JPH0446014A - Manufacture device for rare earth fluolide anhydride and its production - Google Patents

Manufacture device for rare earth fluolide anhydride and its production

Info

Publication number
JPH0446014A
JPH0446014A JP2150067A JP15006790A JPH0446014A JP H0446014 A JPH0446014 A JP H0446014A JP 2150067 A JP2150067 A JP 2150067A JP 15006790 A JP15006790 A JP 15006790A JP H0446014 A JPH0446014 A JP H0446014A
Authority
JP
Japan
Prior art keywords
rare earth
fluoride
reaction
volatile
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2150067A
Other languages
Japanese (ja)
Inventor
Kazufumi Sakami
酒見 和文
Toshiaki Ishigaki
石垣 敏明
Takashi Ogata
緒方 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2150067A priority Critical patent/JPH0446014A/en
Publication of JPH0446014A publication Critical patent/JPH0446014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain rare earth fluoride anhydride containing little oxide or fluoroxide as impurities by fluorinating rare earth oxides and measuring the concn. of volatile reaction product to detect the end point of the production of rare earth fluoride. CONSTITUTION:A crucible 5 is charged with a mixture of rare earth oxides and a fluorine source material (e.g. ammonium hydrogenfluoride), put in a reaction chamber 1 and covered with a lid. The reaction chamber 1 is sealed with a lid equipped with a nickel shielding plate 8, an inlet 9 for Ar and a thermometer 6 using a thermocouple inserted in the chamber. Then the chamber 1 is sufficiently evacuated, into which Ar gas is introduced through the Ar inlet 9. The chamber is heated so as to effect fluorination of the rare earth oxides and to remove excessive fluorination. Among the volatile reaction products, NH4 is continuously or intermittently sampled to measure the NH4 concn. through a sampling valve 12. When the NH4 concn. becomes about <=0.1%, the reaction is regarded as ending.

Description

【発明の詳細な説明】 皇1上豆且工立豆 本発明は、希土類酸化物のフッ素化の装置及びその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for fluorinating rare earth oxides and a method for producing the same.

亘米皿韮皿 希土類金属を製造する際に、その出発原料として希土類
フッ化物がよく用いられる。その希土類フッ化物を製造
する代表的なものは、下記の通りである。
When manufacturing rare earth metals, rare earth fluorides are often used as starting materials. Typical methods for producing rare earth fluorides are as follows.

l) 希土類元素の塩の水溶液にフッ化水素酸を加え、
ゼラチン状の含水フッ化物を得る。乾燥後RF、・−H
,Oを得て脱水し、無水フッ化物を製造する方法。
l) Adding hydrofluoric acid to an aqueous solution of a salt of a rare earth element,
A gelatinous hydrated fluoride is obtained. After drying RF, ・-H
, O is obtained and dehydrated to produce anhydrous fluoride.

2) 希土類酸化物に無水フッ化水素ガスによりフッ素
化し、無水フッ化物を製造する方法。
2) A method of producing anhydrous fluoride by fluorinating rare earth oxides with anhydrous hydrogen fluoride gas.

3) 希土類酸化物にフッ化水素アンモニウムを添加し
て反応させ、希土類元素の無水フッ化物を製造する方法
3) A method for producing anhydrous fluorides of rare earth elements by adding ammonium hydrogen fluoride to rare earth oxides and reacting them.

これらの方法で得られた希土類元素の無水フッ化物は不
純物として、酸化物およびフッ化酸化物を含んでいるた
め、さらに精製するためには、般的に融解塩法が用いら
れる。
Since the anhydrous fluorides of rare earth elements obtained by these methods contain oxides and fluorinated oxides as impurities, the molten salt method is generally used for further purification.

が    し    と        点高純度な希
土類金属を得るためには、製造した希土類金属を、蒸留
精製法、ゾーン精製法等を用いることが必要とされてい
る。しかし、希土類金属製造用の出発原料である希土類
フッ化物中に、未反応の酸化物およびフッ化酸化物を含
んでいると、それを用いて希土類金属を製造した場合、
酸素が生成希土類金属中に不純物として残留する。
However, in order to obtain highly pure rare earth metals, it is necessary to use a distillation refining method, a zone refining method, etc. for the manufactured rare earth metals. However, if the rare earth fluoride, which is the starting material for producing rare earth metals, contains unreacted oxides and fluorinated oxides, when rare earth metals are produced using it,
Oxygen remains as an impurity in the produced rare earth metal.

またフッ化アンモニウム等の余剰のフッ素が残留すると
、次工程の還元の時にTa等のルツボを腐食することが
ある。したがって、希土類酸化物をフッ素化する場合、
その反応の終点を決定し、かつ、生成した希土類元素フ
ッ化物に残留する揮発性反応生成物を除去する必要があ
る。
Further, if excess fluorine such as ammonium fluoride remains, it may corrode the crucible of Ta or the like during the next step of reduction. Therefore, when fluorinating rare earth oxides,
It is necessary to determine the end point of the reaction and to remove volatile reaction products remaining in the produced rare earth element fluoride.

以上に鑑み本発明は、希土類酸化物のフッ素化の終点を
検出する方法及び希土類元素フッ化物中に残留する未反
応の反応、物質ならびに揮発性反応物を取り除く方法に
関するものである。
In view of the above, the present invention relates to a method for detecting the end point of fluorination of rare earth oxides and a method for removing unreacted reactions, substances, and volatile reactants remaining in rare earth fluorides.

点を  するための手  び 本発明者は、希土類元素をフッ素化する製造法において
、希土類フッ化物の生成の終点を揮発性反応生成物を測
定することにより決定する。さらにその後、生成した希
土類フッ化物中ならびに反応容器内に含まれる揮発性反
応生成物を真空排気することにより、不純物の少ない希
土類フッ化物を得ることを知見したものである。
In a production method for fluorinating rare earth elements, the present inventor determines the end point of rare earth fluoride production by measuring volatile reaction products. Furthermore, it was discovered that by subsequently evacuating the volatile reaction products contained in the produced rare earth fluoride and the reaction vessel, a rare earth fluoride with less impurities could be obtained.

斯くして、本発明は、 1)希土類無水フッ化物の製造する装置において、反応
容器と該容器の中に希土類酸化物とフッ化原料とを反応
させる坩堝を配置し、反応容器上部に遮蔽板と、反応容
器に不活性ガスを導入する装置と、反応容器を真空にす
る真空装置と、真空装置の途中に排ガスサンプリング口
と排ガス中の凝縮物を除去する凝縮装置を有することを
特徴とする希土類無水フッ化物の製造装置。
Thus, the present invention provides the following features: 1) In an apparatus for producing anhydrous rare earth fluoride, a reaction vessel and a crucible for reacting a rare earth oxide and a fluoride raw material are disposed in the vessel, and a shielding plate is provided above the reaction vessel. and a device for introducing an inert gas into the reaction container, a vacuum device for evacuating the reaction container, and an exhaust gas sampling port and a condensation device for removing condensate in the exhaust gas in the middle of the vacuum device. Rare earth anhydrous fluoride production equipment.

2)希土類酸化物をフッ素化する工程で、希土類フッ化
物の生成の終点を判定するために、揮発性反応生成物の
濃度を測定することにより希土類フッ化物の反応の終了
を決定することを特徴とする希土類無水フッ化物の製造
方法。
2) In the process of fluorinating rare earth oxides, the end of the reaction of rare earth fluorides is determined by measuring the concentration of volatile reaction products in order to determine the end point of the production of rare earth fluorides. A method for producing rare earth anhydrous fluoride.

3)上記2)記載の工程で、希土類フッ化物を製造する
方法において、反応終了を決定した後、反応容器内なら
びに反応生成物及び希土類フッ化物に残留する揮発性反
応生成物、未反応のフッ化原料を真空排気することによ
り、不純物の少ない希土類フッ化物を得ることを特徴と
する希土類無水フッ化物の製造方法を提供するものであ
る。
3) In the process described in 2) above, after determining the end of the reaction, the volatile reaction products remaining in the reaction vessel, the reaction product and the rare earth fluoride, and unreacted fluoride are removed. The present invention provides a method for producing anhydrous rare earth fluoride, which is characterized in that rare earth fluoride with few impurities is obtained by evacuating a chemical raw material.

の     な 希土類酸化物の本明細書において希土類酸化物とは、L
a、 Ce、 Pr、 Nd5Y、 Gd、 Tb%L
u、 Sa、 Dy。
In this specification, the rare earth oxide refers to L
a, Ce, Pr, Nd5Y, Gd, Tb%L
u, Sa, Dy.

Ho、 Erの酸化物を指し、揮発性反応生成物とは、
NH,、HF、 NH4F、 NH4F−HF等を指す
ものである。
Refers to the oxides of Ho and Er, and the volatile reaction products are:
It refers to NH,, HF, NH4F, NH4F-HF, etc.

フッ素化装置は、第1図に示すごとく、反応容器(1)
、電気炉(2)、凝縮器(3)、坩堝例えばカーボン坩
堝(5)、真空ポンプ(11)、Ar封入口(9)がら
士り一増吻六侶プ陵\ヱ 揮発物質は、反応容器(1)、ニッケル製遮蔽板(8)
等に凝縮して付着して一部金属フッ化物となり、それが
坩堝(5)内に落下することにより不純物汚染源となる
。そのために坩堝(5)の上に足桁の付いた坩堝用M(
7)をして不純物が坩堝(5)の中に入らない様にする
必要があり、かつ揮発性反応生成物が抜ける構造とする
必要がある。その間孔部の大きさは揮発性反応生成物の
量及び蒸発速度により決定される。
The fluorination apparatus consists of a reaction vessel (1) as shown in Figure 1.
, an electric furnace (2), a condenser (3), a crucible such as a carbon crucible (5), a vacuum pump (11), and an Ar sealing port (9). Container (1), nickel shielding plate (8)
Some of the metal fluoride condenses and adheres to the metal fluoride, and when it falls into the crucible (5), it becomes a source of impurity contamination. For this purpose, a crucible M (
7) to prevent impurities from entering the crucible (5), and a structure that allows volatile reaction products to escape. The size of the pores is determined by the amount of volatile reaction products and the rate of evaporation.

第1図に、希土類フッ化物の製造装置の例を示す。まず
反応容器(1)は、電気炉(2)内にセットされ、その
反応容器(1)内に上記の坩堝用M(7)の付いた坩堝
(5)を挿入する。坩堝(5)内には、予め、希土類酸
化物とフッ化原料例えば、フッ化アニモニウム及び又は
酸性フッ化アンモニウムとを混合する。
FIG. 1 shows an example of an apparatus for producing rare earth fluorides. First, a reaction vessel (1) is set in an electric furnace (2), and a crucible (5) with the above-mentioned crucible M (7) is inserted into the reaction vessel (1). In the crucible (5), a rare earth oxide and a fluoride raw material such as ammonium fluoride and/or acidic ammonium fluoride are mixed in advance.

反応容器(1)の上端には、ニッケル製遮蔽板(8)の
付いた蓋がゴム製のOリング等のシールを介して装着さ
れる。遮蔽板は、反応後生成したフッ化アンモニウムの
付着防止ならびに熱遮蔽のために飴j+ X    =
  /7’l f’;’;  rF dy 38/F’
l 尊1.− 1+    A  −斜1  rM  
/ Q ’1反応容器内熱電対温度計(6)の取付口が
設けられている。この温度計は、予めセットされた坩堝
(5)の蓋の少し上にある位置にして、固定する。温度
計の上端は反応容器(1)の蓋にゴム製の○リング等の
シールを介して装着される。この反応で生成したフッ化
アンモニウム、フッ化水素アンモニウムは、120°C
以下、好ましくは0〜50℃に保温された凝縮器(3)
で回収する。連結管(13)内をその凝縮物で閉そくさ
れないために、Ar等の不活性ガス又は乾燥空気をA、
 r封入口(9)から3〜10 Q /minの流速で
流す。この時、反応容器内壁、反応容器の蓋、配管等に
、その凝縮物等を付着させないために120〜200℃
に保温することが重要である。ここで保温とは、反応容
器(1)1.配管等を保温材で一定温度に保つことも包
括するものである。
A lid with a nickel shielding plate (8) is attached to the upper end of the reaction vessel (1) via a seal such as a rubber O-ring. The shielding plate is made of candy j+
/7'l f';'; rF dy 38/F'
l Honored 1. - 1+ A - oblique 1 rM
/ Q'1 There is an installation port for the thermocouple thermometer (6) inside the reaction vessel. This thermometer is fixed at a position slightly above the preset lid of the crucible (5). The upper end of the thermometer is attached to the lid of the reaction vessel (1) via a seal such as a rubber circle. Ammonium fluoride and ammonium hydrogen fluoride produced in this reaction are heated at 120°C.
Hereinafter, a condenser (3) preferably kept at a temperature of 0 to 50°C
Collect it with. In order to prevent the inside of the connecting pipe (13) from being blocked by the condensate, an inert gas such as Ar or dry air is used.
Flow through the r sealing port (9) at a flow rate of 3 to 10 Q/min. At this time, in order to prevent the condensate from adhering to the inner wall of the reaction vessel, the lid of the reaction vessel, the piping, etc.
It is important to keep warm. Here, keeping warm means reaction vessel (1) 1. It also includes keeping piping etc. at a constant temperature with heat insulators.

流したAr等の不活性ガス又は乾燥空気は出口からドラ
フトで吸引される。
The flowed inert gas such as Ar or dry air is sucked in by a draft from the outlet.

第1図の装置に基づいて希土類フッ化物製造の操業例を
説明する。
An example of operation for producing rare earth fluorides will be explained based on the apparatus shown in FIG.

先ず最初に、坩堝(5)の中に、希土類酸化物とフッ化
原料例えば、フッ化水素アンモニウムを十分に混合した
ものを所定量充填し、反応容器(1)の中に入れ、蓋例
えばカーボン製の蓋をする。そして、反応容器(1)に
ニッケル製遮蔽板(8)のついた蓋ならびにAr封入口
(9)、反応容器内熱電対温度計(6)を取付けて密閉
状態とする。その後、反応容器(1)内を真空装置例え
ば、真空ポンプで十分排気する。真空排気は、坩堝(5
)内の充填物が、飛散しないように、除々に排気するこ
とが望ましい。
First, a crucible (5) is filled with a predetermined amount of a sufficiently mixed mixture of a rare earth oxide and a fluoride raw material, such as ammonium hydrogen fluoride, and placed in a reaction vessel (1), with a lid such as carbon. Cover with a plastic lid. Then, a lid with a nickel shielding plate (8), an Ar sealing port (9), and a thermocouple thermometer inside the reaction container (6) are attached to the reaction container (1) to seal it. Thereafter, the inside of the reaction vessel (1) is sufficiently evacuated using a vacuum device, for example, a vacuum pump. Vacuum evacuation is performed using a crucible (5
) It is desirable to gradually exhaust the air to prevent the filling inside the container from scattering.

真空排気後、ArガスをAr封入口(9)より導入し、
3〜1Ofl/minの流速で流す。
After evacuation, Ar gas is introduced from the Ar sealing port (9),
Flow at a flow rate of 3-1 Ofl/min.

上記の準備が完了後、昇温を開始し、150℃×8〜1
0hr、  さらに350℃xio〜15hr加熱して
希土類酸化物のフッ素化及び余剰不フッ素化の除去を行
う。この間、反応容器(1)、連続管(13)は、保温
材またはリボンヒーターを巻いておきその反応容器(1
)ならびに連続管(13)の表面温度が130〜200
℃位にある様にして、凝縮物が付着しないようにしてA
rガス等のキャリアガスを介して凝縮器(3)で回収す
る。
After completing the above preparations, start raising the temperature to 150℃ x 8-1
0 hr, and further heated at 350°C for 15 hr to fluorinate the rare earth oxide and remove excess non-fluorination. During this time, the reaction vessel (1) and the continuous tube (13) are wrapped with heat insulating material or a ribbon heater.
) and the surface temperature of the continuous pipe (13) is 130 to 200
℃ to prevent condensate from adhering to A.
It is recovered in a condenser (3) via a carrier gas such as r gas.

この反応の終点は、サンプリング口(12)より吸引し
て揮発性反応生成物のうちNH,の濃度を間断的あるい
は連続的に測定して0.1%以下になった濃度とする。
The end point of this reaction is defined as the concentration of NH, among the volatile reaction products, which is measured intermittently or continuously by suctioning through the sampling port (12) and becomes 0.1% or less.

その後、Arガスを止めて真空ポンプ(11)で排気を
2〜5時間行い、反応生成物である希土類フッ化物中に
含まれる揮発性反応生成物ならびに未反応のフッ化水素
アンモニウムを追い出しドラフトで吸引する。この際に
、真空ポンプと凝縮器(3)の間にトラップ(14)を
置き、真空ポンプ(11)を保護しておく必要がある。
After that, the Ar gas is stopped and exhaust is performed using a vacuum pump (11) for 2 to 5 hours to drive out the volatile reaction products contained in the rare earth fluoride as well as unreacted ammonium hydrogen fluoride, using a draft. Suction. At this time, it is necessary to place a trap (14) between the vacuum pump and the condenser (3) to protect the vacuum pump (11).

この電気炉(7)は、電気炉制御用熱電対温度計(4)
で、反応容器(1)内の温度を制御した。
This electric furnace (7) is equipped with a thermocouple thermometer (4) for electric furnace control.
The temperature inside the reaction vessel (1) was controlled.

スULII 第1図の装置を用いて、酸化スカンジウムをフッ素化し
てフッ化スカンジウムを製造する場合の実施例を示す。
An example will be shown in which scandium fluoride is produced by fluorinating scandium oxide using the apparatus shown in FIG.

カーボン坩堝(5)の中に酸化スカンジウムと理論量よ
り10%過剰の酸性フッ化水素アンモニウムを添加し、
フッ素樹脂系の撹伴棒を用いて手早く混合する。その後
このカーボン坩堝(5)をステンレス類の反応容器(1
)の中に装入して足桁のついたカーボン坩堝用蓋(7)
を、その上に載せた。そして反応容器の上部に、反応後
生成したフッ化アンモニウムの付着防止ならびに熱遮蔽
を行うために設けたニッケル製遮蔽板(8)の付いた蓋
をした。
Adding scandium oxide and acidic ammonium hydrogen fluoride in excess of the theoretical amount by 10% into a carbon crucible (5),
Mix quickly using a fluororesin stirring rod. Thereafter, this carbon crucible (5) was placed in a stainless steel reaction vessel (1).
) Carbon crucible lid with foot beams (7)
was placed on top of it. Then, a lid with a nickel shielding plate (8) provided for preventing the adhesion of ammonium fluoride produced after the reaction and for heat shielding was placed on the top of the reaction vessel.

前操作として真空ポンプで反応容器(1)ならびに凝縮
器(3)(コンテツサー)内を排気したのち停止し、反
応容器(1)にArを充填する。
As a pre-operation, the reaction vessel (1) and the condenser (3) are evacuated using a vacuum pump, and then stopped, and the reaction vessel (1) is filled with Ar.

その後加熱を開始し、130〜180℃で10〜15時
間、約350℃で10〜15時間反応させる。 この反
応中、生成する揮発性反応生成物を追い出すためにAr
を5Q/minを流入させて、その揮発性反応生成物を
排出させドラフトで吸引させた。
Thereafter, heating is started and the reaction is carried out at 130-180°C for 10-15 hours and at about 350°C for 10-15 hours. During this reaction, Ar is used to drive out the volatile reaction products generated.
was injected at a rate of 5 Q/min, and the volatile reaction products were discharged and suctioned by a draft.

酸化スカンジウムと酸性フッ化水素アンモニウムの反応
の終点を判断するために約350℃で温度保持開始後、
サンプリング口(12)より揮発物(NH,)を検知管
で適宜測定するかもしくは赤外線NH,濃度計により連
続測定し、NH,濃度が〈0.1%になったところを反
応の終点とした。その後、Arガスを停止し、真空ポン
プ(11)で2〜4時間排気させて生成したフッ化スカ
ンジウムの表面及び内部にある揮発物を吸引除去した。
After starting to maintain the temperature at about 350°C to determine the end point of the reaction between scandium oxide and acidic ammonium hydrogen fluoride,
Volatile matter (NH,) was appropriately measured from the sampling port (12) with a detection tube or continuously measured with an infrared NH, concentration meter, and the end point of the reaction was defined as the point where the NH concentration reached <0.1%. . Thereafter, the Ar gas was stopped, and the vacuum pump (11) was used to evacuate for 2 to 4 hours, and the volatile substances present on the surface and inside of the generated scandium fluoride were removed by suction.

 そして真空ポンプ(11)を停止後、Arを再び5Q
/minを流入させて冷却後取り出した。取り出したフ
ッ化スカンジウムは、ポーラスなものであり、そこに含
まれる全NH,量はlooppm以下であった。 また
フッ化スカンジウムとしてのフッ素以外のフッ素も11
00pp以下であった。
Then, after stopping the vacuum pump (11), the Ar was turned on again at 5Q.
/min, and after cooling, it was taken out. The scandium fluoride taken out was porous, and the total amount of NH contained therein was less than looppm. Fluorine other than fluorine as scandium fluoride is also 11
00pp or less.

且豆五羞呈 (1)本発明によって希土類酸化物のフッ化反応の終点
が明らかになり、生成した希土類フッ化物中の酸素濃度
を小さくできる。またフッ化反応の終点が判明すること
により、不純物としての酸化物、フッ化酸化物が少なく
なり、さらに精製する必要がなくなる利点がある。
(1) According to the present invention, the end point of the fluorination reaction of rare earth oxides is clarified, and the oxygen concentration in the produced rare earth fluoride can be reduced. Furthermore, by determining the end point of the fluorination reaction, there is an advantage that the amount of oxides and fluorinated oxides as impurities is reduced, and there is no need for further purification.

(2)本発明によって生成した希土類フッ化物の表面及
び中に含まれる揮発性反応生成物ならびに未反応のフッ
化水素アンモニウムが除去ができ、次工程で用いられる
容器の損傷を小さくできる利点がある。
(2) Volatile reaction products and unreacted ammonium hydrogen fluoride contained on and in the rare earth fluoride produced by the present invention can be removed, which has the advantage of minimizing damage to the container used in the next step. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一態様である希土類フッ化物の製造
装置の一例の正面図である。 1:反応容器 2:電気炉 3:凝縮器 4:電気炉制御用熱電対温度計 5=坩堝 6:反応容器内熱電対温度計 7コ坩堝用蓋 8:ニッケル製遮蔽板 9:Ar封入口 lO:充填物 11:真空ポンプ 12:サンプリング口 13:連続管 14ニドラツプ
FIG. 1 is a front view of an example of an apparatus for producing rare earth fluoride, which is one embodiment of the present invention. 1: Reaction vessel 2: Electric furnace 3: Condenser 4: Electric furnace control thermocouple thermometer 5 = Crucible 6: Thermocouple thermometer inside reaction vessel 7 Crucible lid 8: Nickel shielding plate 9: Ar sealing port lO: Filling 11: Vacuum pump 12: Sampling port 13: Continuous tube 14 Nidrap

Claims (1)

【特許請求の範囲】 1)希土類無水フッ化物を製造する装置において、反応
容器と該容器の中に希土類酸化物とフッ化原料とを反応
させる坩堝を配置し、反応容器上部に遮蔽板と、反応容
器に不活性ガスを導入する装置と、反応容器を真空にす
る真空装置と、真空装置の途中に排ガスサンプリング口
と排ガス中の揮発物を除去する凝縮装置を有することを
特徴とする希土類無水フッ化物の製造装置。 2)希土類酸化物をフッ素化する工程で、希土類フッ化
物の生成の終点を判定するために、揮発性反応生成物の
濃度を測定することにより希土類フッ化物の反応の終了
を決定することを特徴とする希土類無水フッ化物の製造
方法。 3)特許請求の範囲第2項記載の工程で、希土類フッ化
物を製造する方法において、反応終了を決定した後、反
応容器内ならびに反応生成物及び希土類フッ化物に残留
する揮発性反応生成物、未反応のフッ化原料を真空排気
することにより、不純物の少ない希土類フッ化物を得る
ことを特徴とする希土類無水フッ化物の製造方法。
[Scope of Claims] 1) An apparatus for producing rare earth anhydrous fluoride, which includes a reaction vessel, a crucible for reacting a rare earth oxide and a fluoride raw material disposed in the vessel, a shielding plate above the reaction vessel, A rare earth anhydride characterized by having a device for introducing an inert gas into a reaction container, a vacuum device for evacuating the reaction container, and an exhaust gas sampling port and a condensation device for removing volatile matter in the exhaust gas in the middle of the vacuum device. Fluoride production equipment. 2) In the process of fluorinating rare earth oxides, the end of the reaction of rare earth fluorides is determined by measuring the concentration of volatile reaction products in order to determine the end point of the production of rare earth fluorides. A method for producing rare earth anhydrous fluoride. 3) In the method for producing rare earth fluoride in the process described in claim 2, after determining the end of the reaction, volatile reaction products remaining in the reaction vessel and in the reaction product and rare earth fluoride; A method for producing an anhydrous rare earth fluoride, characterized in that a rare earth fluoride with few impurities is obtained by evacuating unreacted fluoride raw materials.
JP2150067A 1990-06-11 1990-06-11 Manufacture device for rare earth fluolide anhydride and its production Pending JPH0446014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150067A JPH0446014A (en) 1990-06-11 1990-06-11 Manufacture device for rare earth fluolide anhydride and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150067A JPH0446014A (en) 1990-06-11 1990-06-11 Manufacture device for rare earth fluolide anhydride and its production

Publications (1)

Publication Number Publication Date
JPH0446014A true JPH0446014A (en) 1992-02-17

Family

ID=15488796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150067A Pending JPH0446014A (en) 1990-06-11 1990-06-11 Manufacture device for rare earth fluolide anhydride and its production

Country Status (1)

Country Link
JP (1) JPH0446014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067061A1 (en) * 2010-11-19 2012-05-24 Jx日鉱日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103922381A (en) * 2013-10-09 2014-07-16 赣州虔东稀土集团股份有限公司 Rare earth fluoride and its production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067061A1 (en) * 2010-11-19 2012-05-24 Jx日鉱日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103221560A (en) * 2010-11-19 2013-07-24 吉坤日矿日石金属株式会社 Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
JP5497913B2 (en) * 2010-11-19 2014-05-21 Jx日鉱日石金属株式会社 Method for producing high purity lanthanum
US9234257B2 (en) 2010-11-19 2016-01-12 Jx Nippon Mining & Metals Corporation Production method for high-purity lanthanum, high-purity lanthanum, sputtering target composed of high-purity lanthanum, and metal gate film containing high-purity lanthanum as main component
CN103922381A (en) * 2013-10-09 2014-07-16 赣州虔东稀土集团股份有限公司 Rare earth fluoride and its production method

Similar Documents

Publication Publication Date Title
US7524480B2 (en) Process for producing manganese fluoride
Ortega et al. Isobaric vapor-liquid equilibria of ethyl acetate+ ethanol mixtures at 760.+-. 0.5 mmHg
Hincke et al. The high-temperature equilibrium between silicon nitride, silicon and nitrogen
JP3727797B2 (en) Method for producing nitrogen trifluoride
JPH0446014A (en) Manufacture device for rare earth fluolide anhydride and its production
EP0608087B1 (en) Process for dehydration of fluoride mixtures
JP3640601B2 (en) Method for detecting fluorine-containing compound gas
US4233281A (en) Recovery of hydrogen fluoride from metallic fluoride salts
WO2008070887A2 (en) Method and apparatus for producing crystal grade anhydrous rare earth halides
Kekesi et al. Copper extraction from chloride solutions by evaporation and reduction with hydrogen
Bougon et al. Synthesis and properties of silver trifluoride AgF3
Busch et al. The purification of europium
EP1394114A2 (en) Method for producing high purity germanium tetrafluoride
US20040092029A1 (en) Method of preparing a silicon sample for analysis
Bougon Synthesis and characterization of osmium oxide hexafluoride, OsOF6
RU1798297C (en) Method for evolution oxygen of mineral substances
JP5036990B2 (en) Method for producing manganese fluoride
RU2737103C1 (en) Method of producing zirconium powder
JP4409050B2 (en) Nitrogen fluoride purification system and purification method
Barfield The Viscosity of Diethylamine-Water Mixtures
JPH01116038A (en) Manufacture of high purity rare earth metal
NL8000087A (en) METHOD FOR REMOVING ADHESIVE AND SUBSTANTIAL DEPOSITS IN DEVICES FOR TREATING URANIUM HEXAFLUORIDE.
SU1502473A1 (en) Method of producing anhydrous ferric difluoride
Adachi et al. New preparation method of europium difluoride
Cordfunke et al. Equilibria involving volatile UO2Cl2