JPH0446143A - Synthesis of isotopic multiply labeled amino acid - Google Patents

Synthesis of isotopic multiply labeled amino acid

Info

Publication number
JPH0446143A
JPH0446143A JP2150033A JP15003390A JPH0446143A JP H0446143 A JPH0446143 A JP H0446143A JP 2150033 A JP2150033 A JP 2150033A JP 15003390 A JP15003390 A JP 15003390A JP H0446143 A JPH0446143 A JP H0446143A
Authority
JP
Japan
Prior art keywords
concentrated
groups
amino acid
isotopic
ammonium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2150033A
Other languages
Japanese (ja)
Inventor
Kojiro Okude
幸二郎 奥出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2150033A priority Critical patent/JPH0446143A/en
Publication of JPH0446143A publication Critical patent/JPH0446143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title compound labeled with both N<15> and C<13> by reaction between an aldehyde and N<15>-concentrated ammonium chloride and C<13>- concentrated sodium cyanide etc. and by hydrolysis of the resulting aminonitrile. CONSTITUTION:An aldehyde of formula I (R is H, alkyl, phenyl, etc.) is reacted with N<15>-concentrated ammonium chloride and C<13>-concentrated sodium or potassium cyanide into an aminonitrile of formula II, which is then hydrolyzed with hydrochloric or sulfuric acid, thus obtaining the objective compound of formula III. No requirement of the intermediate's purification and isolation will lead to reduced loss of the expensive isotopic concentrated raw materials, thus synthesizing the objective compound easily in one step. Although it is ideal that the ammonium chloride and alkali cyanide as isotopic concentrated raw materials be each >=99% in concentration rate, this is not a requirement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同位体で多重に標識されたアミノ酸の合成法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for synthesizing multiple isotopically labeled amino acids.

〔従来の技術〕[Conventional technology]

タンパク質は多数のアミノ酸が結合した、生体内で重要
な機能をもつ巨大分子である。その研究法として、溶液
での核磁気共鳴(NMR)スペクトルを測定し、各々の
シグナルをタンパク質を構成するアミノ酸と対応づける
ことにより、構造解析を行なう手法が知られている。N
MRスペクトルは、プロトン、炭素13(13C)、窒
素15(15N)等の原子核を測定対象とする。このう
ち、プロトンはピークの重なりが大きく、タンパク質等
の複雑な分子への適用は困難であることが多い。
Proteins are macromolecules made up of many amino acids that have important functions in living organisms. As a research method for this purpose, a method is known in which structural analysis is performed by measuring a nuclear magnetic resonance (NMR) spectrum in a solution and associating each signal with an amino acid that constitutes a protein. N
The MR spectrum measures atomic nuclei such as protons, carbon-13 (13C), and nitrogen-15 (15N). Among these, protons have large overlapping peaks and are often difficult to apply to complex molecules such as proteins.

また13C,15Nは、同位体の天然依存比が、それぞ
れ約1.1%、約0.4%と小さいため、天然依存比の
ままでは充分なシグナル強度が得られないことが多い。
Furthermore, since the natural isotope dependence ratios of 13C and 15N are small, about 1.1% and about 0.4%, respectively, sufficient signal intensity cannot often be obtained with the natural dependence ratios.

このため、人工的に13C,15Nを濃縮したアミノ酸
を合成し、これを標識化合物として用いてシグナル強度
を大きくする方法が行なわれている。このようなI!識
化合物の合成法は種々の例が知られているが1例えばジ
ャーナル オブバイオロジカルケミストリー 162巻
(1946)年第297頁から第307頁(J、Bio
l、Chem、、 162(3946)、pp297−
307)には、13C,”’Nで二重標識されたグリシ
ン(” 5N H21” COOH〕の合成法が記載さ
れている。これは第2式に示したように、フタルイミド
[”N〕をホルムアルデヒド、塩化チオニル、シアン化
ナトリウム(13C]と順に反応させる方法である。
For this reason, methods have been used to synthesize amino acids artificially enriched with 13C and 15N and use this as a labeling compound to increase signal intensity. I like this! Various examples of synthetic methods for biochemical compounds are known. For example, there is a method described in Journal of Biological Chemistry, Vol.
l, Chem, 162(3946), pp297-
307) describes a method for synthesizing glycine double-labeled with 13C and ``N'' (``5N H21'' COOH). This is a method in which formaldehyde, thionyl chloride, and sodium cyanide (13C) are reacted in this order.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術では、目的の二重標識されたアミノ酸を得
るまでに多段階の反応を必要とし、さらに各段階ごとに
中間体を精製単離する必要があるこのため1反応途中で
の損失が大きく、目的とするアミノ酸の収率が低下し、
高価な同位体濃縮原料が有効に使われないという問題が
あった。
The above conventional technology requires a multi-step reaction to obtain the desired double-labeled amino acid, and it is also necessary to purify and isolate the intermediate at each step, resulting in large losses during one reaction. , the yield of the desired amino acid decreases,
There was a problem that expensive isotope enrichment raw materials were not used effectively.

本発明は、1fIN及び13Cで二重標識したアミノ酸
を一段階で簡便に合成する方法を提供することを目的と
し、これにより、同位体濃縮原料の損失を小さくするこ
とを目的とする。
An object of the present invention is to provide a method for easily synthesizing an amino acid double-labeled with 1fIN and 13C in one step, thereby reducing the loss of isotope-enriched raw materials.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、以下に記した手段を用いた
In order to achieve the above objective, the means described below were used.

全体の合成系路は第1式に示した。これはシュドレッカ
ー合成として知られるアミノ酸合成法を応用したもので
ある。アミノ酸の前駆体として、ホルムアルデヒド、ア
セトアルデヒド及びその他の各種アルデヒドR−CHO
(RはH,CHa 。
The entire synthesis route is shown in Equation 1. This is an application of the amino acid synthesis method known as Schdrecker synthesis. Formaldehyde, acetaldehyde and other various aldehydes R-CHO as precursors of amino acids
(R is H, CHa.

C2H5等のアルキル基、フェニル基、及びアミノ基、
カルボキシル基、水酸基等で置換されたアルキル基誘導
体又はフェニル基誘導体)を用いる。
Alkyl groups such as C2H5, phenyl groups, and amino groups,
An alkyl group derivative or a phenyl group derivative substituted with a carboxyl group, a hydroxyl group, etc.) is used.

15Nの原料として、II)Nを濃縮した塩化アンモニ
ウム[15N](”NH4CP)を用イル。13cの原
料として13Cを濃縮したシアン化アルカリ(13(:
)(M!”CN、Mはカリウム、ナトリウム等のアルカ
リ金属)を用いる。上記のアルデヒドR−C)10と”
 5N H4Cβ の混合物にM18CNを加えること
により、各種のアミノニトリル[15N H2,13C
N ](R−CH(13N 82)”CN )が生成す
る。これを塩酸又は硫酸で加水分解することにより、目
的とする各種の二重sWtされたアミノ酸(15NH2
゜13COOH)を得ることができる。得られたアミノ
酸は種々の既知の方法で精製する。
As a raw material for 15N, ammonium chloride [15N] (NH4CP), which is concentrated with II)N, is used.As a raw material for 13c, alkali cyanide (13 (:
) (M!"CN, M is an alkali metal such as potassium or sodium) is used.The above aldehyde R-C)10 and"
By adding M18CN to a mixture of 5N H4Cβ, various aminonitriles [15N H2,13C
N](R-CH(13N82)"CN) is produced. By hydrolyzing this with hydrochloric acid or sulfuric acid, various desired double-sWt amino acids (15NH2
゜13COOH) can be obtained. The resulting amino acids are purified by various known methods.

同位体濃縮原料として、塩化アンモニウム、シアン化ア
ルカリは、それぞれ濃縮率が15N≧99%l 13C
≧99%であることが理想的であるが、より低い濃縮率
の原料でもかまわない。濃縮率10%程度でもNMR測
定に役立てることは充分可能である。
As raw materials for isotope enrichment, ammonium chloride and alkali cyanide each have a concentration rate of 15N≧99%l 13C
Ideally, it is ≧99%, but raw materials with lower concentration rates may be used. Even a concentration ratio of about 10% is sufficient to be useful for NMR measurements.

〔作用〕[Effect]

ここで採用したシュドレッカー合成法はアルデヒドから
アミノ酸を合成する簡便な方法で、中間体の精製・単離
は必要ではない。従って操作手順は少なくなり、中間段
階での試料の損失は少なくすることができる。アミノ酸
の前駆体に用いたアルデヒドは比較的安価な原料で入手
しやすい。同位体の原料であル15N H4CD  や
N a ’ 3CCN tK”CNなとは、同位体濃縮
率の高いものが市販されており、安価で入手しやすい。
The Schdrecker synthesis method employed here is a simple method for synthesizing amino acids from aldehydes, and does not require purification or isolation of intermediates. There are therefore fewer operating steps and less loss of sample in intermediate steps. The aldehyde used as the amino acid precursor is a relatively inexpensive raw material and easily available. Raw materials for isotopes such as 15N H4CD and N a '3CCN tK''CN are commercially available with high isotope enrichment rates, and are inexpensive and easily available.

〔実施例〕〔Example〕

(実施例1) アラニン[” N H2、’ ” C○○H〕塩酸塩の
合成法を第3図により以下に説明する。
(Example 1) A method for synthesizing alanine ["N H2,'" C○○H] hydrochloride will be explained below with reference to FIG.

アセトアルデヒド13gをエーテル10ccに加入でフ
ラスコ1に入れて氷で冷却する。これに15NH4CD
(”N299%)18gを水55ccに溶カシテ加える
。次ニN a ”3CN (13C≧99%)15gを
水40ccに溶かし、滴下ロート2がら徐徐に加える。
13 g of acetaldehyde was added to 10 cc of ether in flask 1 and cooled with ice. This includes 15NH4CD
Dissolve 18 g of N299% in 55 cc of water. Next, dissolve 15 g of N a 3CN (13C≧99%) in 40 cc of water and slowly add it through dropping funnel 2.

このとき、混合物の温度は10’C以下に保つようにす
る。次に混合物を室温にもどし、4時間以上充分かくは
んを続ける。次にフラスコlをトラフト内に入れ、シア
ン化水素の発生に注意しながら、濃塩酸60ccを加え
る。蒸留して固型物が残るまで充分に濃縮する。2%の
塩酸を含むエタノール10.0ccを加えて固型物を溶
がす。
At this time, the temperature of the mixture is maintained at 10'C or less. The mixture is then allowed to return to room temperature and stirred thoroughly for at least 4 hours. Next, flask 1 is placed in the trough, and 60 cc of concentrated hydrochloric acid is added while being careful not to generate hydrogen cyanide. Distill and concentrate thoroughly until a solid remains. Add 10.0 cc of ethanol containing 2% hydrochloric acid to dissolve the solids.

冷却後、エーテル30ccを加え、沈殿する固体を濾別
する。濾液を蒸留し、減圧下でエタノール。
After cooling, 30 cc of ether is added and the precipitated solid is filtered off. Distill the filtrate with ethanol under reduced pressure.

エーテルを充分留去させると、目的とするアラニンC”
N Hz、”C00H)塩酸塩の@製物を得る。
When the ether is sufficiently distilled off, the target alanine C”
N Hz, "C00H)" hydrochloride product is obtained.

(実施例2) 実施例1のアセトアルデヒドを他のアルデヒドに変更す
ることにより、各種のアミノ酸(”NHz。
(Example 2) Various amino acids ("NHz.

”C00H)を合成することができる。例を下表にまと
める。
"C00H)" can be synthesized. Examples are summarized in the table below.

また、上表に記載されていないアルデヒドについても、
同様の方法で対応するアミノ酸[15NH2゜13CO
OH]を合成することができる。
Also, regarding aldehydes not listed in the above table,
In a similar manner, the corresponding amino acid [15NH2゜13CO
OH] can be synthesized.

(実施例3) NMR測定用試料への応用。(Example 3) Application to samples for NMR measurement.

実施例1又は2で合成したアミノ酸[”NH2゜13C
○○H〕を原料として、タンパク質を合成する。この合
成は、通常の化学的方法や生物学的方法によって行なう
ことができる。このとき、通常は一種類のアミノ酸(例
えばアラニン)のみを15N H2,13COOHで標
識したものを使い、他のアミノ酸には通常の未標識のも
のを用いる。合成したタンパク質を水溶液とし、NMR
を測定すると、第4図のように、標識されたアラニンの
15N H2,13C00Hのみが強く観測される。こ
のシグナルの位置、数を解析することにより、試料とし
たタンパク質中のアラニン残基についての構造情報が得
られる。また、標識したアミノ酸を二種類以上(例えば
グアニンとアラニン)用いてタンパク質を合成し、同様
にNMRを測定することもできる。この場合は、タンパ
ク質中のグアニン残基、アラニン残基についての構造情
報が得られ、更にグアニン残基とアラニン残基の間の相
互的位置情報を得ることもできる。例えば第5図のよう
に、細かく分裂した15N、13Cシグナルが得られた
時は、標識したアミノ酸どうしが第6図(b)のように
隣りあっていることを示す。
The amino acid synthesized in Example 1 or 2 [”NH2゜13C
Synthesize protein using ○○H] as a raw material. This synthesis can be carried out by conventional chemical or biological methods. At this time, usually only one type of amino acid (for example, alanine) is labeled with 15N H2,13COOH, and the other amino acids are normally unlabeled. The synthesized protein is made into an aqueous solution and NMR
As shown in FIG. 4, only the labeled alanine 15N H2, 13C00H is strongly observed. By analyzing the position and number of these signals, structural information about the alanine residues in the sample protein can be obtained. It is also possible to synthesize a protein using two or more types of labeled amino acids (for example, guanine and alanine) and measure NMR in the same manner. In this case, structural information about guanine residues and alanine residues in the protein can be obtained, and furthermore, mutual positional information between guanine residues and alanine residues can also be obtained. For example, as shown in Figure 5, when finely divided 15N and 13C signals are obtained, it indicates that the labeled amino acids are adjacent to each other as shown in Figure 6(b).

また、タンパク質以外でも、アミノ酸を構成要素とする
化学物質であるならば、アミノ酸[:”NH2,13C
OOH)はNMRの測定の対象として使用することがで
き、構造解析に役立てることができる。
In addition to proteins, if it is a chemical substance whose constituent elements are amino acids, amino acids [:”NH2, 13C
OOH) can be used as a target for NMR measurement and can be useful for structural analysis.

(実施例4) 本発明で合成した標識アミノ酸はNMRに限らず、同位
体を利用する他の分析方法の測定対象へ応用することが
可能である。
(Example 4) The labeled amino acid synthesized according to the present invention can be applied not only to NMR but also to measurement targets of other analysis methods that utilize isotopes.

例えば、質量スペクトルに用いて、天然同位体存在比か
らのズレを測定して分析に用いることができる。
For example, it can be used in a mass spectrum to measure the deviation from the natural isotope abundance ratio and use it for analysis.

また、Na13CNやK13CNのかわりに炭素14を
濃縮したNa”CNやK”CNを用いて、14Cの放射
能測定による放射分析へ応用することができる。必要に
応じて、窒素、炭素を更に短寿命の核種(例えば11C
,13Nなど)で標識し、放射分析を行なう方法へも応
用できる。
Furthermore, by using Na''CN or K''CN, which are enriched with carbon-14, instead of Na13CN or K13CN, it can be applied to radioanalysis by measuring the radioactivity of 14C. If necessary, nitrogen and carbon may be replaced with shorter-lived nuclides (e.g. 11C).
, 13N, etc.) and can be applied to a method of radioanalysis.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以上に説明したように、アミノ基を1
5Nで、カルボキシル基を13Cで同時に標識した各種
のアミノ酸を簡便に合成することができる。また、中間
での処理が少ないので、高価な同位体濃縮原料の損失を
少なくし、目的のアミノ酸(”N H2,”COOH)
の収率を上げることができる。
According to the present invention, as explained above, the amino group is
5N and various amino acids whose carboxyl groups are simultaneously labeled with 13C can be easily synthesized. In addition, because there is less intermediate processing, the loss of expensive isotope enrichment raw materials is reduced, and the desired amino acids ("NH2," COOH) are
yield can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を説明する反応式第1式を示す図、第2
図は従来技術を説明する反応式を示す図、第3図は本発
明による合成方法を示す図、第4図は本発明により合成
したアミノ酸(15NH2゜”C00HIをNMR測定
に応用したときのスペクトル図、第5図は第4図と同じ
<NMRスペクトル図、第6図はタンパク質中のアミノ
酸の結合を示す図である。 1・・フラスコ、2・・滴下ロート、3・・・温度計、
4・・氷水浴、5・・磁気かくはん子、6・・・かくは
ん機、第 図 NH4CL   M′3CN 尺ct−t。 第 図 RCH(ISNH2)”cooH 第3図 第4図 第5図 (b) 身 一一一一、−m− と 第 図
Figure 1 is a diagram showing the first reaction equation explaining the present invention, and the second
The figure shows a reaction formula explaining the prior art, Figure 3 shows the synthesis method according to the present invention, and Figure 4 shows the spectrum of the amino acid synthesized according to the present invention (15NH2゜"C00HI) when applied to NMR measurement. Figure 5 is the same as Figure 4. Figure 6 is a diagram showing the bonding of amino acids in proteins. 1. Flask, 2. Dropping funnel, 3. Thermometer,
4. Ice water bath, 5. Magnetic stirrer, 6. Stirrer, Figure NH4CL M'3CN length ct-t. Figure RCH (ISNH2) "cooH Figure 3 Figure 4 Figure 5 (b) Body 1111, -m- and Figure

Claims (1)

【特許請求の範囲】 1、化学式R−CHO(RはH、CH_3又はC_2H
_5等のアルキル基、フェニル基、及びアミノ基・水酸
基・カボキシル基等の官能基で置換されたアルキル基誘
導体又はフェニル基誘導体)で表わされる各種アルデヒ
ドに、窒素15を濃縮した塩化アンモニアムと、炭素1
3を濃縮したシアン化ナトリウム又はシアン化カリウム
を反応させ、生成する各種のアミノニトリル R−CH(^1^5NH_2)^1^3CNを加水分解
することにより、アミノ基を窒素15で、カルボキシル
基を炭素13で、同時に標識したアミノ酸 R−CH(^1^5NH_2)^1^3COOHを合成
することを特徴とする同位体多重標識アミノ酸合成法。
[Claims] 1. Chemical formula R-CHO (R is H, CH_3 or C_2H
Ammonium chloride with nitrogen 15 concentrated in various aldehydes represented by alkyl groups such as _5, phenyl groups, and alkyl group derivatives or phenyl group derivatives substituted with functional groups such as amino groups, hydroxyl groups, carboxyl groups, etc. carbon 1
By reacting 3 with concentrated sodium cyanide or potassium cyanide and hydrolyzing the various aminonitrile R-CH (^1^5NH_2)^1^3CN, the amino group is converted into nitrogen 15 and the carboxyl group is converted into carbon. 13, an isotope multiple labeled amino acid synthesis method characterized by simultaneously synthesizing labeled amino acids R-CH(^1^5NH_2)^1^3COOH.
JP2150033A 1990-06-11 1990-06-11 Synthesis of isotopic multiply labeled amino acid Pending JPH0446143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150033A JPH0446143A (en) 1990-06-11 1990-06-11 Synthesis of isotopic multiply labeled amino acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150033A JPH0446143A (en) 1990-06-11 1990-06-11 Synthesis of isotopic multiply labeled amino acid

Publications (1)

Publication Number Publication Date
JPH0446143A true JPH0446143A (en) 1992-02-17

Family

ID=15488032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150033A Pending JPH0446143A (en) 1990-06-11 1990-06-11 Synthesis of isotopic multiply labeled amino acid

Country Status (1)

Country Link
JP (1) JPH0446143A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6111066A (en) * 1997-09-02 2000-08-29 Martek Biosciences Corporation Peptidic molecules which have been isotopically substituted with 13 C, 15 N and 2 H in the backbone but not in the sidechains
EP1191033A3 (en) * 1993-02-05 2003-07-30 Martek Biosciences Corporation Compositions and methods for protein structural determinations
JP2005314398A (en) * 2004-03-30 2005-11-10 Wako Pure Chem Ind Ltd Heavy-nitrogenized nitrobenzenesulfonamide, its derivative and production method thereof
JP2011502920A (en) * 2007-11-06 2011-01-27 コミサリア ア レネルジィ アトミーク エ オ エネルジィ アルタナティブ Method for radiolabeling carbon nanotubes, radiolabeled carbon nanotubes, and applications thereof
JP2018054622A (en) * 2017-11-20 2018-04-05 国立大学法人京都大学 Probe for multiple resonance
JP2019048774A (en) * 2017-09-08 2019-03-28 住友化学株式会社 Manufacturing method of methionine and/or 2-hydroxy-4-(methylthio)butanoic acid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191033A3 (en) * 1993-02-05 2003-07-30 Martek Biosciences Corporation Compositions and methods for protein structural determinations
EP1193271A3 (en) * 1993-02-05 2004-03-24 Martek Biosciences Corporation Compositions and methods for protein structural determinations
US6111066A (en) * 1997-09-02 2000-08-29 Martek Biosciences Corporation Peptidic molecules which have been isotopically substituted with 13 C, 15 N and 2 H in the backbone but not in the sidechains
US6335196B1 (en) 1997-09-02 2002-01-01 Martek Biosciences Corp. 13C,15N ,2H labeled proteins for NMR structure determinations and their preparation
US6340578B1 (en) 1997-09-02 2002-01-22 Martek Biosciences Corporation 13C, 15N, 2H labeled proteins for NMR structure determinations and their preparation
US6376253B1 (en) 1997-09-02 2002-04-23 Martek Biosciences Corporation 13C, 15N, 2H labeled proteins for NMR structure determinations and their preparation
JP2005314398A (en) * 2004-03-30 2005-11-10 Wako Pure Chem Ind Ltd Heavy-nitrogenized nitrobenzenesulfonamide, its derivative and production method thereof
JP2011502920A (en) * 2007-11-06 2011-01-27 コミサリア ア レネルジィ アトミーク エ オ エネルジィ アルタナティブ Method for radiolabeling carbon nanotubes, radiolabeled carbon nanotubes, and applications thereof
JP2019048774A (en) * 2017-09-08 2019-03-28 住友化学株式会社 Manufacturing method of methionine and/or 2-hydroxy-4-(methylthio)butanoic acid
JP2018054622A (en) * 2017-11-20 2018-04-05 国立大学法人京都大学 Probe for multiple resonance

Similar Documents

Publication Publication Date Title
Look et al. Trimethylorthoformate: a mild and effective dehydrating reagent for solution and solid phase imine formation
Silks III et al. An improved synthesis of chiral oxazolidine-2-selones: highly sensitive selenium-77 NMR reagents for the detection and quantitation of chirality
JPH0446143A (en) Synthesis of isotopic multiply labeled amino acid
US2680135A (en) Sulfonamidophenylamido-1, 3-propanediol compositions and process
US7608248B2 (en) Stable isotope-labeled aromatic amino acids, method for incorporating the same in target protein and method for NMR-structural analysis of proteins
Morris et al. A sulfur-ligated molybdenum complex that reduces dinitrogen to ammonia. The crystal and molecular structure of the dinitrogen-molybdenum complex trans-Mo (N2) 2 (PMePh2) 2 (PPh2CH2CH2SMe)
US2742500A (en) Resolution of phenylaminopropanediols and intermediates
Blomquist et al. Deuterated Amino Acids. III. Synthesis of DL-Aspartic-2, 3, 3-d3 Acid, L-Glutamic-2, 3, 3, 4, 4-d5 Acid, L-Asparagine-2, 3, 3-d3, and L-Glutamine-2, 3, 3, 4, 4-d51, 2a
Ramaswamy et al. One vessel synthesis of 4-hydroxyproline from glyoxal and oxaloacetic acid
Powell et al. A modified, high yield procedure for the synthesis of unlabeled and 14C-labeled 4-methylene-DL-glutamic acid
JPH02111747A (en) Preparation of carbon 13-marked 5-aminolevulinic acid and derivative thereof
US9963423B2 (en) Synthesis of 4-amino-2, 4-dioxobutanoic acid
SHIMAHARA et al. Decomposition of thiamine in alcohol solution. II
JPS5817741B2 (en) Method for producing α-amino acid amide
JPS60185753A (en) Manufacture of alpha-amino acid by catalytic reaction of co,hydroxyl compound and enamide
JPS62286964A (en) Production of oxiracetam
JP7020679B2 (en) Method for producing isotope-labeled compound
KR100442768B1 (en) A process for preparing L-valine as radioabled compound
JPH0381258A (en) New dopa derivative
Mazurkiewicz et al. A NEW SYNTHESIS OF α-AMINO ACID DERIVATIVES BY REACTION OF N-ACYL-α-TRIPHENYLPHOSPHOSPHONIO-GLYCINATES WITH CARBON NUCLEOPHILES
Rakhimova et al. Hexahydrohexaazaheptalenobis [1, 10-ab] phenalenes—A New Type of Azapolycycles
NAGAI Optical Rotatory Dispersion of Nitrobenzene Derivatives. VII. Application of Modified Curtius Rearrangement for Determining the Free Carboxylic Position in Some Partial Esters of 3-Nitrophthalic and 4-Nitrohemimellitic Acid
Churakov et al. Unusual conversion of aminoazidofurazan into 1-hydroxy-5-cyanotetrazole sodium salt
JP3253623B2 (en) Method for producing β-alanine diacetate or an alkali metal salt or ammonium salt thereof
JP2024004127A (en) Oxygen isotope-labeled compound and method for producing oxygen isotope-labeled compound