JPH0445362A - Air-conditioner - Google Patents
Air-conditionerInfo
- Publication number
- JPH0445362A JPH0445362A JP15451490A JP15451490A JPH0445362A JP H0445362 A JPH0445362 A JP H0445362A JP 15451490 A JP15451490 A JP 15451490A JP 15451490 A JP15451490 A JP 15451490A JP H0445362 A JPH0445362 A JP H0445362A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- way valve
- heat
- heat storage
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005338 heat storage Methods 0.000 claims abstract description 129
- 238000010438 heat treatment Methods 0.000 claims abstract description 65
- 239000003507 refrigerant Substances 0.000 claims abstract description 62
- 238000010257 thawing Methods 0.000 claims abstract description 19
- 239000011232 storage material Substances 0.000 claims description 29
- 238000010521 absorption reaction Methods 0.000 claims description 25
- 230000000694 effects Effects 0.000 abstract description 20
- 239000007788 liquid Substances 0.000 abstract description 10
- 230000008018 melting Effects 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract 3
- 230000005855 radiation Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 9
- 238000005057 refrigeration Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
この発明は蓄熱を利用して暖房特性の改善を図る空気調
和装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an air conditioner that utilizes heat storage to improve heating characteristics.
[従来の技術]
第4図は例えば特開昭63−273770号公報に示さ
れた従来の空気調和装置の冷凍サイクル図である。図に
おいて(1)は圧縮機、(2)は四方弁、(3)は室内
熱交換器、(4)は第1減圧装置。[Prior Art] FIG. 4 is a refrigeration cycle diagram of a conventional air conditioner disclosed in, for example, Japanese Unexamined Patent Publication No. 63-273770. In the figure, (1) is a compressor, (2) is a four-way valve, (3) is an indoor heat exchanger, and (4) is a first pressure reducing device.
(5)は室外熱交換器、(6)は蓄熱用熱交換器。(5) is an outdoor heat exchanger, and (6) is a heat storage heat exchanger.
(7)は低圧側二方弁、(8)は吸熱用バイパス回路、
(9)は低圧側減圧装置、 (10)は吸熱用熱交換器
、 (11)は蓄熱バイパス回路、 (12)は中圧
側二方弁、 (13)は蓄熱槽、 (14)は蓄熱材
で、蓄熱用熱交換器(6)と吸熱用熱交換器(lO)は
蓄熱材(14)に浸され蓄熱槽(13)に内蔵されてい
る。(7) is a low pressure side two-way valve, (8) is a heat absorption bypass circuit,
(9) is a low pressure side pressure reducing device, (10) is an endothermic heat exchanger, (11) is a heat storage bypass circuit, (12) is a two-way valve on the medium pressure side, (13) is a heat storage tank, (14) is a heat storage material The heat storage heat exchanger (6) and the heat absorption heat exchanger (lO) are immersed in a heat storage material (14) and housed in a heat storage tank (13).
次に動作について説明する。暖房兼蓄熱運転の場合、中
圧側二方弁(12)を閉じ低圧側二方弁(7)を開(。Next, the operation will be explained. In case of heating and heat storage operation, close the medium pressure side two-way valve (12) and open the low pressure side two-way valve (7).
圧縮機(1)を吐出された高温・高圧のガス冷媒は四方
弁(2)を通り室内熱交換器(3)で。The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and enters the indoor heat exchanger (3).
室内空気と熱交換して暖房効果を発揮すると共に自らは
常温・高圧の液冷媒となる。さらに第1減圧装置(4)
で減圧され蓄熱用熱交換器(6)で蓄熱材(14)に蓄
熱した後、室外熱交換器(5)で蒸発してガス冷媒とな
り、再度四方弁(2)を通過し圧縮機(1)に戻る。こ
の時蓄熱材(14)は蓄熱により融解する。It exchanges heat with indoor air to provide a heating effect, and it also becomes a liquid refrigerant at room temperature and high pressure. Furthermore, the first pressure reducing device (4)
After being depressurized and storing heat in the heat storage material (14) in the heat storage heat exchanger (6), it is evaporated in the outdoor heat exchanger (5) to become a gas refrigerant, which passes through the four-way valve (2) again and is transferred to the compressor (1). ). At this time, the heat storage material (14) melts due to heat storage.
また霜取運転の場合、中圧側二方弁(12)を開き低圧
側二方弁・(7)を閉じる。圧縮機(1)を吐出された
高温・高圧のガス冷媒は四方弁(2)を肴り室内熱交換
器(3)で室内空気と熱交換して一部暖房効果を発揮し
自らは高温・高圧の二相冷媒となる。さらに第1減圧装
置(4)で減圧されたのち蓄熱バイパス回路(11)を
通って室外熱交換器(5)に達し1表面に付着した霜を
解かして低温・中圧の液冷媒となる。さらに吸熱用バイ
パス回路(8)を通り、低圧側減圧装置(9)で再度減
圧され吸熱用熱交換器(lO)で蓄熱材(14)から熱
を奪って蒸発してガス冷媒となり、再度四方弁(2)を
通過し圧縮機(1)に戻る。この時蓄熱材(14)は放
熱により凝固する。これによって、霜取運転中も暖房効
果を発揮し、霜取運転中の室温の低下を防ぐ効果を狙っ
た。In addition, in the case of defrosting operation, the medium pressure side two-way valve (12) is opened and the low pressure side two-way valve (7) is closed. The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), exerting a partial heating effect and producing high-temperature and high-pressure gas refrigerant itself. It becomes a high-pressure two-phase refrigerant. Further, after being depressurized in the first pressure reducing device (4), it passes through the heat storage bypass circuit (11) and reaches the outdoor heat exchanger (5), where the frost adhering to the surface of the refrigerant 1 is thawed and becomes a low-temperature, medium-pressure liquid refrigerant. Furthermore, it passes through the heat absorption bypass circuit (8), is depressurized again by the low pressure side pressure reducing device (9), takes heat from the heat storage material (14) in the heat absorption heat exchanger (lO), evaporates, becomes a gas refrigerant, and is reused in all directions. It passes through the valve (2) and returns to the compressor (1). At this time, the heat storage material (14) solidifies due to heat radiation. This provides a heating effect even during defrosting operation, with the aim of preventing a drop in room temperature during defrosting operation.
また暖房立上り運転の場合も、前記暖房霜取運転と同様
に中圧側二方弁(12)を開き低圧側二方弁(7)を閉
じる。圧縮機(1)を吐出された高温・高圧のガス冷媒
は四方弁(2)を通り室内熱交換器(3)で室内空気と
熱交換して暖房効果を発揮し自らは高温・高圧の液冷媒
となる。さらに第1減圧装置(4)で減圧されたのち蓄
熱バイパス回路(11)を通って熱交換量を最小に抑え
た室外熱交換器(5)と吸熱用バイパス回路(8)を通
り、低圧側減圧装置(9)で再度減圧され吸熱用熱交換
器(10)で蓄熱材(14)から熱を奪って蒸発してガ
ス冷媒となり、再度四方弁(2)を通過し、圧縮機(1
)に戻る。この時蓄熱材(14)は放熱により凝固する
。これによって外気温が低い場合でも運転立上り時に急
速且つ十分な暖房効果を得ることを狙った。Also, in the heating start-up operation, the medium pressure side two-way valve (12) is opened and the low pressure side two-way valve (7) is closed, similarly to the heating defrosting operation. The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), producing a heating effect and converting itself into a high-temperature, high-pressure liquid. Becomes a refrigerant. Furthermore, after being depressurized by the first pressure reducing device (4), it passes through a heat storage bypass circuit (11), an outdoor heat exchanger (5) that minimizes the amount of heat exchange, and a heat absorption bypass circuit (8), and then passes through the low-pressure side. The pressure is reduced again in the pressure reducing device (9), and the endothermic heat exchanger (10) removes heat from the heat storage material (14) and evaporates to become a gas refrigerant, which passes through the four-way valve (2) again and returns to the compressor (1
) Return to At this time, the heat storage material (14) solidifies due to heat radiation. This aims to provide a rapid and sufficient heating effect at the start of operation even when the outside temperature is low.
[発明が解決しようとする課題]
従来の空気調和装置は以上のように構成されているので
、暖房兼蓄熱運転時に蓄熱用熱交換器(6)と室外熱交
換器(5)の冷媒圧力差がつがず。[Problem to be solved by the invention] Since the conventional air conditioner is configured as described above, the refrigerant pressure difference between the heat storage heat exchanger (6) and the outdoor heat exchanger (5) during heating and heat storage operation is reduced. Gatsugazu.
蓄熱用熱交換器(6)入口の冷媒温度が低下するため、
十分な蓄熱量が確保できないばかりが、霜取用熱源とす
るためには融点が0℃以上の蓄熱材(14)を選定する
必要があるにも係わらず蓄熱用熱交換器(6)入口の冷
媒温度が外気温の低下に応じて低下するため低外気温時
は霜取運転が行えないという欠点があった。また暖房霜
取運転及び暖房立上り運転の場合、室外熱交換器(5)
と放熱用熱交換器(lO)の間に低圧側減圧装置(9)
を設けたことによって室外熱交換器(5)内部の冷媒圧
力が中圧・中温となるため、暖房霜取運転中及び暖房立
上り運転中に室外熱交換器(5)から外気への放熱ロス
が増加して運転効率が低下するといった欠点があった。Since the refrigerant temperature at the inlet of the heat storage heat exchanger (6) decreases,
Not only is it not possible to secure a sufficient amount of heat storage, but in order to use it as a heat source for defrosting, it is necessary to select a heat storage material (14) with a melting point of 0°C or higher. Since the refrigerant temperature decreases as the outside temperature decreases, there is a drawback that defrosting operation cannot be performed when the outside temperature is low. In addition, in the case of heating defrost operation and heating start-up operation, the outdoor heat exchanger (5)
A low-pressure side pressure reducing device (9) is installed between the
By providing this, the refrigerant pressure inside the outdoor heat exchanger (5) becomes medium pressure and medium temperature, so heat radiation loss from the outdoor heat exchanger (5) to the outside air is reduced during heating defrost operation and heating start-up operation. This has the drawback of increasing the operating efficiency and reducing operating efficiency.
この発明は上記のような問題点を除去するためになされ
たもので、霜取効果が外気温に影響されず、且つ高効率
の良い暖房霜取運転及び暖房立上り運転を得る蓄熱利用
の空気調和装置を得ることを目的とする。This invention was made in order to eliminate the above-mentioned problems, and provides an air conditioner that uses heat storage to achieve highly efficient heating defrost operation and heating start-up operation in which the defrosting effect is not affected by outside temperature. The purpose is to obtain equipment.
[課題を解決するための手段]
請求項1の発明に係る空気調和装置は、圧縮機、四方弁
、室内熱交換器、第1減圧装置、室外熱交換器を順次接
続して構成されたものにおいて。[Means for solving the problem] The air conditioner according to the invention of claim 1 is configured by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger. In.
前記第1減圧装置と室外熱交換器の間に設けられ、蓄熱
材とともに蓄熱槽を構成する蓄熱用熱交換器と。a heat storage heat exchanger that is provided between the first pressure reducing device and the outdoor heat exchanger and constitutes a heat storage tank together with a heat storage material;
この蓄熱用熱交換器と前記室外熱交換器の間に設けられ
た第2減圧装置と。a second pressure reducing device provided between the heat storage heat exchanger and the outdoor heat exchanger;
前記第1減圧装置と蓄熱用熱交換器と第3減圧装置をバ
イパスし、第3減圧装置と中圧側二方弁を有する蓄熱バ
イパス回路と。A heat storage bypass circuit that bypasses the first pressure reduction device, the heat storage heat exchanger, and the third pressure reduction device, and includes the third pressure reduction device and the intermediate pressure side two-way valve.
前記室外熱交換器と四方弁の間に設けられた三方弁と。A three-way valve provided between the outdoor heat exchanger and the four-way valve.
この三方弁と前記圧縮機との間に設けられ、前記四方弁
をバイパスし、前記蓄熱槽を構成する吸熱用熱交換器を
有する吸熱用バイパス回路とを備え。A heat absorption bypass circuit is provided between the three-way valve and the compressor, bypasses the four-way valve, and has a heat absorption heat exchanger that constitutes the heat storage tank.
暖房蓄熱運転時、前記圧縮機、四方弁、室内熱交換機、
第1減圧装置、蓄熱用熱交換器、第2減圧装置、室外熱
交換器、三方弁、四方弁、圧縮機の順に冷媒を循環させ
。During heating heat storage operation, the compressor, four-way valve, indoor heat exchanger,
The refrigerant is circulated in the order of the first pressure reduction device, the heat storage heat exchanger, the second pressure reduction device, the outdoor heat exchanger, the three-way valve, the four-way valve, and the compressor.
暖房立上がり時及び暖房霜取運転時、前記圧縮機、四方
弁、室内熱交換器、蓄熱バイパス回路。At the time of heating startup and heating defrost operation, the compressor, four-way valve, indoor heat exchanger, and heat storage bypass circuit.
室外熱交換器、三方弁、吸熱用バイパス回路、圧縮機の
順に冷媒を循環させるものである。Refrigerant is circulated in this order: outdoor heat exchanger, three-way valve, heat absorption bypass circuit, and compressor.
請求項2の発明に係る空気調和装置は、圧縮機、四方弁
、室内熱交換器、第1減圧装置、−室外熱交換器を順次
接続して構成されたものにおいて。The air conditioner according to the invention of claim 2 is configured by sequentially connecting a compressor, a four-way valve, an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger.
前記第1減圧装置と室外熱交換器の間に設けられ、蓄熱
材とともに蓄熱槽を構成する蓄熱用熱交換器と。a heat storage heat exchanger that is provided between the first pressure reducing device and the outdoor heat exchanger and constitutes a heat storage tank together with a heat storage material;
この蓄熱用熱交換器と前記室外熱交換器の間に設けられ
た第2減圧装置と。a second pressure reducing device provided between the heat storage heat exchanger and the outdoor heat exchanger;
前記第1減圧装置と蓄熱用熱交換器をバイパスし、中圧
側二方弁を有する蓄熱バイパス回路と。A heat storage bypass circuit bypassing the first pressure reducing device and the heat storage heat exchanger and having a two-way valve on the intermediate pressure side.
前記室外熱交換器と四方弁の間に設けられた三方弁と。A three-way valve provided between the outdoor heat exchanger and the four-way valve.
この三方弁と前記圧縮機との間に設けられ、前記四方弁
をバイパスし、前記蓄熱槽を構成する吸熱用熱交換器を
有する吸熱用バイパス回路とを備え。A heat absorption bypass circuit is provided between the three-way valve and the compressor, bypasses the four-way valve, and has a heat absorption heat exchanger that constitutes the heat storage tank.
暖房蓄熱運転時、前記圧縮機、四方弁、室内熱交換機、
第1減圧装置、蓄熱用熱交換器、第2減圧装置、室外熱
交換器、三方弁、四方弁、圧縮機の順に冷媒を循環させ
。During heating heat storage operation, the compressor, four-way valve, indoor heat exchanger,
The refrigerant is circulated in the order of the first pressure reduction device, the heat storage heat exchanger, the second pressure reduction device, the outdoor heat exchanger, the three-way valve, the four-way valve, and the compressor.
暖房立上がり時及び暖房霜取運転時、前記圧縮機、四方
弁、室内熱交換器、蓄熱バイパス回路。At the time of heating startup and heating defrost operation, the compressor, four-way valve, indoor heat exchanger, and heat storage bypass circuit.
第2減圧装置、室外熱交換器、三方弁、吸熱用バイパス
回路、圧縮機の順に冷媒を循環させるものである。The refrigerant is circulated in the order of the second pressure reducing device, the outdoor heat exchanger, the three-way valve, the heat absorption bypass circuit, and the compressor.
[作用]
請求項1の発明における空気調和装置は、暖房兼蓄熱運
転時に第2減圧装置の働きで蓄熱用熱交換器入口の冷媒
温度を適切に制御する。また暖房霜取運転及び暖房立上
り運転時の室外熱交換器と吸熱用熱交換器間の圧力損失
を減らして放熱ロスを減らすとともに、第3減圧装置の
働きで室内熱交換器内部を高温・高圧に保ち十分な暖房
効果が得られる。[Function] The air conditioner according to the invention of claim 1 appropriately controls the refrigerant temperature at the inlet of the heat storage heat exchanger by the function of the second pressure reducing device during the heating and heat storage operation. In addition, the pressure loss between the outdoor heat exchanger and the endothermic heat exchanger during heating defrost operation and heating start-up operation is reduced to reduce heat radiation loss, and the function of the third pressure reducing device increases the temperature and pressure inside the indoor heat exchanger. You can get a sufficient heating effect by keeping it at a constant temperature.
請求項2の発明における空気調和装置は、暖房兼蓄熱運
転時に第2減圧装置の働きで蓄熱用熱交換器入口の冷媒
温度を適切に制御する。また暖房霜取運転及び暖房立上
り運転時の室外熱交換器と吸熱用熱交換器間の圧力損失
を減らして放熱ロスを減らすとともに、第2減圧装置の
働きで室内熱交換器内部を高温・高圧に保ち十分な暖房
効果が得られる。The air conditioner according to the second aspect of the invention appropriately controls the temperature of the refrigerant at the inlet of the heat exchanger for heat storage by the function of the second pressure reducing device during the heating and heat storage operation. In addition, the pressure loss between the outdoor heat exchanger and the heat absorption heat exchanger during heating defrost operation and heating start-up operation is reduced to reduce heat radiation loss, and the second pressure reducing device operates to maintain high temperature and high pressure inside the indoor heat exchanger. You can get a sufficient heating effect by keeping it at a constant temperature.
[実施例]
以下、この発明の一実施例を第1図の冷凍サイクル図と
第2図の弁切換図について説明する。第1図において、
(1)〜(14)は従来例を全く同一のものである。(
21)は第2減圧装置、 (22)は第3減圧装置、
(23)は三方弁である。[Embodiment] An embodiment of the present invention will be described below with reference to the refrigeration cycle diagram in FIG. 1 and the valve switching diagram in FIG. 2. In Figure 1,
(1) to (14) are completely the same as the conventional example. (
21) is the second pressure reducing device, (22) is the third pressure reducing device,
(23) is a three-way valve.
次に動作について説明する。暖房兼蓄熱運転の場合、中
圧側三方弁(12)を閉じ三方弁(23)を四方弁(2
)側に連通ずる。圧縮機(1)を吐出された高温・高圧
のガス冷媒は四方弁(2)を通り室内熱交換器(3)で
室内空気と熱交換して暖房効果を発揮すると共に自らは
常温・高圧の液冷媒となる。さらに第1減圧装置(4)
で中間圧まで減圧され蓄熱用熱交換器(6)で蓄熱材(
14)に蓄熱した後、第2減圧装置(21)で低圧まで
減圧し、室外熱交換器(5)で蒸発してガス冷媒となり
、三方弁(23)、四方弁(2)を通過し圧縮機(1)
に戻る。この時蓄熱材(14)は蓄熱により融解する。Next, the operation will be explained. In the case of heating and heat storage operation, the medium pressure side three-way valve (12) is closed, the three-way valve (23) is closed, and the four-way valve (23) is closed.
) side. The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), producing a heating effect while also refrigerating itself at room temperature and high pressure. It becomes a liquid refrigerant. Furthermore, the first pressure reducing device (4)
The pressure is reduced to intermediate pressure in the heat storage heat exchanger (6), and the heat storage material (
14), the pressure is reduced to low pressure in the second pressure reducing device (21), evaporated in the outdoor heat exchanger (5) to become a gas refrigerant, passed through the three-way valve (23) and the four-way valve (2), and compressed. Machine (1)
Return to At this time, the heat storage material (14) melts due to heat storage.
また霜取運転の場合、中圧側二方弁(12)を開き三方
弁(23)を放熱用熱交換器(lO)側に連通ずる。In addition, in the case of defrosting operation, the intermediate pressure side two-way valve (12) is opened and the three-way valve (23) is communicated with the heat radiation heat exchanger (lO) side.
圧縮機(1)を吐出された高温・高圧のガス冷媒は四方
弁(2)を通り室内熱交換器(3)で室内空気と熱交換
して一部暖房効果を発揮し自らは高温・高圧の二相冷媒
となる。さらに蓄熱バイパス回路(11)を通って第3
減圧装置(22)で減圧されたのち室外熱交換器(5)
に達し1表面に付着した霜を解かして低温・中圧の液冷
媒となる。さらに三方弁(23)と吸熱用バイパス回路
(8)を通り、吸熱用熱交換器(lO)で蓄熱材(14
)から熱を奪って蒸発してガス冷媒となり、圧縮機(1
)に戻る。この時蓄熱材(14)は放熱により凝固する
。The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), exerting a partial heating effect and itself becoming high-temperature and high-pressure. It becomes a two-phase refrigerant. Furthermore, the third
After the pressure is reduced by the pressure reducing device (22), the outdoor heat exchanger (5)
It melts the frost on the surface and becomes a low-temperature, medium-pressure liquid refrigerant. The heat storage material (14
) takes heat from the compressor (1) and evaporates to become a gas refrigerant.
). At this time, the heat storage material (14) solidifies due to heat radiation.
また暖房立上り運転の場合も、前記暖房霜取運転と同様
に中圧側二方弁(12)を開き三方弁(23)を吸熱用
熱交換器(10)側に連通ずる。圧縮機(1)を吐出さ
れた高温・高圧のガス冷媒は四方弁(2)を通り室内熱
交換器(3)で室内空気と熱交換して暖房効果を発揮し
自らは高温・高圧の液冷媒となる。さらに蓄熱バイパス
回路(11)を通って第3減圧装置(22)で減圧され
たのち熱交換量を最小に抑えた室外熱交換器(5)を通
り、三方弁(23)と吸熱用バイパス回路(8)を通り
、吸熱用熱交換器(lO)で蓄熱材(14)から熱を奪
って蒸発してガス冷媒となり圧縮機(1)に戻る。この
時蓄熱材(14)は放熱により凝固する。Also, in the case of the heating start-up operation, the intermediate pressure side two-way valve (12) is opened and the three-way valve (23) is communicated with the endothermic heat exchanger (10) side, similarly to the heating defrosting operation. The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), producing a heating effect and converting itself into a high-temperature, high-pressure liquid. Becomes a refrigerant. It then passes through the heat storage bypass circuit (11), is depressurized by the third pressure reducing device (22), passes through the outdoor heat exchanger (5) that minimizes the amount of heat exchange, and then connects to the three-way valve (23) and the heat absorption bypass circuit. (8), removes heat from the heat storage material (14) in the endothermic heat exchanger (lO), evaporates, and returns to the compressor (1) as a gas refrigerant. At this time, the heat storage material (14) solidifies due to heat radiation.
従って暖房兼蓄熱運転時に、第2減圧装置(21)によ
って蓄熱用熱交換器(6)と室外熱交換器(5)との間
に適当な冷媒圧力差を確保して、蓄熱用熱交換器(6)
入口の冷媒温度を蓄熱材(14)の融点以上に制御する
ことによって、外気温に左右されずに十分な蓄熱量が確
保できるだけでなく、低外気温時でも霜取が可能となる
。しかも蓄熱材(14)の選定も容易となる。Therefore, during heating and heat storage operation, an appropriate refrigerant pressure difference is secured between the heat storage heat exchanger (6) and the outdoor heat exchanger (5) by the second pressure reducing device (21), and the heat storage heat exchanger (21) (6)
By controlling the temperature of the refrigerant at the inlet to be equal to or higher than the melting point of the heat storage material (14), not only can a sufficient amount of heat storage be secured regardless of the outside temperature, but also defrosting is possible even at low outside temperatures. Furthermore, selection of the heat storage material (14) is also facilitated.
また暖房霜取運転及び暖房立上り運転の場合。Also in the case of heating defrost operation and heating start-up operation.
室外熱交換器(5) と吸熱用熱交換器(10)の間の
圧力損失を減らしたことによって、室外熱交換器(5)
内部の冷媒温度が下がって、外気への放熱ロスが小さ(
なるだけでなく、第3減圧装置(22)によって室内熱
交換器(3)内部を高温・高圧に保ち十分な暖房能力が
発揮できる。By reducing the pressure loss between the outdoor heat exchanger (5) and the endothermic heat exchanger (10), the outdoor heat exchanger (5)
The internal refrigerant temperature decreases, reducing heat loss to the outside air (
Not only that, but the third pressure reducing device (22) maintains the inside of the indoor heat exchanger (3) at high temperature and high pressure, making it possible to exert sufficient heating capacity.
本発明の別の発明の一実施例を第3図の冷凍サイクル図
について説明する。この発明において。Another embodiment of the present invention will be described with reference to the refrigeration cycle diagram shown in FIG. In this invention.
暖房兼蓄熱運転は前記発明の実施例と同様に作用する。The heating and heat storage operation operates in the same manner as in the embodiments of the invention.
また霜取運転の場合、中圧側二方弁(12)を開き三方
弁(23)を吸熱用熱交換器(lO)側に連通する。In the case of defrosting operation, the intermediate pressure side two-way valve (12) is opened and the three-way valve (23) is communicated with the endothermic heat exchanger (lO) side.
圧縮機(1)を吐出された高温・高圧のガス冷媒は四方
弁(2)を通り室内熱交換器(3)で室内空気と熱交換
して一部暖房効果を発揮し自らは高温・高圧の二相冷媒
となる。さらに蓄熱バイパス回路(11)を通って第2
減圧装置(21)で減圧されたのち室外熱交換器(5)
に達し1表面に付着した霜を解かして低温・中圧の液冷
媒となる。さらに三方弁(23)と吸熱用バイパス回路
(8)を通り、吸熱用熱交換器(lO)で蓄熱材(14
)から熱を奪って蒸発してガス冷媒となり、圧縮機(1
)に戻る。この時蓄熱材(14)は放熱により凝固する
。The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), exerting a partial heating effect and itself becoming high-temperature and high-pressure. It becomes a two-phase refrigerant. Furthermore, the second
After the pressure is reduced by the pressure reducing device (21), the outdoor heat exchanger (5)
It melts the frost on the surface and becomes a low-temperature, medium-pressure liquid refrigerant. The heat storage material (14
) takes heat from the compressor (1) and evaporates to become a gas refrigerant.
). At this time, the heat storage material (14) solidifies due to heat radiation.
また暖房立上り運転の場合も、前記暖房霜取運転と同様
に中圧側二方弁(12)を開き三方弁(23)を吸熱用
熱交換器(lO)側に連通ずる。圧縮機(1)を吐出さ
れた高温・高圧のガス冷媒は四方弁(2)を通り室内熱
交換器(3)で室内空気と熱交換して暖房効果を発揮し
自らは高温・高圧の液冷媒となる。さらに蓄熱バイパス
回路(11)を通って第2減圧装置(21)で減圧され
たのち熱交換量を最少に抑えた室外熱交換器(5)を通
り、三方弁(23)と吸熱用バイパス回路(8)を通り
、吸熱用熱交換器(lO)で蓄熱材(14)から熱を奪
って蒸発してガス冷媒となり圧縮機(1)に戻る。この
時蓄熱材(14)は放熱により凝固する。Also, in the case of the heating start-up operation, the intermediate pressure side two-way valve (12) is opened and the three-way valve (23) is communicated with the endothermic heat exchanger (lO) side, similarly to the heating defrosting operation. The high-temperature, high-pressure gas refrigerant discharged from the compressor (1) passes through the four-way valve (2) and exchanges heat with the indoor air in the indoor heat exchanger (3), producing a heating effect and converting itself into a high-temperature, high-pressure liquid. Becomes a refrigerant. It then passes through the heat storage bypass circuit (11), is depressurized by the second pressure reducing device (21), passes through the outdoor heat exchanger (5) that minimizes the amount of heat exchange, and then connects to the three-way valve (23) and the heat absorption bypass circuit. (8), removes heat from the heat storage material (14) in the endothermic heat exchanger (lO), evaporates, and returns to the compressor (1) as a gas refrigerant. At this time, the heat storage material (14) solidifies due to heat radiation.
[発明の効果] 請求項1の空気調和装置は、圧縮機、四方弁。[Effect of the invention] The air conditioner according to claim 1 includes a compressor and a four-way valve.
室内熱交換器、第1減圧装置、室外熱交換器を順次接続
して構成されたものにおいて、前記第1減圧装置と室外
熱交換器の間に設けられ、蓄熱材とともに蓄熱槽を構成
する蓄熱用熱交換器と。In a device configured by sequentially connecting an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger, a heat storage device that is provided between the first pressure reducing device and the outdoor heat exchanger and constitutes a heat storage tank together with a heat storage material. with heat exchanger.
この蓄熱用熱交換器と前記室外熱交換器の間に設けられ
た第2減圧装置と。a second pressure reducing device provided between the heat storage heat exchanger and the outdoor heat exchanger;
前記第1減圧装置と蓄熱用熱交換器と第3減圧装置をバ
イパスし、第3減圧装置と中圧側二方弁を有する蓄熱バ
イパス回路と。A heat storage bypass circuit that bypasses the first pressure reduction device, the heat storage heat exchanger, and the third pressure reduction device, and includes the third pressure reduction device and the intermediate pressure side two-way valve.
前記室外熱交換器と四方弁の間に設けられた三方弁と。a three-way valve provided between the outdoor heat exchanger and the four-way valve;
この三方弁と前記圧縮機との間に設けられ、前記四方弁
をバイパスし、前記蓄熱槽を構成する吸熱用熱交換器を
有する吸熱用バイパス回路とを備え。A heat absorption bypass circuit is provided between the three-way valve and the compressor, bypasses the four-way valve, and has a heat absorption heat exchanger that constitutes the heat storage tank.
暖房蓄熱運転時、前記圧縮機、四方弁、室内熱交換器、
第1減圧装置、蓄熱用熱交換器、第2減圧装置、室外熱
交換器、三方弁、四方弁、圧縮機の順に冷媒を循環させ
。During heating heat storage operation, the compressor, four-way valve, indoor heat exchanger,
The refrigerant is circulated in the order of the first pressure reduction device, the heat storage heat exchanger, the second pressure reduction device, the outdoor heat exchanger, the three-way valve, the four-way valve, and the compressor.
暖房立上がり時及び暖房霜取運転時、前記圧縮機、四方
弁、室内熱交換器、蓄熱バイパス回路。At the time of heating startup and heating defrost operation, the compressor, four-way valve, indoor heat exchanger, and heat storage bypass circuit.
室外熱交換器、三方弁、吸熱用バイパス回路、圧縮機の
順に冷媒を循環させる構成にしたので、暖房兼蓄熱運転
時に第2減圧装置によって蓄熱用熱交換器と室外熱交換
器との間に適切な冷媒圧力差を確保して、蓄熱用熱交換
器入口の冷媒温度を蓄熱材の融点以上に制御することに
よって、外気温に左右されずに十分な蓄熱量が確保でき
るだ−けでなく、低外気温時でも霜取が可能となる。ま
た暖房霜取運転及び暖房立上り運転時の室外熱交換器と
吸熱用熱交換器間の圧力損失を減らして放熱ロスを減ら
すとともに、第3減圧装置の働きで室内熱交換器内部を
W1温・高圧に保ち十分な暖房効果が得られる。Since the refrigerant is configured to circulate in the order of the outdoor heat exchanger, the three-way valve, the heat absorption bypass circuit, and the compressor, during heating and heat storage operation, the second pressure reducing device is used to circulate the refrigerant between the heat storage heat exchanger and the outdoor heat exchanger. By ensuring an appropriate refrigerant pressure difference and controlling the refrigerant temperature at the inlet of the heat storage heat exchanger to a level higher than the melting point of the heat storage material, it is not only possible to secure a sufficient amount of heat storage regardless of the outside temperature. , defrosting is possible even at low outside temperatures. In addition, the pressure loss between the outdoor heat exchanger and the endothermic heat exchanger during heating defrosting operation and heating start-up operation is reduced to reduce heat radiation loss, and the function of the third pressure reducing device increases the inside of the indoor heat exchanger to W1 temperature. Maintains high pressure and provides sufficient heating effect.
請求項2の空気調和装置は、圧縮機、四方弁。The air conditioner according to claim 2 includes a compressor and a four-way valve.
室内熱交換器、第1減圧装置、室外熱交換器を順次接続
して構成されたものにおいて、前記第1減圧装置と室外
熱交換器の間に設けられ、蓄熱材とともに蓄熱槽を構成
する蓄熱用熱交換器と。In a device configured by sequentially connecting an indoor heat exchanger, a first pressure reducing device, and an outdoor heat exchanger, a heat storage device that is provided between the first pressure reducing device and the outdoor heat exchanger and constitutes a heat storage tank together with a heat storage material. with heat exchanger.
この蓄熱用熱交換器と前記室外熱交換器の間に設けられ
た第2減圧装置と。a second pressure reducing device provided between the heat storage heat exchanger and the outdoor heat exchanger;
前記第1減圧装置と蓄熱用熱交換器をバイパスし、中圧
側二方弁を有する蓄熱バイパス回路と。A heat storage bypass circuit bypassing the first pressure reducing device and the heat storage heat exchanger and having a two-way valve on the intermediate pressure side.
前記室外熱交換器と四方弁の間に設けられた三方弁と。A three-way valve provided between the outdoor heat exchanger and the four-way valve.
この三方弁と前記圧縮機との間に設けられ、前記四方弁
をバイパスし、前記蓄熱槽を構成する吸熱用熱交換器を
有する吸熱用バイパス回路とを備え。A heat absorption bypass circuit is provided between the three-way valve and the compressor, bypasses the four-way valve, and has a heat absorption heat exchanger that constitutes the heat storage tank.
暖房蓄熱運転時、前記圧縮機、四方弁、室内熱交換器、
第1減圧装置、蓄熱用熱交換器、第2減圧装置、室外熱
交換器、三方弁、四方弁、圧縮機の順に冷媒を循環させ
。During heating heat storage operation, the compressor, four-way valve, indoor heat exchanger,
The refrigerant is circulated in the order of the first pressure reduction device, the heat storage heat exchanger, the second pressure reduction device, the outdoor heat exchanger, the three-way valve, the four-way valve, and the compressor.
暖房立上がり時及び暖房霜取運転時、前記圧縮機、四方
弁、室内熱交換器、蓄熱バイパス回路。At the time of heating startup and heating defrost operation, the compressor, four-way valve, indoor heat exchanger, and heat storage bypass circuit.
第2減圧装置、室外熱交換器、三方弁、吸熱用バイパス
回路、圧縮機の順に冷媒を循環させる構成にしたので、
同様の効果を奏するとともに、第3減圧装置が不要のた
め構成が簡単になる。Since the refrigerant is circulated in the order of the second pressure reducing device, outdoor heat exchanger, three-way valve, heat absorption bypass circuit, and compressor,
Similar effects can be achieved, and the configuration can be simplified since the third pressure reducing device is not required.
従ってこの発明によっても前記発明と同様の効果を発揮
する。また上記実施例では蓄熱バイパス回路(11)を
第1減圧装置(4)と蓄熱用熱交換器(6)をバイパス
するように配置したが、蓄熱バイパス回路(11)を第
1減圧装置(4)のみバイパスさせても同様の効果を奏
する。Therefore, this invention also exhibits the same effects as the above invention. Further, in the above embodiment, the heat storage bypass circuit (11) was arranged to bypass the first pressure reducing device (4) and the heat storage heat exchanger (6), but the heat storage bypass circuit (11) was arranged so as to bypass the first pressure reducing device (4) and the heat storage heat exchanger (6). ) can be bypassed to achieve the same effect.
第1図はこの発明の一実施例の冷凍サイクル図、第2図
はその弁切換図、第3図はこの発明の他の実施例の冷凍
サイクル図、第4図は従来の空気調和装置の冷凍サイク
ル図である。
図において、(1)は圧縮機、(2)は四方弁。
(3)は室内熱交換器、(4)は第1減圧装置、(5)
は室外熱交換器、(6)は蓄熱用熱交換器、(8)は吸
熱用バイパス回路、 (10)は吸熱用熱交換器。
(11)は蓄熱バイパス回路、 (12)は中圧側三方
弁。
(13)は蓄熱槽、 (14)は蓄熱材、 (21)は
第2減圧装置、 (22)は第3減圧装置、 (23)
は三方弁である。
なお、各図中、同一符号は同一または相当部分を示す。Fig. 1 is a refrigeration cycle diagram of one embodiment of this invention, Fig. 2 is a valve switching diagram thereof, Fig. 3 is a refrigeration cycle diagram of another embodiment of this invention, and Fig. 4 is a diagram of a conventional air conditioner. It is a refrigeration cycle diagram. In the figure, (1) is a compressor, and (2) is a four-way valve. (3) is the indoor heat exchanger, (4) is the first pressure reducing device, (5)
is an outdoor heat exchanger, (6) is a heat storage heat exchanger, (8) is a heat absorption bypass circuit, and (10) is a heat absorption heat exchanger. (11) is the heat storage bypass circuit, and (12) is the medium pressure side three-way valve. (13) is a heat storage tank, (14) is a heat storage material, (21) is a second pressure reducing device, (22) is a third pressure reducing device, (23)
is a three-way valve. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (2)
室外熱交換器を順次接続して構成された空気調和装置に
おいて、 前記第1減圧装置と室外熱交換器の間に設けられ、蓄熱
材とともに蓄熱槽を構成する蓄熱用熱交換器と、 この蓄熱用熱交換器と前記室外熱交換器の間に設けられ
た第2減圧装置と、 前記第1減圧装置と蓄熱用熱交換器と第3減圧装置をバ
イパスし、第3減圧装置と中圧側二方弁を有する蓄熱バ
イパス回路と、 前記室外熱交換器と四方弁の間に設けられた三方弁と、 この三方弁と前記圧縮機との間に設けられ、前記四方弁
をバイパスし、前記蓄熱槽を構成する吸熱用熱交換器を
有する吸熱用バイパス回路とを備え、 暖房蓄熱運転時、前記圧縮機、四方弁、室内熱交換機、
第1減圧装置、蓄熱用熱交換器、第2減圧装置、室外熱
交換器、三方弁、四方弁、圧縮機の順に冷媒を循環させ
、 暖房立上がり時及び暖房霜取運転時、前記圧縮機、四方
弁、室内熱交換器、蓄熱バイパス回路、室外熱交換器、
三方弁、吸熱用バイパス回路、圧縮機の順に冷媒を循環
させることを特徴とする空気調和装置。(1) Compressor, four-way valve, indoor heat exchanger, first pressure reducing device,
In an air conditioner configured by sequentially connecting outdoor heat exchangers, a heat storage heat exchanger is provided between the first pressure reducing device and the outdoor heat exchanger and constitutes a heat storage tank together with a heat storage material; a second pressure reducing device provided between the outdoor heat exchanger and the outdoor heat exchanger; bypassing the first pressure reducing device, the heat storage heat exchanger and the third pressure reducing device; a heat storage bypass circuit having a two-way valve; a three-way valve provided between the outdoor heat exchanger and the four-way valve; and a heat storage bypass circuit provided between the three-way valve and the compressor to bypass the four-way valve and bypass the four-way valve. and an endothermic bypass circuit having an endothermic heat exchanger constituting a tank, and during heating heat storage operation, the compressor, the four-way valve, the indoor heat exchanger,
The refrigerant is circulated in the order of the first pressure reduction device, the heat storage heat exchanger, the second pressure reduction device, the outdoor heat exchanger, the three-way valve, the four-way valve, and the compressor, and at the time of heating startup and heating defrosting operation, the compressor, Four-way valve, indoor heat exchanger, heat storage bypass circuit, outdoor heat exchanger,
An air conditioner characterized by circulating refrigerant in the order of a three-way valve, a heat absorption bypass circuit, and a compressor.
室外熱交換器を順次接続して構成された空気調和装置に
おいて、 前記第1減圧装置と室外熱交換器の間に設けられ、蓄熱
材とともに蓄熱槽を構成する蓄熱用熱交換器と、 この蓄熱用熱交換器と前記室外熱交換器の間に設けられ
た第2減圧装置と、 前記第1減圧装置と蓄熱用熱交換器をバイパスし、中圧
側二方弁を有する蓄熱バイパス回路と、前記室外熱交換
器と四方弁の間に設けられた三方弁と、 この三方弁と前記圧縮機との間に設けられ、前記四方弁
をバイパスし、前記蓄熱槽を構成する吸熱用熱交換器を
有する吸熱用バイパス回路とを備え、 暖房蓄熱運転時、前記圧縮機、四方弁、室内熱交換器、
第1減圧装置、蓄熱用熱交換器、第2減圧装置、室外熱
交換器、三方弁、四方弁、圧縮機の順に冷媒を循環させ
、 暖房立上がり時及び暖房霜取運転時、前記圧縮機、四方
弁、室内熱交換器、蓄熱バイパス回路、第2減圧装置、
室外熱交換器、三方弁、吸熱用バイパス回路、圧縮機の
順に冷媒を循環させることを特徴とする空気調和装置。(2) Compressor, four-way valve, indoor heat exchanger, first pressure reducing device,
In an air conditioner configured by sequentially connecting outdoor heat exchangers, a heat storage heat exchanger is provided between the first pressure reducing device and the outdoor heat exchanger and constitutes a heat storage tank together with a heat storage material; a second pressure reducing device provided between the outdoor heat exchanger and the outdoor heat exchanger; a heat storage bypass circuit bypassing the first pressure reducing device and the heat storage heat exchanger and having a two-way valve on the intermediate pressure side; a three-way valve provided between the outdoor heat exchanger and the four-way valve; and an endothermic heat exchanger provided between the three-way valve and the compressor, bypassing the four-way valve and forming the heat storage tank. and a heat absorption bypass circuit having a heating heat storage operation, the compressor, the four-way valve, the indoor heat exchanger,
The refrigerant is circulated in the order of the first pressure reduction device, the heat storage heat exchanger, the second pressure reduction device, the outdoor heat exchanger, the three-way valve, the four-way valve, and the compressor, and at the time of heating startup and heating defrosting operation, the compressor, Four-way valve, indoor heat exchanger, heat storage bypass circuit, second pressure reducing device,
An air conditioner characterized by circulating refrigerant in the order of an outdoor heat exchanger, a three-way valve, a heat absorption bypass circuit, and a compressor.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15451490A JPH0445362A (en) | 1990-06-13 | 1990-06-13 | Air-conditioner |
DE69109532T DE69109532T2 (en) | 1990-03-30 | 1991-03-28 | Air conditioner. |
EP91302782A EP0449641B1 (en) | 1990-03-30 | 1991-03-28 | Air conditioning system |
US07/677,428 US5165250A (en) | 1990-03-30 | 1991-03-29 | Air conditioning system with thermal storage cycle control |
HK98105504A HK1006328A1 (en) | 1990-03-30 | 1998-06-17 | Air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15451490A JPH0445362A (en) | 1990-06-13 | 1990-06-13 | Air-conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0445362A true JPH0445362A (en) | 1992-02-14 |
Family
ID=15585920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15451490A Pending JPH0445362A (en) | 1990-03-30 | 1990-06-13 | Air-conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0445362A (en) |
-
1990
- 1990-06-13 JP JP15451490A patent/JPH0445362A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0432669A (en) | Heat pump system controlling method therefor | |
JP2667741B2 (en) | Air conditioner | |
JPH01247967A (en) | Multi-room type air-conditioner | |
JPH0237265A (en) | Heat pump type air conditioner | |
JPH0445362A (en) | Air-conditioner | |
JPS5885043A (en) | Operation control apparatus for cold insulation type air conditioner | |
JPH09287847A (en) | Heat recovery type air conditioner | |
JP2004177064A (en) | Air conditioner | |
JPH10325641A (en) | Refrigerating device | |
JPH0794927B2 (en) | Air conditioner | |
JPS62202965A (en) | Refrigeration cycle | |
JPH035680A (en) | Air conditioner | |
JPS611967A (en) | Air-conditioning and hot-water supply heat pump device | |
JPH0926219A (en) | Cooling/heating apparatus for many rooms | |
JPH10205932A (en) | Air conditioner | |
JP2751695B2 (en) | Heat storage type cooling device | |
JPH0351644A (en) | Multiroom cooling heating device | |
JP2001033126A (en) | Air conditioner | |
JPH0730978B2 (en) | Heat pump device | |
JP3197107B2 (en) | Thermal storage type air conditioner | |
JP2001116423A (en) | Deep freezing air conditioner | |
JPS5872853A (en) | Absorption air conditioner | |
JP2800573B2 (en) | Air conditioner | |
JPH03260559A (en) | Heat storage type air conditioner and controlling method therefor | |
JPS6243249Y2 (en) |