 1986-07-10 1986-07-10 Moving least square function regression circuit

Country Status (1)

Country Link
JP (1) JPS6318465A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0233220A (en) * 1988-07-23 1990-02-02 Ryoichi Mori Spline function generating circuit
WO1991010726A1 (en) * 1990-01-22 1991-07-25 The United States Of America, Represented By The Secretary, United States Department Of Commerce Co-independent growth medium for maintenance and propagation of cells
US5378612A (en) * 1990-05-11 1995-01-03 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Culture medium for production of recombinant protein

Also Published As

Publication number Publication date
JPS6318465A (en) 1988-01-26

Similar Documents

Publication Publication Date Title
Walker et al. A fundamental limit on the performance of correlation based phase correction and flow estimation techniques
US5673697A (en) High-resolution three, dimensional ultrasound imaging device
JPH06508681A (en) dynamical system analyzer
Tekalp et al. On statistical identification of a class of linear space-invariant image blurs using non-minimum-phase ARMA models
EP0648357B1 (en) High-speed processing apparatus and method, signal analyzing system, and measurement apparatus and method
JPH044624B2 (en)
Hayward et al. A digital hardware correlation system for fast ultrasonic data acquisition in peak power limited applications
JPS6244620B2 (en)
RU2393535C1 (en) Device for processing of signals based on double-criteria method
RU117793U1 (en) DIAGRAM-FORMING DEVICE FOR MULTI-BEAM RECEPTION OF ULTRASONIC SIGNALS
Brown Tutorial on filtering, restoration, and state estimation
Viola et al. Computationally efficient spline-based time delay estimation
Moose et al. Passive depth tracking of underwater maneuvering targets
JP3538260B2 (en) Ultrasonic measuring device
US9268745B2 (en) Method for fast wavelet transform of a signal
RU2052835C1 (en) Linear adaptive data processing device
RU2321053C1 (en) Serial-parallel device for processing signals
JP2588527B2 (en) Correlation circuit and apparatus for determining transfer factor in a medium using the correlation circuit
KR0138741B1 (en) Method and apparatus for gathering signals of a inspecting system with the ultrasonic waves
JP2957572B1 (en) Earthquake response spectrum calculator
JP3136635B2 (en) Exploration method and device
RU2373544C1 (en) Method of measuring image energy spectrum parametres
JPH0138270B2 (en)
US7415063B1 (en) Method to estimate noise in data
JP2551319B2 (en) Video processing method