JPH044571A - Fuel cell power-generating device - Google Patents

Fuel cell power-generating device

Info

Publication number
JPH044571A
JPH044571A JP2105458A JP10545890A JPH044571A JP H044571 A JPH044571 A JP H044571A JP 2105458 A JP2105458 A JP 2105458A JP 10545890 A JP10545890 A JP 10545890A JP H044571 A JPH044571 A JP H044571A
Authority
JP
Japan
Prior art keywords
fuel
nitrogen
nitrogen gas
supply piping
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2105458A
Other languages
Japanese (ja)
Other versions
JP2928583B2 (en
Inventor
Hiroshi Ito
宏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2105458A priority Critical patent/JP2928583B2/en
Publication of JPH044571A publication Critical patent/JPH044571A/en
Application granted granted Critical
Publication of JP2928583B2 publication Critical patent/JP2928583B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To suppress increase in the differential pressure between a fuel and an air electrode, prevent deterioration in the sealing performance of electrode, and provide the cell with long life by furnishing two systems of nitrogen gas supply pipings wherein the purging rate of flow can be varied at two steps when a fuel supply piping is to be purged with nitrogen gas. CONSTITUTION:To purge a fuel line with nitrogen, the nitrogen is supplied via a nitrogen gas supply piping 6, when the purge will be performed with nitrogen in a minor rate of flow. After all fuel upstream of a modifier device 2 on the fuel line is substituted with nitrogen, an opening/closing valve 17 on another nitrogen gas supply piping 15 is opened while an opening/closing valve 8 on the first named nitrogen gas supply piping 6 is closed to cause switching of the purging rate of flow of N from the minor to major value of setting, and the N purge is conducted via this nitrogen gas supply piping 15 until purging is completed. The purging rate of flow for the fuel line is thus varied at two steps in this manner wherein the rate of N flow is kept minor until all fuel upstream of the modifier device 2 is substituted with nitrogen. This allows suppressing increase of the differential pressure between fuel electrode and air electrode, preventing deterioration in the sealing performance of electrode, and providing the cell with a long life.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、燃料電池発電装貢4:関【7、特に。[Detailed description of the invention] [Industrial application field] This invention is particularly applicable to fuel cell power generation systems.

停止時に窒素ガスによるパージを行う@料電池発電装置
に関するものである。
This relates to a battery power generator that purges with nitrogen gas when stopped.

[従来の枝、術] 燃料電池発電装置は、従来の汽力発電に比べ高効率が期
待できること、環境保全性に優れている等の利点があり
、実用化を目指し近年盛んに開発が進められている。燃
料電池発電装置は、燃料電池本体と、天然ガス等の炭化
水素系燃料を改質して燃料電池本体に水素ガスを供給す
?)改g装置とを備えており、停止時には燃料電池本体
3t−ミ五び改質装置を窒素でパージし、窒素雰囲気の
中で保管する必要がある。。
[Conventional branches and techniques] Fuel cell power generation equipment has advantages such as higher efficiency and better environmental protection than conventional steam power generation, and has been actively developed in recent years with the aim of putting it into practical use. There is. Does a fuel cell power generation device reform the fuel cell itself and a hydrocarbon fuel such as natural gas to supply hydrogen gas to the fuel cell body? ), and when the fuel cell main body is stopped, it is necessary to purge the fuel cell main body (3 tons) and the reformer (5) with nitrogen and store it in a nitrogen atmosphere. .

燃料電池発電装置の窒素によるパージ方法の従来例とし
ては、特開昭61.−32362号公報に記載されてい
るものがあり、その構成の概要S−第2川に示す。図に
おいて、燃料電池本体(1)は、燃料極(1a)、空気
極(1b)および電解質(1+: )からなっている。
A conventional example of a nitrogen purging method for a fuel cell power generation device is disclosed in Japanese Patent Application Laid-Open No. 1983-1999. There is a system described in Japanese Patent No. 32362, and an outline of its configuration is shown in S-2. In the figure, a fuel cell main body (1) consists of a fuel electrode (1a), an air electrode (1b), and an electrolyte (1+).

改質装置(2)は、燃料を燃料電池本体(1)の反応に
必要な水素主成分のガスに改質する。燃料供給配管(3
)には、燃料流量をコントロールするため燃料流量調節
弁(4)が設けられζいる。窒素ガス供給配管(6)は
、プラント停止時に燃料ライン[燃料極(1a)、改質
装置(2)]をパージするために燃料供給配管(3)に
接続されるニードル弁等の流量設定弁(7)を備えてい
る。空気供給配管(9)には2空気流量をコントロール
するため空気流量調節弁(10)が設けられている。窒
素ガス供給配管(12)には、プラント停止時に空気極
(1b)をパージするために空気供給配管(9)に接続
されるニードル弁等の流量設定弁(I3)を備えている
。また、各供給ラインは開閉弁(5) 、 (8) 、
 (11)、 (14)がそれぞh設けられている。
The reformer (2) reforms the fuel into a gas mainly composed of hydrogen, which is necessary for the reaction in the fuel cell main body (1). Fuel supply pipe (3
) is provided with a fuel flow rate control valve (4) to control the fuel flow rate. The nitrogen gas supply pipe (6) is a flow rate setting valve such as a needle valve that is connected to the fuel supply pipe (3) in order to purge the fuel line [fuel electrode (1a), reformer (2)] when the plant is stopped. (7). The air supply pipe (9) is provided with an air flow rate control valve (10) to control the air flow rate. The nitrogen gas supply pipe (12) is equipped with a flow rate setting valve (I3) such as a needle valve connected to the air supply pipe (9) in order to purge the air electrode (1b) when the plant is stopped. In addition, each supply line has on-off valves (5), (8),
(11) and (14) are provided h respectively.

以上の構成により、プラント運転中、燃料は燃料流量調
節弁(4)を通し、て改質装置(2)に供給され、改質
装置(2)内で水素を主成分とする改質ガスに改質され
た後、燃料電池本体(1)の燃f:4極(1B)に供給
される。改質ガスは、水蒸気改質により、燃料が天然ガ
スの場合で天然ガス流量の約7・−8倍の流量となって
いる。電池内での反応により負荷に応じた水素が消費さ
れた後1反応に使われなかった余剰の改質ガスは排出配
管を通して排出される。また、空気は、空気流量調節弁
(1o)を通して燃料電池本体(1)の空気極(1b)
に供給され、反応で・酸素を消費された後、余剰の空気
は排出配管誹り排出される。
With the above configuration, during plant operation, fuel is supplied to the reformer (2) through the fuel flow control valve (4), and in the reformer (2), it is converted into reformed gas containing hydrogen as the main component. After being reformed, the fuel is supplied to the fuel f:4 poles (1B) of the fuel cell main body (1). Due to steam reforming, the flow rate of the reformed gas is approximately 7.-8 times the flow rate of natural gas when the fuel is natural gas. After the hydrogen corresponding to the load is consumed by the reaction within the battery, the surplus reformed gas not used for one reaction is discharged through the discharge pipe. In addition, air is supplied to the air electrode (1b) of the fuel cell main body (1) through the air flow control valve (1o).
After the oxygen is consumed in the reaction, the excess air is discharged through the exhaust pipe.

通常、常圧動作の燃料電池の場合は、システム簡素化の
ため燃料電池両極の差圧制御は行わず、燃料電池下流側
排出ラインの抵抗により決まる両極の圧力が運転中にほ
ぼ等しくなるような管路抵抗の設計を行っている。
Normally, in the case of a fuel cell that operates at normal pressure, differential pressure control between the two poles of the fuel cell is not performed to simplify the system, and the pressures at the two poles, which are determined by the resistance of the fuel cell downstream discharge line, are approximately equal during operation. We are designing conduit resistance.

次に、プラント停止時には、負荷遮断と同時に燃料、空
気供給配管(3)、(9)の開閉弁(5)、(11)は
閉、窒素ガス供給配管(6) 、 (12)の開閉弁(
8) 、 (14)が開になり、燃料、空気各ラインが
窒素でパージされる、 [発明が解決しようとする課題] 従来の燃料電池発電゛装置は以上のように構成されてい
るので、窒素パージの際には、燃料ライン中の燃料は窒
素バージにより窒素で置換され、改質装置に送られて改
質装置内での改質によりその流量が数倍(燃料が天然ガ
スの場合、通常7〜8倍)に増大した状態で燃料電池両
極を通過する。
Next, when the plant is stopped, the on-off valves (5) and (11) of the fuel and air supply pipes (3) and (9) are closed, and the on-off valves of the nitrogen gas supply pipes (6) and (12) are closed at the same time as the load is cut off. (
8) and (14) are opened, and the fuel and air lines are purged with nitrogen. [Problem to be solved by the invention] Since the conventional fuel cell power generation device is configured as described above, During nitrogen purge, the fuel in the fuel line is replaced with nitrogen by a nitrogen barge, and sent to the reformer where the flow rate is increased several times (if the fuel is natural gas, (usually 7 to 8 times) passes through both electrodes of the fuel cell.

、従って、改質装置より上流側の燃料が全て窒素に置換
されるまでは窒素パージ流量の数倍(燃料が天然ガスの
場合は通常7〜8倍)の改質ガスが燃料極を流れる9そ
のため、空気極側の背圧に比べ燃料極側の背圧が増大、
即ち両極間差圧が増大1、 電極のシール性に、延いて
は燃料電池の寿命に悪影響を与えるという閉顕点があっ
た。
Therefore, until all the fuel upstream from the reformer is replaced with nitrogen, the reformed gas flows through the fuel electrode at several times the nitrogen purge flow rate (usually 7 to 8 times when the fuel is natural gas). Therefore, the back pressure on the fuel electrode side increases compared to the back pressure on the air electrode side.
That is, there was a closing point where the differential pressure between the electrodes increased 1, which adversely affected the sealing performance of the electrodes and, by extension, the life of the fuel cell.

この発明は上記のような問題点を解消するためになされ
力・もので、窒素パージの際、両極間の差圧の増大を抑
え電極のシール性を損わない燃料電池発電装置を得るこ
とを目的とする。
This invention was made in order to solve the above-mentioned problems, and aims to provide a fuel cell power generation device that suppresses the increase in the differential pressure between the two electrodes and does not impair the sealing performance of the electrodes during nitrogen purge. purpose.

[課題を解決するための手段] 、:の発明に係る燃料電池発電装置は、燃料ラインパー
ジ用の窒素ガス供給配管を2系列並列に設け、各々の供
給系からの窒素パージ流量を各々異なるように、一方を
小流量に他方を大流量に設定したものである、 [作 用] この発明においては、窒素バージの際、燃料ラインの改
質装置よ?上流側の燃料が全て窒素に置換されるまでは
小流量設定の窒素供、給糸がらパージを行い、その後は
大流量設定の窒素供給系がらパージを行う、これにより
、燃料電池両極間の差圧の増大が抑えられる。
[Means for Solving the Problems] The fuel cell power generation device according to the invention includes two series of nitrogen gas supply pipes for fuel line purge arranged in parallel, and nitrogen purge flow rates from each supply system are set to be different from each other. In this invention, one side is set to a small flow rate and the other side is set to a large flow rate. Until the fuel on the upstream side is completely replaced with nitrogen, nitrogen is supplied at a small flow rate and the yarn feed system is purged. After that, the nitrogen supply system is set at a high flow rate and purge is performed. This reduces the difference between the two poles of the fuel cell. Increase in pressure is suppressed.

[実施例] 以下、この発明の一実施例を第1図について説明する。[Example] An embodiment of the present invention will be described below with reference to FIG.

図において、符号(1)〜(14)は第2図におけるも
のと同様の部分てあり、説明を省く。窒素ガス供給配管
(6)とは別に燃料ラインバージのため燃料供給配管(
3)に窒素ガス供給配管(15)が接続されてし1ろ、
 <16)はパージ流量設定用に窒素ガス供給配管(1
5)上に設けられたニードル弁等の流量設定弁(手動弁
) 、、 (17)は開閉弁を示す。なお、燃料ライン
パージ用の窒素ガス供給配管(6)。
In the figure, reference numerals (1) to (14) indicate the same parts as in FIG. 2, and their explanation will be omitted. In addition to the nitrogen gas supply pipe (6), a fuel supply pipe (6) is installed for the fuel line barge.
3) The nitrogen gas supply pipe (15) is connected to 1).
<16) is the nitrogen gas supply pipe (1) for setting the purge flow rate.
5) Flow rate setting valve (manual valve) such as a needle valve provided above (17) indicates an on-off valve. In addition, nitrogen gas supply piping (6) for fuel line purge.

(15)上に設けられた流量設定弁(7)、(16)の
開度は、(7)は小流量、(16)は大流量が流れるよ
うに設定されている、 次に動作について説明する。プラント運転中の動作は前
述した従来装置の場合と同様であり、説明を省く。
(15) The opening degrees of the flow rate setting valves (7) and (16) provided above are set so that (7) has a small flow rate and (16) has a large flow rate. Next, the operation will be explained. do. The operations during plant operation are the same as those of the conventional device described above, and will not be described further.

プラント停止時には、まず、負荷遮断と同時に燃料、空
気供給配管(3) 、 (9)の開閉弁(5)、(11
)が閉、窒素ガス供給配管(13) 、 (12)の開
閉弁(8)、(14ンが開になり、燃料、空気各ライン
の窒素パージを行う。このときには燃料ラインのパージ
用窒素は、窒素ガス供給配管(6)を通して供給され、
小流量の窒素でパージが行われる。次に、燃料ラインの
改質装置(2)より上流側の燃料が全て窒素に置換され
た後、窒素ガス供給配管(15)上の開閉弁け7)が開
、窒素ガス供給配管<6)上(・、)rf/A閉弁(8
)が閉になり、燃料ラインの窒素パージ流量が小流量か
ら大流量に切り替えられて窒素パージが継続される。以
後、窒素パージが完了するまで、燃料ラインの窒素パー
ジは窒素ガス供給配管(15)を通して、空気ラインの
窒素パージは望蓄ガス洪給配管(12)を通して行われ
る。
When the plant is stopped, first, the on-off valves (5) and (11) of the fuel and air supply pipes (3) and (9) are turned off simultaneously with load shedding.
) is closed, the on/off valves (8) and (14) of the nitrogen gas supply pipes (13) and (12) are opened, and the fuel and air lines are purged with nitrogen. At this time, the nitrogen for purging the fuel line is , supplied through the nitrogen gas supply pipe (6),
Purging is done with a small flow of nitrogen. Next, after all the fuel upstream of the reformer (2) in the fuel line is replaced with nitrogen, the on-off valve 7) on the nitrogen gas supply pipe (15) is opened, and the nitrogen gas supply pipe <6) Upper (・,) rf/A valve closed (8
) is closed, the nitrogen purge flow rate in the fuel line is switched from a small flow rate to a high flow rate, and the nitrogen purge continues. Thereafter, until the nitrogen purge is completed, the fuel line is purged with nitrogen through the nitrogen gas supply pipe (15), and the air line is purged with nitrogen through the stored gas flood supply pipe (12).

改質装置(2)より上流側の燃料が全て窒素に置換され
るまでは窒素パージ流量の数倍(燃料が天然ガスの場合
は通常7〜8倍)の改質ガスが燃料極(1a)を流れる
ように、燃料ラインの窒素パージ流量を2段階に変化さ
せ、改質装置(2)より上流側の燃料が全て窒素に置換
されるまでは窒素パージ流量を小流量としたため、両極
間の差圧の増大を抑えることが可能になる。
Until all the fuel upstream from the reformer (2) is replaced with nitrogen, the reformed gas is supplied to the fuel electrode (1a) at several times the nitrogen purge flow rate (usually 7 to 8 times when the fuel is natural gas). The nitrogen purge flow rate in the fuel line was changed in two stages so that the flow between the two poles was changed, and the nitrogen purge flow rate was kept low until all the fuel upstream from the reformer (2) was replaced with nitrogen. It becomes possible to suppress an increase in differential pressure.

[発明の効果コ 以上のように、この発明は、窒素パージの際の燃料ライ
ンの窒素パージ流量を2段階に変化させ。
[Effects of the Invention] As described above, the present invention changes the nitrogen purge flow rate of the fuel line in two stages during nitrogen purge.

改質装置より上流側の燃料が全て窒素に置換されるまで
は窒素パージ流Iを小流量としたので、燃料電池両極間
び)差圧の増大を抑えることができ、電極のシール性を
損わず、長寿命で、がっ、安定性を向上しうる効果があ
る。
Since the nitrogen purge flow I is kept at a small flow rate until all the fuel upstream from the reformer is replaced with nitrogen, it is possible to suppress the increase in the differential pressure (between the two electrodes of the fuel cell) and prevent damage to the sealing properties of the electrodes. It also has the effect of improving stability and long life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の系統図、第2図は従来の
燃料電池発電装置の系統図である。 (1)・・燃料電池本体、(1a)・・燃料極、(1b
)・空気極、(1c)・・電解質層、(2)・・改質装
置、(3)・・燃料供給配管、(6) 、 (12) 
、 (15)  ・・窒素ガス供給配管、(9)・・空
気供給配管。 なお、各図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a system diagram of a conventional fuel cell power generation device. (1) Fuel cell main body, (1a) Fuel electrode, (1b
)・Air electrode, (1c)・・Electrolyte layer, (2)・・Reformer, (3)・・Fuel supply piping, (6) , (12)
, (15)...Nitrogen gas supply piping, (9)...Air supply piping. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 燃料極、空気極および電解質層を有する燃料電池本体と
、この燃料電池本体に炭化水素系燃料を改質して水素を
主成分とする改質ガスを供給する改質装置と、この改質
装置へ燃料を供給する燃料供給配管系と、前記空気極へ
空気を供給する空気供給配管系と、パージ用の窒素ガス
を供給するために前記燃料供給配管と前記空気供給配管
の途中にそれぞれ接続された窒素ガス供給配管を備えた
燃料電池発電装置において、前記燃料供給配管に、窒素
ガスによるパージの際にパージ流量を2段階に変化させ
る2系列の前記窒素ガス供給配管を備えてなることを特
徴とする燃料電池発電装置。
A fuel cell main body having a fuel electrode, an air electrode, and an electrolyte layer, a reformer that reformes hydrocarbon fuel and supplies reformed gas containing hydrogen as a main component to the fuel cell main body, and this reformer. A fuel supply piping system for supplying fuel to the air electrode, an air supply piping system for supplying air to the air electrode, and a fuel supply piping system connected to the fuel supply piping and the air supply piping for supplying nitrogen gas for purging, respectively. A fuel cell power generation device equipped with a nitrogen gas supply pipe, characterized in that the fuel supply pipe is equipped with two series of the nitrogen gas supply pipes that change the purge flow rate in two stages when purging with nitrogen gas. A fuel cell power generation device.
JP2105458A 1990-04-23 1990-04-23 Fuel cell generator Expired - Lifetime JP2928583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2105458A JP2928583B2 (en) 1990-04-23 1990-04-23 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2105458A JP2928583B2 (en) 1990-04-23 1990-04-23 Fuel cell generator

Publications (2)

Publication Number Publication Date
JPH044571A true JPH044571A (en) 1992-01-09
JP2928583B2 JP2928583B2 (en) 1999-08-03

Family

ID=14408142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2105458A Expired - Lifetime JP2928583B2 (en) 1990-04-23 1990-04-23 Fuel cell generator

Country Status (1)

Country Link
JP (1) JP2928583B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182720A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Sofc combined power generation system and operation method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182720A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Sofc combined power generation system and operation method of the same

Also Published As

Publication number Publication date
JP2928583B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
US5013617A (en) Air ejector system for fuel cell passivation
JP5264040B2 (en) Fuel cell system
WO2005076393A8 (en) Fuel cell system
JP2000277137A (en) Method for purging residual gas from fuel cell power generating system
CN110474071B (en) Hydrogen supply device of fuel cell system and operation method thereof
JP2006073376A (en) Polymer electrolyte fuel cell system
KR102662302B1 (en) System of power generation through gas expansion
JPH044571A (en) Fuel cell power-generating device
JPH08222259A (en) Stopping method of fuel cell power generation plant
JPS58163182A (en) Fuel cell
JPS63116373A (en) Fuel cell operating method
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JPS6282660A (en) Stopping method for phosphoric acid type fuel cell
JPS5973854A (en) Fuel cell apparatus
JP4106801B2 (en) Fuel cell power generation system
JP2005226715A (en) Hydrogen feeder
JP2007250454A (en) Fuel cell power generating device and its operation stop method
CN218939740U (en) Gas supply system for hydrogen fuel cell
JP3567447B2 (en) Differential pressure control device between containment vessel and fuel cell
JP3430767B2 (en) Gas supply / discharge device for fuel cell
JPH08190929A (en) Fuel cell power generating plant
CN102473950A (en) Fuel cell electricity generation system and shut-down method for fuel cell electricity generation system
JPS6180764A (en) Control method for fuel cell power generation system
JPS6110875A (en) Fuel cell system
JPH06267573A (en) Fuel cell generating power device