JPH0446084A - Method and device for surface-treating oxide superconducting thin film - Google Patents
Method and device for surface-treating oxide superconducting thin filmInfo
- Publication number
- JPH0446084A JPH0446084A JP90151886A JP15188690A JPH0446084A JP H0446084 A JPH0446084 A JP H0446084A JP 90151886 A JP90151886 A JP 90151886A JP 15188690 A JP15188690 A JP 15188690A JP H0446084 A JPH0446084 A JP H0446084A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- ion beam
- oxide superconducting
- superconducting thin
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims description 27
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 48
- 230000007246 mechanism Effects 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 17
- 150000002367 halogens Chemical class 0.000 claims abstract description 17
- 239000011261 inert gas Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 239000000470 constituent Substances 0.000 claims abstract description 6
- 239000007789 gas Substances 0.000 claims description 35
- 238000004381 surface treatment Methods 0.000 claims description 33
- 150000002500 ions Chemical class 0.000 claims description 26
- 238000000427 thin-film deposition Methods 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 41
- 230000000694 effects Effects 0.000 description 12
- 239000002887 superconductor Substances 0.000 description 10
- 238000007796 conventional method Methods 0.000 description 9
- 230000008021 deposition Effects 0.000 description 9
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 9
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- RJCQBQGAPKAMLL-UHFFFAOYSA-N bromotrifluoromethane Chemical compound FC(F)(F)Br RJCQBQGAPKAMLL-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000002003 electron diffraction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 210000003254 palate Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野〕
本発明は、超伝導体を用いた電子デバイスの配線、電極
コンタクトの作製に不可欠な、酸化物超伝導薄膜の表面
処理方法および表面処理装置に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a surface treatment method and surface treatment apparatus for oxide superconducting thin films, which are essential for manufacturing wiring and electrode contacts of electronic devices using superconductors. It is related to.
[従来の技術]
超伝導現象を利用した電子デバイスは、例えば、高速ス
イッチング素子、高感度電磁波検圧素子、高感度磁束計
として広範囲の応用が可能である。また、超伝導体は直
流電気抵抗がゼロという特徴があるため、集積回路用配
線としても応用が期待されている。そこで実用的価値の
高いデバイスや配線層を形成するためには、超伝導転B
温度(Tc)の高い(77に以上の)酸化物系超伝導体
からなる薄膜を用いることとなる。[Prior Art] Electronic devices that utilize superconducting phenomena can be widely applied as, for example, high-speed switching elements, highly sensitive electromagnetic wave detection elements, and highly sensitive magnetometers. Additionally, since superconductors have zero direct current electrical resistance, they are expected to be used as wiring for integrated circuits. Therefore, in order to form devices and wiring layers with high practical value, superconducting B
A thin film made of an oxide superconductor having a high temperature (Tc) (77 or higher) is used.
これらの用途、目的に応じて、超伝導薄膜は積層化、パ
ターン化されて用いられる。この際、超伝導薄膜は大気
、水分、薬品にさらされるため、その表面が汚染されて
、超伝導性が極端に弱められた表面劣化層がそのFii
膜の表面に形成される。Depending on these uses and purposes, superconducting thin films are used in the form of layers or patterns. At this time, the superconducting thin film is exposed to the atmosphere, moisture, and chemicals, so its surface becomes contaminated and its surface deterioration layer, whose superconductivity is extremely weakened, forms its Fii
Formed on the surface of the membrane.
従って、各種の超伝導デバイスや配線層を作製する場合
、薄膜に損傷を与えることなくこの表面劣化層を取り除
くための表面処理を行うことが不可欠である。Therefore, when producing various superconducting devices and wiring layers, it is essential to perform surface treatment to remove this surface deteriorated layer without damaging the thin film.
従来の表面処理方法として、不活性ガスを含む雰囲気中
での高周波放電(逆スパツタ)により表面処理を行う方
法がある。この方法を用いることにより、金属系超伝導
体では、表面劣化層は有効に除去されることが知られて
おり、例えば代表的な超伝導デバイスであるトンネル型
ジョセフソン接合の作製や、電極コンタクトの形成は、
この方法によって実現されている。As a conventional surface treatment method, there is a method of performing surface treatment by high frequency discharge (reverse sputtering) in an atmosphere containing an inert gas. It is known that by using this method, the surface deteriorated layer of metallic superconductors can be effectively removed. For example, it is possible to create tunnel-type Josephson junctions, which are typical superconducting devices, and to make electrode contacts. The formation of
This is achieved using this method.
しかしながら、酸化物超伝導体は、従来の金属系超伝導
体に比べて、超伝導体コヒーレンス長(ξ)が非常に短
く(豹2〜50A)、損傷を受けやすいという性質を持
つため、この方法によっては有効な表面処理を行うこと
が非常に困難である。However, compared to conventional metallic superconductors, oxide superconductors have a very short superconductor coherence length (ξ) (2 to 50 A) and are easily damaged. It is very difficult to perform effective surface treatment depending on the method.
すなわち、酸化物超伝導薄膜の場合、この方法により表
面処理を行っても、表面劣化層は、はとんど除去されず
、逆に、酸化物超伝導薄膜中から酸素脱離、表面損傷等
の悪影響が生じることが判明した。In other words, in the case of an oxide superconducting thin film, even if the surface is treated using this method, the surface deterioration layer is hardly removed, and on the contrary, oxygen desorption from the oxide superconducting thin film, surface damage, etc. It was found that there were negative effects.
また、この方法のバリエーションとして、放電雰囲気中
に酸素やハロゲンガス等を混入させたり、放電電圧を下
げる等の方策をとることが考えられるが、いずれも有効
な表面処理とはなっていない。このため、酸化物超伝導
体を用いたトーンネル型ジョセフソン接合は、まだ十分
な特性を示すものは実現されていない。Further, as a variation of this method, it is possible to take measures such as mixing oxygen, halogen gas, etc. into the discharge atmosphere or lowering the discharge voltage, but none of these methods are effective surface treatments. For this reason, a Tonnell-type Josephson junction using an oxide superconductor that exhibits sufficient characteristics has not yet been realized.
また、酸化物超伝導薄膜上にAu、Ag等の貴金属電極
を形成する場合も、この表面処理のみでは、十分なコン
タクト特性が得られないため、電極堆積後に、SOO℃
以上の高温熱処理が必要となっている。In addition, when forming noble metal electrodes such as Au and Ag on oxide superconducting thin films, sufficient contact characteristics cannot be obtained with this surface treatment alone, so after electrode deposition, SOO℃
High-temperature heat treatment is required.
以上説明したように、従来の方法では酸化物超伝導薄膜
に対して表1劣化層を除去することは非常に困難で、従
来、酸化物超伝導薄膜の有効な表面処理技術は存在しな
かった。As explained above, it is extremely difficult to remove the degraded layer shown in Table 1 from oxide superconducting thin films using conventional methods, and there has been no effective surface treatment technology for oxide superconducting thin films. .
[発明が解決しようとする課題]
本発明の目的は、酸化物超伝導薄膜の表面劣化層を、表
面損傷を与えることなく除去することができ、高性能な
超伝導デバイスの配線、電極コンタクト等の作製を容易
にすることが可能な酸化物超伝導薄膜の表面処理方法お
よび表面処理装置を提供することにある。[Problems to be Solved by the Invention] An object of the present invention is to be able to remove the surface-deteriorated layer of an oxide superconducting thin film without damaging the surface, and to improve the wiring, electrode contacts, etc. of high-performance superconducting devices. An object of the present invention is to provide a surface treatment method and a surface treatment apparatus for an oxide superconducting thin film, which can facilitate the production of oxide superconducting thin films.
[課題を解決するための手段]
本発明の酸化物超伝導薄膜の表面処理方法は、酸化物超
伝導薄膜が形成された基体を、真空に排気された真空槽
中に配置し、前記薄膜表面に、前記真空槽に備え付けら
れたイオン発生源から発生された10〜200eVの範
囲のエネルギーを有するイオンビームを照射することを
特徴とする。[Means for Solving the Problems] In the method for surface treatment of an oxide superconducting thin film of the present invention, a substrate on which an oxide superconducting thin film is formed is placed in a vacuum chamber evacuated to vacuum, and the surface of the thin film is The method is characterized in that an ion beam having an energy in the range of 10 to 200 eV generated from an ion source installed in the vacuum chamber is irradiated.
本発明の酸化物超伝導薄膜の表面処理装置は、真空槽と
排気系とを少なくとも有し;
酸化物超伝導薄膜を形成した基体を前記真空槽内に保持
しかつ冷却する保持・冷却機構と:イオンビームを発生
し、かつ前記基体面にイオンビームを照射するための少
なくとも2つ以上の電子サイクロトロン共鳴型イオン源
と;前記イオンビームの照射後に、前記基体面に金属層
及び/又は絶縁層を連続的に形成するための薄膜堆積機
構と;
を備えたことを特徴とする。The surface treatment apparatus for an oxide superconducting thin film of the present invention includes at least a vacuum chamber and an exhaust system; a holding/cooling mechanism for holding and cooling the substrate on which the oxide superconducting thin film is formed in the vacuum chamber; : at least two or more electron cyclotron resonance ion sources for generating an ion beam and irradiating the ion beam onto the substrate surface; after irradiation with the ion beam, a metal layer and/or an insulating layer on the substrate surface; A thin film deposition mechanism for continuously forming a thin film;
[作用] 以下に本発明の作用を詳細な構成とともに説明する。[Effect] The operation of the present invention will be explained below along with the detailed configuration.
本発明は、所定のエネルギーを有するイオンビームを表
面劣化層に照射するものである。According to the present invention, a surface-deteriorated layer is irradiated with an ion beam having a predetermined energy.
ここで、イオンビームのソースとして不活性ガス元素(
例えば、He、Ne、Ar、KrXe等)を用いること
ができ、その物理的なニツチグ作用により効率的な表面
処理を行うことができる。このイオンビームの照射にお
いては、イオンエネルギーの設定が重要である。このエ
ネルギーが200eVを越えると、酸化物薄膜表面の結
晶性に損傷を与え、また10eV未満では照射効果(す
なわち、表面劣化1の除去効果)が期待できない。この
ため10〜200eVというエネルギーの範囲に設定す
る。Here, an inert gas element (
For example, He, Ne, Ar, KrXe, etc.) can be used, and efficient surface treatment can be performed due to its physical Nitstig action. In this ion beam irradiation, setting the ion energy is important. If this energy exceeds 200 eV, it will damage the crystallinity of the surface of the oxide thin film, and if it is less than 10 eV, no irradiation effect (ie, the effect of removing surface deterioration 1) can be expected. For this reason, the energy is set in the range of 10 to 200 eV.
また、表面損傷をさらに低減化するためには、例えば、
F、Cfl、Br等のハロゲン元素を構成元素とするガ
ス(例えば、C、F2.。2. CCf1a 。In addition, in order to further reduce surface damage, for example,
A gas containing a halogen element such as F, Cfl, or Br (for example, C, F2..2. CCf1a).
CBr4.CCn□F2.CBrF、等)のイオンビー
ムを前記不活性ガスのイオンビームに混入させることが
好ましい。この場合、物理的エツチング作用の他に化学
的エツチング作用も加味されるため非常に照射効果が顕
著となる。CBr4. CCn□F2. Preferably, an ion beam of CBrF, etc.) is mixed into the inert gas ion beam. In this case, in addition to the physical etching effect, a chemical etching effect is also taken into account, so that the irradiation effect becomes very significant.
これを実行するための第1の方法としては、不活性ガス
のイオンビームと、ハロゲン元素を構成元素とするガス
のイオンビームを同時に照射する方法がある(請求項2
)。A first method for implementing this is to simultaneously irradiate an ion beam of an inert gas and an ion beam of a gas containing a halogen element (Claim 2).
).
一方、第2の方法としては、ハロゲン元素を構成元素と
するガスと不活性ガスとの混合ガスをソースとして発生
されたイオンビームを照射する方法がある(請求項3)
。On the other hand, as a second method, there is a method of irradiating with an ion beam generated using a mixed gas of a gas containing a halogen element and an inert gas as a source (Claim 3)
.
なお、第2の方法において、不活性ガスとノ\ロゲンガ
スの混合比は、次のように設定する。ノ\ロゲン元素を
構成元素とするガスの量が、多すぎると、酸化物薄膜表
面に多量の酸化物のノ\ロゲン化した層が形成されて、
有効なエツチングが進行しなくなるため、混合ガス中の
ハロゲン元素を構成元素とするガスの体積分率を10%
以下とする。In addition, in the second method, the mixing ratio of the inert gas and the halogen gas is set as follows. If the amount of gas containing a halogen element as a constituent element is too large, a large amount of halogenated oxide layer will be formed on the surface of the oxide thin film.
In order to prevent effective etching from proceeding, the volume fraction of the gas containing halogen elements in the mixed gas should be reduced to 10%.
The following shall apply.
なお、イオンビームの照射時における真空槽の真空度と
しては、例えば10−’Torr以下が好ましく、10
−8以下がより好ましい。The degree of vacuum in the vacuum chamber during irradiation with the ion beam is preferably 10-' Torr or less, and 10-'Torr or less, for example.
-8 or less is more preferable.
このようなイオンビームの発生源としては、まずカウフ
マン型イオン源が考えられる。カウフマン型イオン源の
場合プラズマを発生するための熱電子放出用としてタン
グステンなどを材料とするフィラメントが用いられるた
め、ソースガスが活性なハロゲンガスを含む場合に、フ
ィラメント断線によるイオン源動作停止までの寿命が駒
数時間と短く、また断線にいたるまでにフィラメントが
次第に劣化するため、−イオン電流値の変動が大きく、
十分に制御することが困難である。従って、イオンビー
ムの発生源としては、マイクロ波によりプラズマが発生
されるECR(を子サイクロトロン共OS)型イオン源
を用いることが好ましし\。As a source for generating such an ion beam, a Kauffman type ion source can be considered. In the case of a Kauffman type ion source, a filament made of tungsten or other material is used for thermionic emission to generate plasma, so if the source gas contains active halogen gas, the ion source will stop operating due to filament breakage. The lifespan is short, only a few hours, and the filament gradually deteriorates before it breaks, resulting in large fluctuations in the -ion current value.
Difficult to adequately control. Therefore, as the ion beam generation source, it is preferable to use an ECR (cyclotron and OS) type ion source in which plasma is generated by microwaves.
ECR型イオン源の場合、フィラメントを用いないため
、反応性ガスを含むイオンビームを安定して発生させる
ことかできる上、低エネルギーのイオンビームの発生も
容易となる。In the case of an ECR type ion source, since a filament is not used, it is possible to stably generate an ion beam containing a reactive gas, and it is also easy to generate a low-energy ion beam.
そこで、本発明の表面処理装置においては、イオン源と
してECR型イオン源を用い、これを少なくとも2以上
備えせしめるとともに、金属層あるいは絶縁層を、表面
劣化層の除去後連続的に形成するための!f#膜堆積機
構を備えせしめる。Therefore, in the surface treatment apparatus of the present invention, an ECR type ion source is used as an ion source, and at least two or more ECR type ion sources are provided. ! A f# film deposition mechanism is provided.
なお、この表面処理装置は、不活性ガスのイオンビーム
と、ハロゲン元素を構成元素とするガスのイオンビーム
とを併用する場合に好適であるが、不活性ガスのイオン
ビームのみを照射する場合にも用いることができる。こ
の場合は、2以上のECR型イオン掠のうちの1つ以外
は休止させておけばよい。Note that this surface treatment device is suitable for use in combination with an ion beam of an inert gas and an ion beam of a gas containing a halogen element. can also be used. In this case, all but one of the two or more ECR type ion traps may be left inactive.
一方、ff膜堆積機構としては、例えば、蒸着、スパッ
タ、イオンブレーティング、化学気相成長等の機能を有
しているものがあげられる。On the other hand, examples of the FF film deposition mechanism include those having functions such as vapor deposition, sputtering, ion blating, and chemical vapor deposition.
本発明装置においては、表面劣化層の除去後、連続的に
金属層あるいは絶縁層を形成せしめることができるため
、表面劣化層除去後に露出する清浄な酸化物伝導薄膜の
表面を清浄なまま維持でき、その清浄な表面上に貴金属
等よりなる金属層あるいは絶縁層を形成することができ
、優れた特性を有するトンネル型ジョセフソン接合、電
極コンタクト等の形成が可能となる。In the apparatus of the present invention, a metal layer or an insulating layer can be continuously formed after the surface deterioration layer is removed, so the surface of the clean oxide conductive thin film exposed after the surface deterioration layer is removed can be maintained clean. A metal layer or an insulating layer made of a noble metal or the like can be formed on the clean surface, making it possible to form tunnel-type Josephson junctions, electrode contacts, etc. with excellent characteristics.
以上のように、本発明では、低エネルギーイオンビーム
による物理的・化学的エツチング作用を利用するのであ
るから、酸化物超伝導薄膜への表面損傷を最小限にとど
めることができる点が従来技術と異なる。As described above, since the present invention utilizes the physical and chemical etching effect of a low-energy ion beam, it is different from the conventional technology in that surface damage to the oxide superconducting thin film can be minimized. different.
[実施例]
以下に、実施例に基づいて本発明をより詳細に説明する
。[Examples] The present invention will be described in more detail below based on Examples.
(実施例1) 本例では、第1図に示す表面処理装置を用いた。(Example 1) In this example, a surface treatment apparatus shown in FIG. 1 was used.
この装置は、真空ai8と排気系7とを有し、酸化物超
伝導薄膜9を形成した基板2を真空槽8内に保持しかつ
冷却する保持・冷却機構1と、イオンビームを発生し、
かつ基板2の面にイオンビームを照射するための第1の
ECRイオン源3と第2のECRイオン′a、4と、イ
オンビームの照射後に、基板2面に、金属層を連続的に
形成するための金属層堆積機構5と、絶縁層を連続的に
形成するための絶縁層堆積機構6を備えている。This device has a vacuum AI 8 and an exhaust system 7, a holding/cooling mechanism 1 that holds and cools a substrate 2 on which an oxide superconducting thin film 9 is formed in a vacuum chamber 8, and generates an ion beam.
and a first ECR ion source 3 and a second ECR ion 'a, 4 for irradiating the surface of the substrate 2 with an ion beam, and a metal layer is continuously formed on the surface of the substrate 2 after irradiation with the ion beam. A metal layer deposition mechanism 5 for continuously forming an insulating layer and an insulating layer deposition mechanism 6 for continuously forming an insulating layer are provided.
本例では、この装置を用いて、以下の表面処理を行った
。In this example, the following surface treatment was performed using this apparatus.
以下にその詳細を説明する。The details will be explained below.
まず、5rTi○、基板上に、Y−Ba−Cu−O薄膜
(膜厚:2000A)を形成した。この薄膜をX線回折
法により調べた結果、C軸の格子定数が11.7Aで、
超伝導転移温度Tc=90Kを示す超伝導体の結晶構造
を持ち、結晶の配内性(C軸方向)が非常に高いことが
分フた。First, a Y-Ba-Cu-O thin film (thickness: 2000 Å) was formed on a 5rTi◯ substrate. As a result of examining this thin film by X-ray diffraction method, the lattice constant of the C axis was 11.7A,
It was found that it has a superconductor crystal structure exhibiting a superconducting transition temperature Tc = 90K, and that the orientation of the crystal (in the C-axis direction) is extremely high.
次に、この薄膜の形成された基板を、貰速反射電子線回
折(RHEED)、オージェ電子分光(AES)、EC
Rイオンビーム照射装置、逆スパツタ機構(いずれも図
示せず)を装備した真空槽8中の基板保持・冷却機構1
に固定した。この際に基板1は大気にさらされた。Next, the substrate on which this thin film was formed was subjected to high-speed reflection electron diffraction (RHEED), Auger electron spectroscopy (AES), EC
Substrate holding/cooling mechanism 1 in a vacuum chamber 8 equipped with an R ion beam irradiation device and a reverse sputtering mechanism (both not shown)
Fixed. At this time, the substrate 1 was exposed to the atmosphere.
表面処理を施す前の薄膜の表面については、RHEED
パターンにおいて弱いスポットとリングか混在したパタ
ーンが見られ、AESによる表面組成分析の結果、薄膜
の成分元素であるYBa、Cu、O以外にC,Nが数十
%程度検出された。すなわち、大気中に取り出したこと
により、表面に結晶性の低い汚染層が形成されているこ
とか分った。For the surface of the thin film before surface treatment, RHEED
A mixed pattern of weak spots and rings was observed in the pattern, and as a result of surface composition analysis by AES, several tens of percent of C and N were detected in addition to YBa, Cu, and O, which are component elements of the thin film. In other words, it was found that a contaminant layer with low crystallinity was formed on the surface by taking it out into the atmosphere.
以上のように、表面処理前の特性の測定が終了した後、
次の手順により表面処理を行った。As mentioned above, after measuring the characteristics before surface treatment,
Surface treatment was performed according to the following procedure.
まず、排気系7を用いて真空槽8の内部を約10−’T
orrに排気した。First, the inside of the vacuum chamber 8 is heated to about 10-'T using the exhaust system 7.
Exhausted to orr.
次いで、ECRイオンビーム源4を用いて、100eV
のArイオンビーム(ビーム電流密度 0.5 mA
/ c m2)を10分間薄膜表面に照射することによ
り表面処理を行った。Next, using the ECR ion beam source 4, 100 eV
Ar ion beam (beam current density 0.5 mA
The surface treatment was performed by irradiating the thin film surface with /cm2) for 10 minutes.
表面処理後、この試料のRHEEDパターンを調べたと
ころ、RHEEDパターンに非客に強いスポットが規則
的に配列した状態が眼側された。After the surface treatment, the RHEED pattern of this sample was examined, and it was observed that the RHEED pattern had a regular array of spots that were strong against non-customers.
従って、表面は優れた結晶性を持つことが分かつた。Therefore, it was found that the surface had excellent crystallinity.
さらに、この試料に対して、AESによる表面組成分析
を行った結果、薄膜の成分元素であるY、Ba、Cu、
O以外の元素はAESの検出感度(05%)以下で検出
されなかった。従って、表面に存在していた汚染層が除
去されていることが分かった。Furthermore, as a result of surface composition analysis performed on this sample by AES, the component elements of the thin film, Y, Ba, Cu,
Elements other than O were not detected with the detection sensitivity of AES (05%) or lower. Therefore, it was found that the contamination layer existing on the surface was removed.
また、Arにかえ、He、Ne、Kr、Xeをイオン種
としたECRイオンビームを用い、他の条件は上記例と
同様にして実験を行ったが、Arイオンビームの場合と
同様な効果を持つことが分かった。In addition, an experiment was conducted using an ECR ion beam with He, Ne, Kr, and Xe ion species instead of Ar, and other conditions were the same as in the above example, but the same effect as the Ar ion beam was obtained. I found out that I have it.
以上のように、本例によって、表面損傷を与えることな
く、酸化物超伝導薄膜の表面劣化層を除去することがで
きることが確認された。As described above, it was confirmed that the surface deteriorated layer of the oxide superconducting thin film could be removed without causing surface damage according to this example.
(比較例)
本例では、10eV未溝のエネルギーを有するイオンビ
ームと、200eVを越えるエネルギーを有するイオン
ビームをそれぞれ照射した。(Comparative Example) In this example, an ion beam having an energy of 10 eV and an ion beam having an energy exceeding 200 eV were irradiated.
他の条件は実施例1と同様とした。Other conditions were the same as in Example 1.
照射終了後、RHEED及びAESにより結晶性、表面
組成分析を行なったところ、10eV未溝の場合は、表
面劣化層の除去はほとんど行われておらず、照射効果が
期待できず、一方、200eVを超えた場合は結晶性に
影響を与えていることが確認された。After the irradiation, we analyzed the crystallinity and surface composition using RHEED and AES, and found that in the case of 10 eV grooves, the surface deteriorated layer was hardly removed, and no irradiation effect could be expected. It was confirmed that the crystallinity was affected when the amount was exceeded.
(従来例1)
次に、別の試料を同一装置に導入し、従来法により、す
なわち、ArガスSPa中での逆スパツタ(バイアス電
圧Vp−p=800V)により表面処理を行った。(Conventional Example 1) Next, another sample was introduced into the same apparatus, and surface treatment was performed by a conventional method, that is, by reverse sputtering (bias voltage Vp-p=800V) in Ar gas SPa.
この薄膜表面は、RHEEDパターンにおいて弱いスポ
ットとリングが混在したパターンが見られ、AESにお
いて薄膜の成分元素である、Y。On the surface of this thin film, a pattern with a mixture of weak spots and rings was observed in the RHEED pattern, and Y, which is a component element of the thin film, was observed in AES.
Ba、Cu、O以外にC,Nが数十%程度検出された。In addition to Ba, Cu, and O, several tens of percent of C and N were detected.
すなわち、表面に形成された結晶性の低い汚染層がほと
んど除去されずそのまま残フていることが分かった。That is, it was found that the contamination layer with low crystallinity formed on the surface was hardly removed and remained as it was.
また、従来法で、Arガス圧を1〜50Paの範囲で、
バイアス電圧を100〜100OVの範囲で変化させて
、表面処理を行ったか、RHEED、AESとも同様の
結果が得られ、表面汚染層が除去されていないことが分
かフた。In addition, in the conventional method, the Ar gas pressure is set in the range of 1 to 50 Pa,
The surface treatment was performed by changing the bias voltage in the range of 100 to 100 OV, but similar results were obtained with RHEED and AES, indicating that the surface contamination layer was not removed.
なお、上述した実施例1と従来例1との結果を表1にま
とめて示す。The results of Example 1 and Conventional Example 1 described above are summarized in Table 1.
表1
本発明および従来法により処理した
超伝導薄膜表面のRHEED観察と
AES分析の結果
(実施例2、従来例2)
M30基体上に形成されたB1−5r−Ca−Cu−0
超伝導薄膜を用いて、本発明および従来の表面処理によ
る、電極コンタクト抵抗の違いを比較した。Table 1 Results of RHEED observation and AES analysis of superconducting thin film surfaces treated by the present invention and conventional methods (Example 2, Conventional Example 2) B1-5r-Ca-Cu-0 formed on M30 substrate
Using a superconducting thin film, we compared the difference in electrode contact resistance between the present invention and the conventional surface treatment.
B1−3r−Ca−Cu−0薄膜の膜厚は3000A、
超伝導転B温度Tczsroは105にであった。The thickness of the B1-3r-Ca-Cu-0 thin film is 3000A,
The superconducting transition B temperature Tczsro was 105.
薄膜をフォト工程(レジスト塗布、露光、現像)および
イオンビームエツチングにより、4端子電気抵抗測定用
の形状にバターニングした。The thin film was patterned into a shape for 4-terminal electrical resistance measurement using a photo process (resist coating, exposure, development) and ion beam etching.
ついてフォト工程(レジスト塗布、露光、現像)により
Au電極用のリフトオフステンシルを形成した。ここで
、!極部の面積は200μm×200μm、電g!部の
個数は10個とした。Then, a lift-off stencil for the Au electrode was formed by a photo process (resist coating, exposure, and development). here,! The area of the extreme part is 200μm x 200μm, electric g! The number of parts was 10.
このような試料を2枚用意し、本発明および従来法を用
いて、表面処理を行った。その後、500A厚のAu薄
膜を堆積し、アセトン中でリフトオフを行うことにより
、Auコンタクト電極パターンを形成した。Two such samples were prepared and surface treated using the present invention and the conventional method. Thereafter, a 500A thick Au thin film was deposited and lift-off was performed in acetone to form an Au contact electrode pattern.
ここにおいて、表面処理は、本発明では、(Ar+5%
CF、)の混合ガスをソースカスとしたECRイオンビ
ーム(イオンビームエネルギー 50eV、ビーム電流
密度:0.3A/c m’ )を5分市叩射することに
より行った。Here, in the present invention, the surface treatment is (Ar+5%
The experiment was carried out by bombarding an ECR ion beam (ion beam energy: 50 eV, beam current density: 0.3 A/cm') with a mixed gas of CF, ) as the source gas for 5 minutes.
方、従来法では、(Ar+10%CF、)の混合ガス中
(10Pa)でRFスパッタクリーニング(Vp−p
=500V、5m1n)することにより行った。On the other hand, in the conventional method, RF sputter cleaning (Vp-p
=500V, 5m1n).
こうして作製した試料を用いて、超伝導薄膜とAu薄膜
の間のコンタクト抵抗を評価した。本発明により作成し
たV、料では、コンタクト抵抗はI X 10−’ 〜
I X 10−’Ωcm2と非掌に低い値が得られ、良
好なコンタクトが形成されていることが分かった。一方
、従来法により作製した試料では、コンタクト抵抗はl
Xl0−’〜1ΩCm”の範囲にあり、ばらつきが大き
く、全体に大きな値となっており、コンタクトの形成が
不十分であることが分かった。Using the sample thus prepared, the contact resistance between the superconducting thin film and the Au thin film was evaluated. In the V material prepared according to the present invention, the contact resistance is I x 10-' ~
A low value of I x 10-'Ωcm2 was obtained on the non-palate side, indicating that good contact was formed. On the other hand, in the sample prepared by the conventional method, the contact resistance was l
It was found that the contact formation was in the range of Xl0-' to 1 ΩCm'', with large variations and large values overall, indicating that the contact formation was insufficient.
また、ソースガスとしての混合ガス中のCF4を一般的
にC、F2.や、とした場合につき、また、混合ガスを
、(A r + 2%CCl12)の混合ガス、(Ar
+6%CCu2F2)の混合ガス、(Ar十8%cBr
4)の混合ガス、(Ar+1o%CBrF3)の混合ガ
スとした場合につき、それぞれ同様な実験を行ったが、
上記と同様な結果が得られた。In addition, CF4 in a mixed gas as a source gas is generally replaced with C, F2. In addition, the mixed gas is a mixed gas of (Ar + 2% CCl12), (Ar
+6%CCu2F2) mixed gas, (Ar + 8%cBr
Similar experiments were conducted using the mixed gas of 4) and the mixed gas of (Ar+1o%CBrF3), respectively.
Results similar to those above were obtained.
また、これら混合ガス中のArを他の不活性ガス(He
、Ne、Kr、Xe)に変えても同様の結果が得られた
。ここでハロゲン元素を構成元素とするガスの混合比は
10%以下とする必要があり、これ以上にすると酸化物
薄膜表面に多量の酸化物のハロゲン化した層が形成され
て、有効なエツチングが進行しなくなることも確認され
た。In addition, Ar in these mixed gases can be replaced with other inert gas (He
, Ne, Kr, Xe), similar results were obtained. The mixing ratio of the gas containing a halogen element as a constituent element must be 10% or less; if it exceeds this, a large amount of halogenated oxide layer will be formed on the surface of the oxide thin film, making effective etching impossible. It was also confirmed that the disease did not progress.
さらに、この場合にも混合ガスのイオンエネルギーは蔦
1の実施例と同様10〜200eVの範囲におさえる必
要があることもi認された。Furthermore, it was also recognized that in this case as well, the ion energy of the mixed gas needs to be kept within the range of 10 to 200 eV, similar to the example of Tsuta 1.
(実施例3)
L a A fl O3基体上にスパッタ法により、E
u−Ba−Cu−0超伝導薄膜を1500A厚堆積した
。この薄膜をフォト工程(レジスト塗布、露光、現像)
およびイオンビームエツチングにより、下部電極形状に
バターニングした。ついでフォト工程(レジスト塗布、
露光、現像)により上部電極用のリフトオフステンシル
を形成した。ここで、接合部の面積は50μmx50μ
mとした。このような試料を2枚用意し、本発明および
従来法を用いてトンネル型ジコセフソ接合を作製した。(Example 3) E was deposited on a L a A fl O3 substrate by sputtering.
A u-Ba-Cu-0 superconducting thin film was deposited to a thickness of 1500A. This thin film is processed through photo process (resist coating, exposure, development)
Then, the lower electrode shape was patterned by ion beam etching. Then photo process (resist coating,
A lift-off stencil for the upper electrode was formed by exposure and development. Here, the area of the joint is 50μm x 50μ
It was set as m. Two such samples were prepared, and tunnel-type dicocephalic junctions were fabricated using the present invention and the conventional method.
ここでも第1図に示す本発明に係る表面処理装置を用い
た。本例では、金属層堆積機構として、電子銃蒸発源5
aを有する蒸着装置5を用いた。Here, too, the surface treatment apparatus according to the present invention shown in FIG. 1 was used. In this example, an electron gun evaporation source 5 is used as the metal layer deposition mechanism.
A vapor deposition apparatus 5 having a structure was used.
また、絶縁層堆積機構として交流マグネトロンスパッタ
装置6を用いた。なお、ターゲット6aとしてMgOタ
ーゲットを用いた。Further, an AC magnetron sputtering device 6 was used as an insulating layer deposition mechanism. Note that an MgO target was used as the target 6a.
本装置の真空槽内の基板保持・冷却機構に試料を配置し
、この試料表面に、Arイオンビーム(エネルギー:
120eV、イオン電流密度0.2A/cm2)と、ハ
ロゲン元素を構成元素とするガスのイオンビーム(ソー
スガス:CCf14.エネルギー・20eV、イオン;
流密度0.1A /cm’)トを10分分間時照射し、
ついて交流マグネトロンスパッタカソードによりバリア
層としてMgoを2OA堆積し、最後に電子銃蒸発源に
より上部電極Nbを1200Aに形成して、トンネル型
ジョセフソン接合とした。A sample is placed in the substrate holding/cooling mechanism in the vacuum chamber of this device, and an Ar ion beam (energy:
120 eV, ion current density 0.2 A/cm2) and an ion beam of a gas containing a halogen element (source gas: CCf14. Energy 20 eV, ions;
Irradiated with a current density of 0.1 A/cm' for 10 minutes,
Then, 2OA of Mgo was deposited as a barrier layer using an AC magnetron sputtering cathode, and finally, an upper electrode Nb was formed to a thickness of 1200A using an electron gun evaporation source to form a tunnel-type Josephson junction.
方、従来法により、すなわち(Ar+10%02)の混
合ガス中(6Pa)でのRFスパッタクリーニング(V
p−p =500V、15mi n)を行い、ついで同
様にしてバリア層としてMgOを2OA堆積し、最後に
上部電極Nbを120OA形成して、トンネル型ジョセ
フソン接合とした。On the other hand, RF sputter cleaning (V
p-p = 500 V, 15 min), then 2 OA of MgO was deposited as a barrier layer in the same manner, and finally an upper electrode Nb of 120 OA was formed to form a tunnel type Josephson junction.
以上のようにして作成したトンネル型ジョセフソン接合
の電流−電圧特性を、液体温度4.2にで測定した0本
発明で作製した接合は、トンネル接合特有の非線形性を
示し、ジョセフソン電流、超伝導ギャップ構造が観測さ
れた。これに対し、従来法で作製した接合は、非線形性
を示さず、ジョセフソン電流1超伝導ギヤツプ構造が観
測されなかフた。The current-voltage characteristics of the tunnel-type Josephson junction created as described above were measured at a liquid temperature of 4.2°C. A superconducting gap structure was observed. In contrast, the junction fabricated by the conventional method did not exhibit nonlinearity, and no Josephson current 1 superconducting gap structure was observed.
不活性ガスとして、Arにかえ、He NeKr、X
eを用いた場合、および、ハロゲン元素を構成元素とす
るガスとして、CCj2.にかえ、CnFin+2.
CB rn 、 CCuzF2. CB rF3
を用た場合につきそれぞれ実験を行ったところ、上記と
同様の結果が得られた。この場合も各イオンビームのエ
ネルギーは10〜200eVの範囲におさえて照射する
必要があることが確Uされた。As an inert gas, instead of Ar, He NeKr, X
When using CCj2.e, and as a gas containing a halogen element as a constituent element, CCj2. Instead, CnFin+2.
CBrn, CCuzF2. CB rF3
When experiments were conducted using each case, the same results as above were obtained. In this case as well, it was confirmed that the energy of each ion beam must be kept within the range of 10 to 200 eV.
[発明の効果コ
以上説明したように、本発明によれば、例えば、大気中
露土、フォト工程等のプロセス処理によって生ずる酸化
物超伝導薄膜の表面劣化層、汚染層に対して、10〜2
00eVのエネルギーを有するイオンビームを照射する
ことにより、その表面層にダメージを残さずに効率的な
エツチングが行われ、その表面が回復、清浄化されるの
であるから、酸化物超伝導体薄膜とバリア層、金属層と
の良好な界面特性を実現できるという利点がある。従っ
て、酸化物超伝導体を用いたトンネル接合、電極コンタ
クト形成が可能となる。[Effects of the Invention] As explained above, according to the present invention, for example, the surface deterioration layer and the contaminated layer of the oxide superconducting thin film caused by exposure to the atmosphere, photo process, etc. 2
By irradiating the ion beam with an energy of 00 eV, efficient etching is performed without leaving any damage to the surface layer, and the surface is recovered and cleaned. It has the advantage of achieving good interfacial properties with the barrier layer and the metal layer. Therefore, it becomes possible to form tunnel junctions and electrode contacts using oxide superconductors.
特に、不活性ガスのイオンビームとハロゲン元素を構成
元素とするガスのイオンビームを照射すると、上記効果
がより一層顕著となる(請求項2、請求項3)。In particular, the above effect becomes even more remarkable when irradiating with an ion beam of an inert gas and an ion beam of a gas containing a halogen element (Claims 2 and 3).
第1図は本発明の表面処理装置の構成を示す断面図。 (符号の説明) 1・・・基板保持・冷却機構 2・・・基体く基板) 3・・・第1のECRイオン源 4・・・第2のECRイオン源 5・・・金属層堆積機構(蒸着装置) 5a・・・電子銃蒸発源 6・・・絶縁層堆積機構 6a・・・ターゲット (スパッタ装置) 7・・・真空排気系 8・・・真空槽 9・・・酸化物超伝導薄膜 FIG. 1 is a sectional view showing the configuration of a surface treatment apparatus of the present invention. (Explanation of symbols) 1... Board holding/cooling mechanism 2...Base board) 3...First ECR ion source 4...Second ECR ion source 5...Metal layer deposition mechanism (evaporation device) 5a...electron gun evaporation source 6...Insulating layer deposition mechanism 6a...Target (Sputtering equipment) 7...Vacuum exhaust system 8...Vacuum chamber 9...Oxide superconducting thin film
Claims (4)
気された真空槽中に配置し、前記薄膜表面に、前記真空
槽に備え付けられたイオン発生源から発生された10〜
200eVの範囲のエネルギーを有するイオンビームを
照射することを特徴とする酸化物超伝導薄膜の表面処理
方法。(1) A substrate on which an oxide superconducting thin film is formed is placed in a vacuum chamber that is evacuated, and the surface of the thin film is coated with 10 to
A method for surface treatment of an oxide superconducting thin film, which comprises irradiating an ion beam with an energy in the range of 200 eV.
い、第1のイオン発生源から発生された不活性ガスのイ
オンビームと、第2のイオン発生源から発生されたハロ
ゲン元素を構成元素とするガスのイオンビームとを同時
に、前記薄膜の表面に照射することを特徴とする請求項
1記載の酸化物超伝導薄膜の表面処理方法。(2) Two ion sources are used as the ion sources, and the ion beam of inert gas generated from the first ion source and the halogen element generated from the second ion source are the constituent elements. 2. The method for surface treatment of an oxide superconducting thin film according to claim 1, wherein the surface of the thin film is simultaneously irradiated with an ion beam of a gas.
スとの混合ガスであって、ハロゲン元素を構成元素とす
るガスの体積分率が10%以下の混合ガスをソースとし
て発生されたイオンビームを、前記薄膜の表面に照射す
ることを特徴とする請求項1記載の酸化物超伝導薄膜の
表面処理方法。(3) Ions generated using a mixed gas of an inert gas and a gas containing a halogen element as a source, in which the volume fraction of the gas containing a halogen element as a constituent element is 10% or less. 2. The method for surface treatment of an oxide superconducting thin film according to claim 1, wherein the surface of the thin film is irradiated with a beam.
導薄膜を形成した基体を前記真空槽内に保持しかつ冷却
する保持・冷却機構と;イオンビームを発生し、かつ前
記基体面にイオンビームを照射するための少なくとも2
つ以上の電子サイクロトロン共鳴型イオン源と; 前記イオンビームの照射後に、前記基体面に金属層及び
/又は絶縁層を連続的に形成するための薄膜堆積機構と
; を備えたことを特徴とする酸化物超伝導薄膜の表面処理
装置。(4) having at least a vacuum chamber and an exhaust system; a holding/cooling mechanism for holding and cooling the substrate on which the oxide superconducting thin film is formed in the vacuum chamber; generating an ion beam and at least two ion beams for irradiating the
at least one electron cyclotron resonance ion source; and a thin film deposition mechanism for continuously forming a metal layer and/or an insulating layer on the substrate surface after irradiation with the ion beam. Surface treatment equipment for oxide superconducting thin films.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2151886A JP2958054B2 (en) | 1990-06-11 | 1990-06-11 | Surface treatment method and surface treatment device for oxide superconducting thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2151886A JP2958054B2 (en) | 1990-06-11 | 1990-06-11 | Surface treatment method and surface treatment device for oxide superconducting thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0446084A true JPH0446084A (en) | 1992-02-17 |
JP2958054B2 JP2958054B2 (en) | 1999-10-06 |
Family
ID=15528357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2151886A Expired - Fee Related JP2958054B2 (en) | 1990-06-11 | 1990-06-11 | Surface treatment method and surface treatment device for oxide superconducting thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2958054B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06140675A (en) * | 1992-03-11 | 1994-05-20 | Natl Res Inst For Metals | Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof |
CN111272798A (en) * | 2020-02-26 | 2020-06-12 | 旭科新能源股份有限公司 | Flexible film testing device and flexible film production line |
-
1990
- 1990-06-11 JP JP2151886A patent/JP2958054B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06140675A (en) * | 1992-03-11 | 1994-05-20 | Natl Res Inst For Metals | Ultrathin film of bi oxide high-temperature superconductor and manufacture thereof |
CN111272798A (en) * | 2020-02-26 | 2020-06-12 | 旭科新能源股份有限公司 | Flexible film testing device and flexible film production line |
Also Published As
Publication number | Publication date |
---|---|
JP2958054B2 (en) | 1999-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030146432A1 (en) | High temperature superconductor Josephson junction element and manufacturing method for the same | |
US4980338A (en) | Method of producing superconducting ceramic patterns by etching | |
JPH0446084A (en) | Method and device for surface-treating oxide superconducting thin film | |
Bass et al. | Effects of substrate preparation on the stress of Nb thin films | |
Matsui et al. | Electron beam irradiation effects for high‐T c superconducting thin films | |
JPH08316535A (en) | Josephson element and manufacture thereof | |
JPH02162780A (en) | Manufacture of oxide superconductive tunnel junction | |
JP2001244511A (en) | Method of manufacturing josephson device having ramp edge structure and film-forming device | |
Karmanenko et al. | Patterning of tunable planar ferroelectric capacitors based on the YBCO/BSTO film structure | |
Karmanenko et al. | Formation and Raman spectroscopic study of YBCO/STO/YBCO heteroepitaxial structures | |
JP2822623B2 (en) | Method of forming electrodes on superconductor | |
JPH0464268A (en) | Manufacture of josephson device | |
Septier | Surface studies and electron emissions | |
Cristiano et al. | X-ray detection by Nb STJs above 1.4 K | |
JP2634456B2 (en) | Superconductor element manufacturing method | |
Makita et al. | Fabrication of Ramp-Edge Junction with NdBa2Cu3Oy-Based Interface-Modified Barrier | |
Ohta et al. | Superconducting transition temperature of indium films overlayered on strontium titanate | |
Bhushan et al. | Low-loss lumped-element capacitors for superconductive integrated circuits | |
JPH01252504A (en) | Surface treatment of superconducting oxide material | |
Nakayama et al. | Fabrication of high-quality multilayer structure for HTS-SFQ circuits using surface treatments | |
JPH0465398A (en) | Production of superconducting line | |
JPH03197322A (en) | Production of superconductor of thin film | |
JPH05327048A (en) | Processing method for superconducting thin film | |
JPH0487385A (en) | Processing of oxide superconductor | |
Mazurek et al. | Investigations of the field emission current from bismuth ceramic cathodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |