JPH0445924Y2 - - Google Patents

Info

Publication number
JPH0445924Y2
JPH0445924Y2 JP13250786U JP13250786U JPH0445924Y2 JP H0445924 Y2 JPH0445924 Y2 JP H0445924Y2 JP 13250786 U JP13250786 U JP 13250786U JP 13250786 U JP13250786 U JP 13250786U JP H0445924 Y2 JPH0445924 Y2 JP H0445924Y2
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
temperature
heat exchanger
superheat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13250786U
Other languages
Japanese (ja)
Other versions
JPS6337413U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13250786U priority Critical patent/JPH0445924Y2/ja
Publication of JPS6337413U publication Critical patent/JPS6337413U/ja
Application granted granted Critical
Publication of JPH0445924Y2 publication Critical patent/JPH0445924Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、車両用冷房装置、特にエバポレータ
の性能向上技術に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a technology for improving the performance of a vehicle cooling system, particularly an evaporator.

(従来の技術) 従来の車両用冷房装置としては、基本構成とし
て高温高圧の冷媒蒸気を冷却して中温高圧の液体
冷媒にするコンデンサと、前記中温高圧の液体冷
媒を貯蔵するリキツドタンクと、前記中温高圧の
液体冷媒を急激に膨張させて低温低圧の霧状冷媒
にするエクスパンシヨンバルブと、前記低温低圧
の霧状冷媒の気化作用により外部から熱を奪うエ
バポレータと、前記エバポレータからの低温低圧
の冷媒蒸気を圧縮して高温高圧の冷媒蒸気にして
前記コンデンサに戻すコンプレツサを備えたもの
が知られている。
(Prior Art) A conventional vehicle cooling system has the following basic components: a condenser that cools high-temperature, high-pressure refrigerant vapor into medium-temperature, high-pressure liquid refrigerant; a liquid tank that stores the medium-temperature, high-pressure liquid refrigerant; an expansion valve that rapidly expands a high-pressure liquid refrigerant into a low-temperature, low-pressure atomized refrigerant; an evaporator that removes heat from the outside by vaporizing the low-temperature, low-pressure atomized refrigerant; Some devices are known that are equipped with a compressor that compresses refrigerant vapor into high-temperature, high-pressure refrigerant vapor and returns it to the condenser.

そして、前記エクスパンシヨンバルブでは、感
温筒で検知したエバポレータ出口側の冷媒温度に
基づいて、熱負荷の変動に対応した冷媒流量の自
動調節が行なわれると共に、エバポレータにおけ
る過熱度(スーパーヒート)を一定に保つように
予め弁開度の位置が設定されている。
In the expansion valve, the refrigerant flow rate is automatically adjusted in response to changes in heat load based on the refrigerant temperature on the evaporator outlet side detected by the temperature-sensitive cylinder, and the degree of superheating (superheat) in the evaporator is automatically adjusted. The position of the valve opening degree is set in advance so as to keep it constant.

尚、過熱度(スーパーヒート)とは、エバポレ
ータ内で霧状冷媒(飽和液)が完全に蒸発した飽
和蒸気の状態から、エバポレータ出口までの間に
更に加熱されることで上昇した分の温度をいい、
この過熱度が大きいということは、エバポレータ
の途中で早めに蒸発(気化)が完了してしまうこ
とを意味し、残りの部分は飽和蒸気が加熱される
だけで気化作用はないため、過熱度が大きいほど
エバポレータの能力使用率が低いことになり、従
つてエバポレータの全能力をフルに利用して冷房
効果を高めるためには、この加熱度をできるだけ
小さくなるように設定すればよいことになる。
In addition, the degree of superheat (superheat) refers to the temperature that has risen due to further heating from the saturated vapor state where the atomized refrigerant (saturated liquid) has completely evaporated in the evaporator to the exit of the evaporator. good,
This high degree of superheating means that evaporation (vaporization) is completed early in the middle of the evaporator, and in the remaining part, only saturated steam is heated and there is no vaporization effect, so the degree of superheating is low. The larger the value, the lower the capacity usage rate of the evaporator. Therefore, in order to make full use of the full capacity of the evaporator and enhance the cooling effect, this heating degree should be set to be as small as possible.

(考案が解決しようとする問題点) しかしながら、コンプレツサの回転数はエンジ
ン回転数の増減にほぼ比例して大きく変動するの
で、エバポレータの加熱度を小さく設定しておく
と、エンジン回転数の急激な増加によつてエバポ
レータに流れ込む霧状冷媒量が急増し、いわゆる
液戻り(リキツドバツク)といつて、まだ冷房能
力のある液冷媒をコンプレツサに戻すことにな
り、この液冷媒の吸い込みによつてコンプレツサ
のバルブを損傷する恐れがある。
(Problem that the invention aims to solve) However, since the compressor rotation speed fluctuates largely in proportion to increases and decreases in the engine rotation speed, if the evaporator heating degree is set low, the engine speed will suddenly increase. Due to this increase, the amount of atomized refrigerant flowing into the evaporator increases rapidly, and liquid refrigerant that still has cooling capacity is returned to the compressor in what is called liquid back. There is a risk of damaging the valve.

このため、従来の車両用冷房装置ではエバポレ
ータの過熱度を大きく(約10度)とる必要があ
り、この過熱度分だけエバポレータの能力以下で
使用されていることになる。
For this reason, in conventional vehicle cooling systems, it is necessary to increase the degree of superheating of the evaporator (approximately 10 degrees), which means that the evaporator is used below its capacity by this degree of superheating.

(問題点を解決するための手段) 本考案は、上述の問題点を解決することを目的
としてなされたもので、この目的達成のために本
考案では、高温高圧の冷媒蒸気を冷却して中温高
圧の液体冷媒にするコンデンサと、 前記中温高圧の液体冷媒を貯蔵するリキツドタ
ンクと、 前記中温高圧の液体冷媒を急激に膨張させて低
温低圧の霧状冷媒にする絞り弁と、 前記低温低圧の霧状冷媒の気化作用により外部
から熱を奪うエバポレータと、 前記エバポレータからの低温低圧の冷媒蒸気を
圧縮して高温高圧の冷媒蒸気にするコンプレツサ
とを備えた車両用冷房装置において、 前記エバポレータ用絞り弁の入口側とエバポレ
ータの出口側との間に冷媒のバイパス管路を設
け、該バイパス管路中には熱交換器と、同熱交換
器用絞り弁とを備え、 前記エバポレータ用絞り弁及び熱交換器用絞り
弁として流量調整弁が用いられ、 前記エバポレータの出口側からバイパス管路と
の合流点に至るまでの管路中と、熱交換器出口側
からコンプレツサに至るまでの管路中にそれぞれ
過熱度センサを設け、 前記各過熱度センサからの入力信号に基づい
て、エバポレータ出口側冷媒の過熱度が小さく、
熱交換器出口側冷媒の過熱度が大きくなるよう
に、それぞれの流量調整弁を制御する過熱度制御
回路を備えた。
(Means for solving the problem) The present invention was made with the purpose of solving the above-mentioned problems.To achieve this purpose, the present invention cools high temperature and high pressure refrigerant vapor to a medium temperature. a condenser that converts the medium temperature and high pressure liquid refrigerant into a high pressure liquid refrigerant; a liquid tank that stores the medium temperature and high pressure liquid refrigerant; a throttle valve that rapidly expands the medium temperature and high pressure liquid refrigerant to form a low temperature and low pressure mist refrigerant; and the low temperature and low pressure mist. A vehicle cooling system comprising: an evaporator that removes heat from the outside through the vaporization of refrigerant; and a compressor that compresses low-temperature, low-pressure refrigerant vapor from the evaporator into high-temperature, high-pressure refrigerant vapor; A refrigerant bypass line is provided between the inlet side of the evaporator and the outlet side of the evaporator, and the bypass line is provided with a heat exchanger and a heat exchanger throttle valve, and the evaporator throttle valve and the heat exchanger are equipped with a heat exchanger and a heat exchanger throttle valve. A flow rate regulating valve is used as a dexterous throttle valve, and superheat is controlled in the pipeline from the outlet side of the evaporator to the junction with the bypass pipeline, and in the pipeline from the heat exchanger outlet side to the compressor. temperature sensors are provided, and based on the input signals from the respective superheat degree sensors, the degree of superheat of the refrigerant on the evaporator outlet side is small;
A degree-of-superheat control circuit was provided to control each flow rate adjustment valve so that the degree of superheat of the refrigerant on the outlet side of the heat exchanger was increased.

(作用) 従つて、本考案の車両用冷房装置では、上述の
ように、エバポレータをバイパスして燃料冷却用
熱交換器が設けられ、かつ各過熱度センサからの
入力信号に基づいてエバポレータ出口側冷媒の過
熱度が小さく、熱交換器出口側冷媒の過熱度が大
きくなるようにそれぞれの流量調整弁を制御する
過熱度制御回路を備えたことで、エバポレータの
能力をフルに使用して冷房効果を高めることがで
きるようになり、しかも、過熱度の小さいエバポ
レータ側冷媒と過熱度の大きい熱交換器側冷媒と
を合流させることによつて、エバポレータ出口側
の過熱度をエバポレータ外部において上昇させる
ことができるので、コンプレツサへの液戻り(リ
キツドバツク)現象が防止できるようになる。
(Function) Therefore, in the vehicle cooling system of the present invention, as described above, the fuel cooling heat exchanger is provided bypassing the evaporator, and the heat exchanger is provided at the evaporator outlet side based on the input signal from each superheat sensor. Equipped with a superheat degree control circuit that controls each flow rate adjustment valve so that the degree of superheat of the refrigerant is small and the degree of superheat of the refrigerant on the outlet side of the heat exchanger is large, making full use of the evaporator's capacity to achieve cooling effects. In addition, by merging the evaporator side refrigerant with a small degree of superheat and the heat exchanger side refrigerant with a high degree of superheat, the degree of superheat on the evaporator outlet side can be increased outside the evaporator. As a result, the phenomenon of liquid returning to the compressor (liquid back) can be prevented.

また上述のようにエバポレータ出口側の過熱度
をエバポレータ外部において上昇させる手段とし
て、バイパス熱交換器を燃料冷却用とすることに
より、別に冷房装置を設けることなく燃料の冷却
が同時に行なえるようになる。
In addition, as mentioned above, by using a bypass heat exchanger for cooling the fuel as a means to increase the degree of superheating on the evaporator outlet side outside the evaporator, it becomes possible to cool the fuel at the same time without installing a separate cooling device. .

(実施例) 以下、本考案の実施例を図面により詳述する。
尚、この実施例を述べるにあたつて、自動車用冷
房装置を例にとる。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.
In describing this embodiment, an automobile cooling system will be taken as an example.

まず、実施例の構成を説明する。 First, the configuration of the embodiment will be explained.

実施例の自動車用冷房装置Aは、第1図及び第
2図に示すように、コンデンサ1、リキツドタン
ク2、エバポレータ用流量調整弁3、エバポレー
タ4、コンプレツサ5、バイパス管路6、燃料冷
却用熱交換器7、熱交換器用流量調整弁8、過熱
度センサ9,10、過熱度制御回路11を主要な
構成としている。
As shown in FIGS. 1 and 2, the automotive cooling device A of the embodiment includes a condenser 1, a liquid tank 2, an evaporator flow rate adjustment valve 3, an evaporator 4, a compressor 5, a bypass pipe line 6, and a fuel cooling heat source. The main components are an exchanger 7, a heat exchanger flow rate adjustment valve 8, superheat degree sensors 9 and 10, and a superheat degree control circuit 11.

前記コンデンサ1は、ラジエータの前面に配置
され、冷却フアン12や車速によつて得られる風
で高温高圧の冷媒蒸気を凝縮点まで冷却して中温
高圧の液体冷媒にする凝縮器であり、その入口側
がコンプレツサ5の出口側と管路13で接続され
ている。
The condenser 1 is disposed in front of the radiator, and is a condenser that cools high-temperature, high-pressure refrigerant vapor to a condensation point using wind obtained by the cooling fan 12 or vehicle speed to turn it into a medium-temperature, high-pressure liquid refrigerant. The side is connected to the outlet side of the compressor 5 by a conduit 13.

前記リキツドタンク2は、前記中温高圧の液体
冷媒を貯蔵すると共に、液体冷媒中に含まれる水
分やゴミ除去し、かつ蒸気を分離して液体冷媒の
みを流量調整弁3,8に送る受液器であり、その
入口側が前記コンデンサ1の出口側と管路14で
接続されている。
The liquid tank 2 is a liquid receiver that stores the medium temperature and high pressure liquid refrigerant, removes moisture and dust contained in the liquid refrigerant, separates vapor, and sends only the liquid refrigerant to the flow rate regulating valves 3 and 8. The inlet side thereof is connected to the outlet side of the condenser 1 through a conduit 14.

エバポレータ用流量調整弁3は、前記コンデン
サ1で凝縮された中温高圧の液体冷媒を急激に膨
張させ、低温低圧の霧状冷媒にすると共に、冷媒
流量を制御する手段であり、その入口側が前記リ
キツドタンク2の出口側と管路15で接続されて
いる。
The evaporator flow rate regulating valve 3 is a means for rapidly expanding the medium-temperature, high-pressure liquid refrigerant condensed in the condenser 1 to turn it into a low-temperature, low-pressure atomized refrigerant, and controlling the refrigerant flow rate, and its inlet side is connected to the liquid tank. It is connected to the outlet side of No. 2 by a conduit 15.

前記エバポレータ4は、前記流量調整弁3から
噴射された低温低圧の霧状冷媒を蒸発させ、その
時の気化熱によつてブロア16から送り込まれる
車内空気から熱を奪う蒸発器であり、その入口側
が前記流量調整弁3の出口側と管路17で接続さ
れている。
The evaporator 4 is an evaporator that evaporates the low-temperature, low-pressure atomized refrigerant injected from the flow rate adjustment valve 3, and uses the heat of vaporization at that time to remove heat from the air inside the vehicle sent from the blower 16. It is connected to the outlet side of the flow rate regulating valve 3 through a conduit 17 .

前記コンプレツサ5は、前記エバポレータ4で
蒸発した低温低圧に冷媒蒸気を圧縮して高温高圧
の冷媒蒸気にして前記コンデンサ1に戻す凝縮器
であり、その入口側が前記エバポレータ4と管路
18で接続されている。
The compressor 5 is a condenser that compresses the low-temperature, low-pressure refrigerant vapor evaporated in the evaporator 4 and returns it to the high-temperature, high-pressure refrigerant vapor to the condenser 1, and its inlet side is connected to the evaporator 4 through a pipe line 18. ing.

前記バイパス管路6は、前記エバポレータ用流
量調整弁3とエバポレータ4とをバイパスする管
路であり、その分流点aがリキツドタンク2の出
口側管路15中に設けられ、かつ合流点bがエバ
ポレータ4の出口側管路18中に設けられてい
る。
The bypass pipe line 6 is a pipe line that bypasses the evaporator flow rate adjustment valve 3 and the evaporator 4, and its branch point a is provided in the outlet side pipe line 15 of the liquid tank 2, and its confluence point b is located in the outlet side pipe line 15 of the liquid tank 2. It is provided in the outlet side conduit 18 of No. 4.

前記燃料冷却用熱交換器7は、前記バイパス管
路6中に介装される燃料冷却手段であり、この実
施例では、第2図に示すように、燃料タンク70
内で蒸発した燃料蒸発ガスを燃料蒸発ガス流通路
71において冷却することによつて凝縮液化さ
せ、この液化燃料を燃料タンク70内に回収する
ようにしたもので、前記バイパス管路6中に介装
させた冷媒流通路72によつて構成されている。
The fuel cooling heat exchanger 7 is a fuel cooling means installed in the bypass pipe line 6, and in this embodiment, as shown in FIG.
The evaporated fuel gas is condensed and liquefied by cooling it in the fuel evaporative gas flow path 71, and the liquefied fuel is collected into the fuel tank 70. It is constituted by a refrigerant flow passage 72 installed therein.

この冷媒流通路72は、この実施例では前記燃
料蒸発ガス流通路71の外周を囲繞するように配
置されると共に、燃料蒸発ガスの排出側が冷媒上
流側に接続され、かつ燃料タンク70が冷媒下流
側に接続されている。
In this embodiment, the refrigerant flow passage 72 is arranged so as to surround the outer periphery of the fuel evaporative gas flow passage 71, and the fuel evaporative gas discharge side is connected to the refrigerant upstream side, and the fuel tank 70 is connected to the refrigerant downstream side. connected to the side.

また、前記燃料ガス流通路71の最低部と燃料
タンク70との間に液化燃料の戻り管73が接続
されている。
Further, a liquefied fuel return pipe 73 is connected between the lowest part of the fuel gas flow path 71 and the fuel tank 70.

尚、図中74はキヤニスタであり、これは前記
燃料蒸発ガス流通路71中に介装させることによ
つて燃料蒸発ガスを吸着させ、大気汚染ょ抑制す
るという燃料蒸発ガス規制装置を構成するもので
ある。
In the figure, 74 is a canister, which constitutes a fuel evaporative gas regulation device that is installed in the fuel evaporative gas flow path 71 to adsorb fuel evaporative gas and suppress air pollution. It is.

前記熱交換器用流量調整弁8は、前記コンデン
サ1で凝縮された中温高圧の液体冷媒を急激に膨
張させ、低温低圧の霧状冷媒にすると共に、冷媒
流量を制御する手段であり、前記分流点aと燃料
冷却用熱交換器7との間のバイパス管路6中に介
装されている。
The heat exchanger flow rate adjustment valve 8 is a means for rapidly expanding the medium-temperature, high-pressure liquid refrigerant condensed in the condenser 1 to turn it into a low-temperature, low-pressure atomized refrigerant, and controlling the refrigerant flow rate. It is interposed in the bypass pipe line 6 between the fuel cooling heat exchanger 7 and the fuel cooling heat exchanger 7.

前記過熱度センサ9,10は、液冷媒が完全に
蒸発した時点から更に加熱されて上昇した分の温
度を測定するためのセンサであり、圧力測定手段
と温度測定手段を備えている。そして、エバポレ
ータ用過熱度センサ9はエバポレータ4の出口側
と合流点bとの間の管路18中に設けられ、熱交
換器用過熱度センサ10は燃料冷却用熱交換器7
の出口側と合流点bとの間のバイパス管路6中、
または合流点bからコンプレツサ5との間の管路
18中に設けられている。
The superheat degree sensors 9 and 10 are sensors for measuring the temperature that has increased due to further heating from the time when the liquid refrigerant is completely evaporated, and are equipped with pressure measuring means and temperature measuring means. The evaporator superheat sensor 9 is installed in the conduit 18 between the outlet side of the evaporator 4 and the confluence b, and the heat exchanger superheat sensor 10 is installed in the fuel cooling heat exchanger 7.
In the bypass pipe line 6 between the outlet side of and the confluence b,
Alternatively, it is provided in the conduit 18 between the confluence point b and the compressor 5.

前記過熱度制御回路11は、前記各過熱度セン
サ9及び10の入力信号に基づいて、エバポレー
タ4の出口側冷媒の過熱度が小さく、熱交換器の
出口側冷媒の過熱度が大きくなるように、それぞ
れ対応する流量調整弁3,8を制御する手段であ
り、この実施例ではエバポレータ4の出口側冷媒
の過熱度を0度に設定し、熱交換器の出口側冷媒
の過熱度を15度に設定している。
The superheat degree control circuit 11 controls the superheat degree of the refrigerant on the outlet side of the evaporator 4 to be small and the degree of superheat of the refrigerant on the outlet side of the heat exchanger to be large, based on the input signals of the superheat degree sensors 9 and 10. , are means for controlling the corresponding flow rate regulating valves 3 and 8, and in this embodiment, the degree of superheating of the refrigerant on the outlet side of the evaporator 4 is set to 0 degrees, and the degree of superheating of the refrigerant on the outlet side of the heat exchanger is set to 15 degrees. It is set to .

次に、実施例の作用を説明する。 Next, the operation of the embodiment will be explained.

まず、自動車用冷房装置Aの基本的作用を液体
冷媒系と気体冷媒系とに分けて説明する。
First, the basic operation of the automobile cooling device A will be explained separately for the liquid refrigerant system and the gas refrigerant system.

(イ) 液体冷媒系 まず、コンデンサ1で凝縮された中温高圧の液
体冷媒は、管路14を通つてリキツドタンク2に
送られ、同リキツドタンク2内に経由することで
水分、ゴミ、蒸気等が分離除去された状態で管路
15を通つてエバポレータ用流量調整弁3に送ら
れると共に、その一部が分流点aからバイパス管
路6に分流され、熱交換器用流量調整弁8にも送
られる。
(a) Liquid refrigerant system First, the medium temperature and high pressure liquid refrigerant condensed in the condenser 1 is sent to the liquid tank 2 through the pipe 14, and water, dust, vapor, etc. are separated by passing through the liquid tank 2. The removed state is sent to the evaporator flow rate adjustment valve 3 through the pipe 15, and a part of it is diverted from the branch point a to the bypass line 6, and also sent to the heat exchanger flow rate adjustment valve 8.

そして、エバポレータ用流量調整弁3に送り込
まれた液体冷媒は、同流量調整弁3の絞り作用に
よつてその出口側で急激に膨張され、低温低圧の
霧状(液体)冷媒となつて管路17を通つて、エ
バポレータ4に送られる。
The liquid refrigerant sent to the evaporator flow rate adjustment valve 3 is rapidly expanded at its outlet side by the throttling action of the flow rate adjustment valve 3, and becomes a low-temperature, low-pressure atomized (liquid) refrigerant that flows into the pipe. 17 and is sent to the evaporator 4.

エバポレータ4に送り込まれた低温低圧の霧状
(液体)冷媒は、車内の熱負荷により蒸発し、そ
の時の気化熱によつてブロア16から送り込まれ
た車内空気から熱を奪い、冷たい空気を車内に送
り出すことで車内の冷房が行なわれることにな
る。
The low-temperature, low-pressure atomized (liquid) refrigerant sent to the evaporator 4 evaporates due to the heat load inside the car, and the heat of vaporization at that time removes heat from the air inside the car sent from the blower 16, and the cold air is introduced into the car. By sending out the air, the inside of the car will be cooled.

そしてエバポレータ4で蒸発した冷媒蒸気は管
路18を通つてコンプレツサ5に送り込まれる。
The refrigerant vapor evaporated in the evaporator 4 is then sent to the compressor 5 through a pipe 18.

また、前記のように分流点aからバイパス管路
6に分流され、熱交換器用流量調整弁8に送り込
まれた一部の液体冷媒は、同流量調整弁8の絞り
作用によつてその出口側で急激に膨張され、低温
低圧の霧状(液体)冷媒となつて燃料冷却用熱交
換器7を構成する冷媒流通路72に送られる。
Further, as described above, some of the liquid refrigerant that is diverted from the diversion point a to the bypass pipe line 6 and sent to the flow rate adjustment valve 8 for the heat exchanger is transferred to its outlet side by the throttling action of the flow rate adjustment valve 8. The refrigerant is rapidly expanded, becomes a low-temperature, low-pressure atomized (liquid) refrigerant, and is sent to the refrigerant flow path 72 that constitutes the fuel cooling heat exchanger 7.

そして、冷媒流通路72内では、低温低圧にな
つた霧状冷媒が燃料蒸発ガスの熱によつて蒸発
し、その時の気化熱によつて燃料蒸発ガス流通路
71内の燃料ガスが冷却されて液化し、この液化
された燃料は戻り管73を通つて燃料タンク70
内に回収される。
In the refrigerant flow path 72, the atomized refrigerant that has become low temperature and low pressure is evaporated by the heat of the fuel evaporative gas, and the fuel gas in the fuel evaporative gas flow path 71 is cooled by the heat of vaporization at that time. The liquefied fuel passes through the return pipe 73 to the fuel tank 70.
will be collected within.

尚、前記燃料冷却用熱交換器による冷却能力を
越える量の燃料蒸発ガスが発生した場合、液化さ
れない分の燃料蒸発ガスはキヤニスタ74を通過
することで活性炭によりHC(ハイドロカーボン)
が吸着された状態で大気に放出されることにな
る。
If an amount of fuel evaporative gas is generated that exceeds the cooling capacity of the fuel cooling heat exchanger, the unliquefied fuel evaporative gas passes through the canister 74 and is turned into HC (hydrocarbon) by activated carbon.
will be released into the atmosphere in an adsorbed state.

(ロ) 気体冷媒系 まず、上述のようにエバポレータ4及び冷媒流
通路72内で蒸発した低温低圧の冷媒蒸気は、管
路18を通つてコンプレツサ5に送り込まれる。
(B) Gaseous Refrigerant System First, the low-temperature, low-pressure refrigerant vapor evaporated in the evaporator 4 and the refrigerant flow path 72 as described above is sent to the compressor 5 through the pipe line 18.

次に、コンプレツサ5では低温低圧の冷媒蒸気
が圧縮されて高温高圧の冷媒蒸気となり、この高
温高圧の冷媒蒸気は管路13を通つてコンデンサ
1に送られる。
Next, in the compressor 5 , the low-temperature, low-pressure refrigerant vapor is compressed into high-temperature, high-pressure refrigerant vapor, and this high-temperature, high-pressure refrigerant vapor is sent to the condenser 1 through the pipe 13 .

尚、コンデンサ1では冷却フアン12や車速に
より得られる風によつて高温高圧の冷媒蒸気が凝
縮点まで冷却され、中温高圧の液体冷媒となつて
前記液体冷媒系に戻される。
In the condenser 1, the high-temperature, high-pressure refrigerant vapor is cooled to a condensation point by the cooling fan 12 and wind generated by the vehicle speed, and is returned to the liquid refrigerant system as a medium-temperature, high-pressure liquid refrigerant.

次に、過熱度制御関係の作用を、自動車の定速
走行時と、急加速時とに分けて説明する。
Next, the effects related to superheat degree control will be explained separately for when the vehicle is running at a constant speed and when the vehicle is rapidly accelerating.

(イ) 定速走行時 まず、自動車が定速走行時においては、コンプ
レツサ1の回転数も安定しているので、過熱度制
御回路11はもつぱら熱負荷の変動に追従するよ
うに両流量調整弁3,8の開度制御が行なわれ
る。
(b) When running at a constant speed First, when the car is running at a constant speed, the rotation speed of the compressor 1 is stable, so the superheat degree control circuit 11 adjusts both flow rates to follow the fluctuations in the heat load. The opening degree of the valves 3 and 8 is controlled.

即ち、熱負荷が増大すると冷媒量が不足して過
熱度が増大するので、各過熱度センサ9,10か
らの入力信号tに基づいて、過熱度制御回路11
から各流量調整弁3,8に対して作動制御信号c
がそれぞれ出力され、この作動制御信号cによつ
て各流量調整弁3,8を開放する方向へ作動さ
せ、これにより冷媒流入量を増大させて過熱度を
下げる方向に制御される。
That is, when the heat load increases, the amount of refrigerant becomes insufficient and the degree of superheat increases. Therefore, the degree of superheat control circuit 11
The operation control signal c is sent to each flow rate regulating valve 3, 8 from
are outputted, and the flow rate regulating valves 3 and 8 are operated in the direction of opening according to the operation control signal c, thereby controlling the amount of refrigerant inflow to be increased and the degree of superheat to be lowered.

上記とは逆に熱負荷が減少した場合は各流量調
整弁3,8を閉鎖する方向へ作動させ、これによ
り冷媒流入量を減少させて過熱度を上げる方向に
制御される。
Contrary to the above, when the heat load decreases, the flow rate regulating valves 3 and 8 are operated in the direction of closing, thereby controlling the amount of refrigerant inflow to be reduced and the degree of superheat to be increased.

(ロ) 急加速時 前述のような熱負荷の変動がない場合であつて
も、自動車の急加速時等のようにエンジン回転数
が急増すると、コンプレツサ5の回転数も急増
し、このためエバポレータ4及び冷媒流通路72
内への冷媒流入量が急増して過熱度が急減するこ
とになるが、この場合でも前記熱負荷の減少によ
り過熱度が減少した場合と同様に、各過熱度セン
サ9,10からの入力信号tに基づいて、過熱度
制御回路11から各流量調整弁3,8に対して作
動制御信号cがそれぞれ出力され、この作動制御
信号cによつて各流量調整弁3,8を閉鎖する方
向へ作動させ、これにより冷媒流入量を減少させ
て過熱度を上げる方向に制御されることになる。
(b) During sudden acceleration Even if there is no variation in the heat load as described above, when the engine speed suddenly increases, such as when a car suddenly accelerates, the speed of the compressor 5 also increases rapidly, which causes the evaporator 4 and refrigerant flow path 72
The amount of refrigerant flowing into the interior of the interior of the engine rapidly increases, resulting in a sudden decrease in the degree of superheat, but in this case as well, the input signals from the respective superheat degree sensors 9 and 10 Based on t, the superheat degree control circuit 11 outputs an operation control signal c to each flow rate adjustment valve 3, 8, and this operation control signal c causes each flow rate adjustment valve 3, 8 to be closed. As a result, the amount of inflow of refrigerant is reduced and the degree of superheating is increased.

尚、この実施例のようにエバポレータ4の出口
側冷媒の過熱度を0度に設定した場合、上述のよ
うに自動車の急加速時には瞬間的には過熱度が0
度以下の状態(蒸発しきれない液冷媒を残した状
態)になるが、燃料冷却用熱交換器7の出口側冷
媒の過熱度が大き目の15度に設定されていること
から、両冷媒が合流点bで合流することによつて
0度以上の適度な過熱度になるので、コンプレツ
サ5への液戻り(リキツドバツク)を生ずること
はない。
In addition, when the degree of superheat of the refrigerant on the outlet side of the evaporator 4 is set to 0 degrees as in this embodiment, the degree of superheat instantly drops to 0 degrees when the automobile suddenly accelerates as described above.
However, since the degree of superheating of the refrigerant on the outlet side of the fuel cooling heat exchanger 7 is set to a large 15 degrees, both refrigerants are By merging at the merging point b, a moderate degree of superheating of 0 degrees or higher is achieved, so that no liquid returns to the compressor 5 (liquid back).

以上説明してきたように、本実施例の自動車用
冷房装置Aでは、上述のように、エバポレータ4
をバイパスして燃料冷却用熱交換器7が設けら
れ、かつ各過熱度センサ9,10からの入力信号
tに基づいてエバポレータ4出口側冷媒の過熱度
が小さく、熱交換器出口側冷媒の過熱度が大きく
なるようにそれぞれの流量調整弁3,8を制御す
る過熱度制御回路11を備えたことで、エバポレ
ータ4の能力をフルに使用して冷房効果を高める
ことができるようになり、しかも、過熱度の小さ
いエバポレータ4側冷媒と過熱度の大きい熱交換
器側冷媒とを合流させることによつて、エバポレ
ータ4出口側の過熱度をエバポレータ4外部にお
いて上昇させることができるので、コンプレツサ
5への液戻り(リキツドバツク)現象が防止でき
るようになる。
As explained above, in the automobile cooling device A of this embodiment, as described above, the evaporator 4
A heat exchanger 7 for cooling the fuel is provided by bypassing the evaporator 4, and based on input signals t from each superheat degree sensor 9, 10, the degree of superheat of the refrigerant on the outlet side of the evaporator 4 is small, and the refrigerant on the outlet side of the heat exchanger is overheated. By providing a superheat degree control circuit 11 that controls each of the flow rate regulating valves 3 and 8 so that the temperature increases, it becomes possible to fully utilize the capacity of the evaporator 4 and enhance the cooling effect. By merging the refrigerant on the evaporator 4 side with a low degree of superheat and the refrigerant on the heat exchanger side with a high degree of superheat, the degree of superheat on the exit side of the evaporator 4 can be increased outside the evaporator 4. The liquid back phenomenon can be prevented.

また上述のようにエバポレータ4出口側の過熱
度をエバポレータ4外部において上昇させる手段
として、燃料ガスを冷却する燃料冷却用熱交換器
7を用いたことで、別に冷房装置を設けることな
く燃料ガスの冷却による燃料の大気放出の防止が
同時に行なえるようになる。
Furthermore, as described above, by using the fuel cooling heat exchanger 7 that cools the fuel gas as a means for increasing the degree of superheating on the exit side of the evaporator 4 outside the evaporator 4, the fuel gas can be cooled without installing a separate cooling device. At the same time, cooling can prevent fuel from being released into the atmosphere.

以上、本考案の実施例を図面により詳述してき
たが、具体的な構成はこの実施例に限られるもの
ではなく、本考案の要旨を逸脱しない範囲におけ
る設計変更等があつても本考案に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、実施例図面では熱交換器用過熱度セン
サを合流点からコンプレツサに至るまでの管路中
に設けた場合を示したが、燃料冷却用熱交換器の
出口側から合流点に至るバイパス管路中に設けて
もよい。
For example, the example drawings show a case in which a superheat degree sensor for a heat exchanger is installed in a conduit from a confluence point to a compressor, but a bypass conduit from the outlet side of a fuel cooling heat exchanger to a confluence point is shown. It may be provided inside.

また、実施例では、燃料冷却用熱交換器として
燃料ガスを冷却する場合を示したが、これに限ら
れず、燃料自体や吸気や排気等を冷却するもので
あつてもよい。
Further, in the embodiment, a case has been shown in which the fuel gas is cooled as a fuel cooling heat exchanger, but the heat exchanger is not limited to this, and may be used to cool the fuel itself, intake air, exhaust air, etc.

(考案の効果) 以上説明してきたように、本考案の車両用冷房
装置では、上述のように、エバポレータをバイパ
スして燃料冷却用熱交換器が設けられ、かつ各過
熱度センサからの入力信号に基づいてエバポレー
タ出口側冷媒の過熱度が小さく、熱交換器出口側
冷媒の過熱度が大きくなるようにそれぞれの流量
調整弁を制御する過熱度制御回路を備えたこと
で、エバポレータの能力をフルに使用して冷房効
果を高めることができるようになり、しかも、過
熱度の小さいエバポレータ側冷媒と過熱度の大き
い熱交換器側冷媒とを合流させることによつて、
エバポレータ出口側の過熱度をエバポレータ外部
において上昇させることができるので、コンプレ
ツサへの液戻り(リキツドバツク)現象が防止で
きるようになる。
(Effects of the invention) As explained above, in the vehicle cooling system of the invention, as mentioned above, a heat exchanger for cooling the fuel is provided bypassing the evaporator, and input signals from each superheat degree sensor are provided. Equipped with a superheat degree control circuit that controls each flow rate adjustment valve so that the degree of superheat of the refrigerant on the evaporator outlet side is small and the degree of superheat of the refrigerant on the heat exchanger outlet side is high based on the In addition, by merging the evaporator side refrigerant with a low degree of superheat and the heat exchanger side refrigerant with a high degree of superheat,
Since the degree of superheating on the evaporator outlet side can be increased outside the evaporator, the phenomenon of liquid returning to the compressor can be prevented.

また上述のようにエバポレータ出口側の過熱度
をエバポレータ外部において上昇させる手段とし
て、冷却用熱交換器を用いたことで、別に冷房装
置を設けることなく燃料の冷却等が同時に行なえ
るようになるという効果が得られる。
Furthermore, as mentioned above, by using a cooling heat exchanger as a means to increase the degree of superheating on the evaporator outlet side outside the evaporator, it becomes possible to cool the fuel at the same time without installing a separate cooling device. Effects can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案実施例の自動車用冷房装置を示
す全体図、第2図は燃料冷却用熱交換器の詳細を
示す説明図である。 1……コンデンサ、2……リキツドタンク、3
……エバポレータ用流量調整弁、4……エバポレ
ータ、5……コンプレツサ、6……バイパス管
路、7……燃料冷却用熱交換器、8……熱交換器
用流量調整弁、9……過熱度センサ、10……過
熱度センサ、11……過熱度制御回路。
FIG. 1 is an overall view showing an automobile cooling system according to an embodiment of the present invention, and FIG. 2 is an explanatory view showing details of a fuel cooling heat exchanger. 1...Capacitor, 2...Liquid tank, 3
...Flow control valve for evaporator, 4 ... Evaporator, 5 ... Compressor, 6 ... Bypass line, 7 ... Heat exchanger for fuel cooling, 8 ... Flow control valve for heat exchanger, 9 ... Degree of superheating Sensor, 10... Superheat degree sensor, 11... Superheat degree control circuit.

Claims (1)

【実用新案登録請求の範囲】 高温高圧の冷媒蒸気を冷却して中温高圧の液体
冷媒にするコンデンサと、 前記中温高圧の液体冷媒を貯蔵するリギツドタ
ンクと、 前記中温高圧の液体冷媒を急激に膨張させて低
温低圧の霧状冷媒にする絞り弁と、 前記低温低圧の霧状冷媒の気化作用により外部
から熱を奪うエバポレータと、 前記エバポレータからの低温低圧の冷媒蒸気を
圧縮して高温高圧の冷媒蒸気にするコンプレツサ
とを備えた車両用冷房装置において、 前記エバポレータ用絞り弁の入口側とエバポレ
ータの出口側との間に冷媒のバイパス管路を設
け、該バイパス管路中には熱交換器と、同熱交換
器用絞り弁とを備え、 前記エバポレータ用絞り弁及び熱交換器用絞り
弁として流量調整弁が用いられ、 前記エバポレータの出口側からバイパス管路と
の合流点に至までの管路中と、熱交換器出口側か
らコンプレツサに至るまでの管路中にそれぞれ過
熱度センサを設け、 前記各過熱度センサ空の入力信号に基づいて、
エバポレータ出口側冷媒の過熱度が小さく、熱交
換器出口側冷媒の過熱度が大きくなるように、そ
れぞれの流量調整弁を制御する過熱度制御回路を
備えたことを特徴とする車両用冷房装置。
[Claims for Utility Model Registration] A condenser that cools high-temperature, high-pressure refrigerant vapor into a medium-temperature, high-pressure liquid refrigerant; a rigid tank that stores the medium-temperature, high-pressure liquid refrigerant; and a device that rapidly expands the medium-temperature, high-pressure liquid refrigerant. an evaporator that removes heat from the outside by vaporizing the low-temperature, low-pressure atomized refrigerant; and an evaporator that compresses the low-temperature, low-pressure refrigerant vapor from the evaporator into high-temperature, high-pressure refrigerant vapor. In the vehicle cooling system, a refrigerant bypass line is provided between the inlet side of the evaporator throttle valve and the outlet side of the evaporator, and a heat exchanger is provided in the bypass line, and a heat exchanger is provided in the bypass line. A flow rate adjustment valve is used as the evaporator throttle valve and the heat exchanger throttle valve, and a flow rate adjustment valve is used as the evaporator throttle valve and the heat exchanger throttle valve. , a superheat sensor is provided in each pipe line from the heat exchanger outlet side to the compressor, and based on the input signal of each superheat sensor,
A vehicle cooling system comprising a superheat degree control circuit that controls each flow rate adjustment valve so that the degree of superheat of the refrigerant on the outlet side of the evaporator is small and the degree of superheat of the refrigerant on the outlet side of the heat exchanger is large.
JP13250786U 1986-08-29 1986-08-29 Expired JPH0445924Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13250786U JPH0445924Y2 (en) 1986-08-29 1986-08-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13250786U JPH0445924Y2 (en) 1986-08-29 1986-08-29

Publications (2)

Publication Number Publication Date
JPS6337413U JPS6337413U (en) 1988-03-10
JPH0445924Y2 true JPH0445924Y2 (en) 1992-10-28

Family

ID=31031959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13250786U Expired JPH0445924Y2 (en) 1986-08-29 1986-08-29

Country Status (1)

Country Link
JP (1) JPH0445924Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100745581B1 (en) 2006-08-28 2007-08-02 삼성전자주식회사 Air conditioner
JP5966450B2 (en) * 2012-03-06 2016-08-10 富士電機株式会社 Cooling system

Also Published As

Publication number Publication date
JPS6337413U (en) 1988-03-10

Similar Documents

Publication Publication Date Title
NO170781B (en) CLOSED COOLING SYSTEM
US2774220A (en) Control for a refrigeration system
KR970011615A (en) Air Conditioning System with Auxiliary Cooler Coil and Series Expansion Unit
JPH0445924Y2 (en)
GB2077407A (en) Heat pump
JPH0651756U (en) Cooling system
JP2639135B2 (en) Vehicle air conditioner
JPH05231731A (en) Refrigeration cycle
JP3282391B2 (en) Vehicle fuel cooling system
JP2590543B2 (en) Air conditioner
JPH01314857A (en) Refrigerating cycle
JP3009481B2 (en) Heat pump type air conditioner
JPS6185218A (en) Automotive air conditioner
JPH06185829A (en) Air conditioner for vehicle
JPH0268459A (en) Two-stage compression refrigerating machine
JPH02279966A (en) Air conditioner
JPS6213960A (en) Chilling unit for automobile
JPS62160273U (en)
JPH0532967U (en) Refrigeration equipment
JPS627979Y2 (en)
KR100201103B1 (en) A controlling device of opening degree with expansion valve for air conditioner
JPH02203175A (en) Refrigerator
JPS61191835A (en) Gas-liquid separator of chilling unit for automobile
JPS6051022B2 (en) Refrigeration equipment
JPS5885042A (en) Cooling and heating apparatus