JPH0445245A - High heat resistant alpha and gamma finely mixed cast steel - Google Patents

High heat resistant alpha and gamma finely mixed cast steel

Info

Publication number
JPH0445245A
JPH0445245A JP15450090A JP15450090A JPH0445245A JP H0445245 A JPH0445245 A JP H0445245A JP 15450090 A JP15450090 A JP 15450090A JP 15450090 A JP15450090 A JP 15450090A JP H0445245 A JPH0445245 A JP H0445245A
Authority
JP
Japan
Prior art keywords
cast steel
ferrite
thermal expansion
gamma
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15450090A
Other languages
Japanese (ja)
Inventor
Kiwa Genma
喜和 弦間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP15450090A priority Critical patent/JPH0445245A/en
Publication of JPH0445245A publication Critical patent/JPH0445245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To obtain a high heat resistant alpha and gamma finely mixed cast steel having the low coefficient of thermal expansion and excellent in high temp. strength by specifying a compsn. constituted of C, Si, Mn, Cr, Ni, Nb, P, S and Fe and regulating a fine ferrite precipitated phase. CONSTITUTION:This is a high heat resistant alpha and gamma finely mixed cast steel having a compsn. contg., by weight, 0.20 to 0.40% C, 1.5 to 2.5% Si, <=1.0% Mn, 13 to 17% Cr, 4.5 to 8.5% Ni, 0.30 to 0.70% Nb, <=0.05% P, <=0.10% S and the balance Fe with impurity elements and having a structure in which 40 to 50vol.% fine ferritic phase with the intervals of 0.1 to 1.0mum is precipitated into austenitic grains. The steel has the low coefficient of thermal expansion and small deformation as well as excellent in high temp. strength. The above structure can be obtd. by rising the temp. of a cast steel as cast to the A3 point or above to perfectly convert its phase into an austenitic one, thereafter subjecting it to furnace cooling to the A1 point or below and perfectly decomposing partially precipitated pearlite into ferrite.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はステンレス系の耐熱用鋳鋼に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a stainless steel heat-resistant cast steel.

[従来の技術] ステンレス鋳鋼はその耐食性と共に耐熱性にも優れてい
るので、耐熱用鋳鋼としても広く用いられている。これ
らステンレス系の耐熱用鋳鋼のうち、Cr−Fe系は3
0%以下のCrと7%以下のNiを含みフェライト組織
である。したがって、高温強さは比較的低いが優れた耐
酸化性とSに対する耐食性を持っている。Cr−Fe系
としては、例えば28%Crを含有するJ I S、S
CH2(ASTM:HC)があり、1100℃くらいま
では優れた耐酸化性とSに対する耐食性を持っている。
[Prior Art] Stainless steel cast steel has excellent corrosion resistance and heat resistance, so it is widely used as heat-resistant cast steel. Among these stainless steel heat-resistant cast steels, 3
It has a ferrite structure containing 0% or less Cr and 7% or less Ni. Therefore, although its high temperature strength is relatively low, it has excellent oxidation resistance and corrosion resistance against S. As the Cr-Fe system, for example, JIS, S containing 28% Cr
CH2 (ASTM: HC) has excellent oxidation resistance and corrosion resistance against S up to about 1100°C.

また、Cr−Ni−Fe系は18〜23%Cr、8〜2
2%Niを含み一部または完全オーステナイト組織であ
って、Cr−Fe系より高い高温強さと靭性を持ってい
る。そしてより大きな荷重と温度変化に耐え、Sを含む
酸化性および還元性雰囲気で使用できる。例えば、25
%Cr−20%NiのJ I S:SCH14(AST
M:HK)は、1038℃以上で最も強さが高く、11
50℃まで構造材として広く用いられる。
In addition, Cr-Ni-Fe system has 18 to 23% Cr, 8 to 2
It contains 2% Ni and has a partially or completely austenitic structure, and has higher high temperature strength and toughness than the Cr-Fe system. It can withstand larger loads and temperature changes, and can be used in oxidizing and reducing atmospheres containing S. For example, 25
%Cr-20%Ni JIS:SCH14(AST
M:HK) has the highest strength at 1038°C or higher, and 11
Widely used as a structural material up to 50°C.

[発明が解決しようとする課題] 前記Cr−Fe系のフェライト系耐熱用鋳鋼は、21〜
1093℃における熱膨張係数が13.91/’CXl
0−6であって、低い熱膨張係数を有するので、変形が
少ないという利点があるが、高温での強度に劣るという
欠点がある。そこで、このフェライト系耐熱用鋳鋼を高
合金化することにより、高温強度を向上させることが考
えられるが、高合金化すると室温での靭性が低下する。
[Problems to be Solved by the Invention] The Cr-Fe-based ferritic heat-resistant cast steel has 21 to
The coefficient of thermal expansion at 1093℃ is 13.91/'CXl
0-6 and has a low coefficient of thermal expansion, which has the advantage of little deformation, but has the disadvantage of poor strength at high temperatures. Therefore, it is possible to improve the high-temperature strength by high-alloying this ferritic heat-resistant cast steel, but high-alloying reduces the toughness at room temperature.

一方、Cr−Ni−Fe系のオーステナイト系耐熱用鋳
鋼は、高温強度は優れているものの、21〜1093℃
における熱膨張係数が18.21/’C×104であっ
て、前記フェライト系耐熱用鋳鋼に比較して約30%も
高く、変形し易いという欠点がある。
On the other hand, although Cr-Ni-Fe-based austenitic heat-resistant cast steel has excellent high-temperature strength, it
The coefficient of thermal expansion is 18.21/'C×104, which is about 30% higher than that of the ferritic heat-resistant cast steel, and it has the disadvantage of being easily deformed.

然るに、近時は自動車エンジンの燃費の向上、動力性能
の向上の要請から、耐熱性の必要な排気系部品の薄肉化
が必要とされているので、低熱膨張でかつ高温強度が優
れた耐熱用鋳鋼の出現が望まれている。
However, in recent years, due to the demand for improved fuel efficiency and power performance of automobile engines, it is necessary to make exhaust system parts that require heat resistance thinner, so heat resistant parts with low thermal expansion and excellent high temperature strength are required. It is hoped that cast steel will emerge.

本発明はステンレス系の耐熱用鋳鋼の前記のごとき問題
点を解決すべくなされたものであって、低熱膨張率で変
形少なく、かつ高温強度に優れた耐熱用鋳鋼を提供する
ことを目的とする。
The present invention was made to solve the above-mentioned problems of stainless steel heat-resistant cast steel, and aims to provide a heat-resistant cast steel that has a low coefficient of thermal expansion, little deformation, and excellent high-temperature strength. .

[課題を解決するための手段] 本発明の゛高耐熱性α、γ微細混合鋳鋼は、重量比で、
C;0.20〜0.40%、Si;1.5〜2゜5%、
Mn;1.0%以下、Cr;13〜17%、Ni;4.
5〜8.5%、Nb;0.30〜0.70%、P;0.
05%以下、S;0.10%以下を含有し、残部がFe
および不純物元素からなり、オーステナイト粒内に0.
1〜1.0μm間隔の微細なフェライト相を体積率で4
0〜50%析出した組織を有することを要旨とする。
[Means for Solving the Problems] The high heat resistant α, γ fine mixed cast steel of the present invention has a weight ratio of
C: 0.20-0.40%, Si: 1.5-2°5%,
Mn: 1.0% or less, Cr: 13-17%, Ni; 4.
5-8.5%, Nb; 0.30-0.70%, P; 0.
Contains 0.05% or less, S; 0.10% or less, and the balance is Fe.
and impurity elements, and 0.
Fine ferrite phase with an interval of 1 to 1.0 μm at a volume ratio of 4
The gist is to have a structure with 0 to 50% precipitation.

発明者は、高温強度を向上し低熱膨張率を確保するため
、オーステナイト相とフェライト相の2相混合組織とす
ることを着想した。そのため、Cr;13〜17%、N
i;4.5〜8.5%を含有せしめて、オーステナイト
とフェライトの混合組織にすると共に、Nb、0.30
〜0.70%を含有させて高温強度を確保した。また、
オーステナイト粒内に析出するフェライト相の形状が高
温強度および熱膨張率に重要な関連を持つとの新たな知
見を得て、熱処理によりフェライト相の形状を規制する
ことにより本発明を完成した。
The inventor came up with the idea of creating a two-phase mixed structure of an austenite phase and a ferrite phase in order to improve high-temperature strength and ensure a low coefficient of thermal expansion. Therefore, Cr; 13-17%, N
i; 4.5 to 8.5% to form a mixed structure of austenite and ferrite, and Nb, 0.30%.
-0.70% was included to ensure high temperature strength. Also,
We obtained new knowledge that the shape of the ferrite phase precipitated within austenite grains has an important relationship with high-temperature strength and coefficient of thermal expansion, and completed the present invention by regulating the shape of the ferrite phase through heat treatment.

本発明鋼においては熱処理により、オーステナイト粒内
に0.1〜1.0μ醜間隔の微細なフェライト相を体積
率で40〜50%析出せしめることにより、所期の高温
強度および低熱膨張率が得られる。熱処理により、オー
ステナイト粒内に0゜1〜1.0μm間隔の微細なフェ
ライト相を体積率で40〜50%析出せしめるには、A
1点以上の温度例えば1000〜1100℃で2〜3時
間保持し完全にオーステナイト相とした後、A1点以下
の温度例えば550〜650℃まで炉冷する。
In the steel of the present invention, the desired high-temperature strength and low coefficient of thermal expansion can be achieved by precipitating a fine ferrite phase with a spacing of 0.1 to 1.0μ in the austenite grains at a volume ratio of 40 to 50% through heat treatment. It will be done. In order to precipitate 40 to 50% by volume of fine ferrite phases with an interval of 0°1 to 1.0 μm within the austenite grains by heat treatment, A
After holding at one or more temperatures, for example, 1000 to 1100°C, for 2 to 3 hours to completely transform into an austenite phase, it is furnace cooled to a temperature below the A1 point, for example, 550 to 650°C.

さらに、この温度で4〜5時間保持し、一部に析出した
パーライトをフェライトに完全に分解して、組織をオー
ステナイトとフェライトの2相混合組織とする。
Furthermore, this temperature is maintained for 4 to 5 hours to completely decompose the partially precipitated pearlite into ferrite, resulting in a two-phase mixed structure of austenite and ferrite.

[作用コ 本発明鋼ではCrを13〜17%、Niを4.5〜8.
5%含有せしめたので、高温強度を向上し、低熱11張
率を確保することができた。また、Nbを0.30〜0
.70%含有させたので高温強度をさらに向上すること
ができた。また、オーステナイト粒内に0.1〜1.0
μm間隔の微細なフェライト相を体積率で40〜50%
析出せしめたので、オーステナイト系耐熱用鋳鋼並の高
温強度を確保し、熱膨張係数をフェライト系耐熱用鋳鋼
に近付けることができた。
[Effects] In the steel of the present invention, Cr is 13 to 17% and Ni is 4.5 to 8%.
Since the content was 5%, the high temperature strength was improved and a low thermal elongation of 11 could be ensured. In addition, Nb is 0.30 to 0
.. Since the content was 70%, the high temperature strength could be further improved. In addition, 0.1 to 1.0
40-50% volume fraction of fine ferrite phase with μm spacing
By precipitating it, we were able to ensure high-temperature strength comparable to that of austenitic heat-resistant cast steel, and to have a coefficient of thermal expansion close to that of ferritic heat-resistant cast steel.

次に、本発明において成分組成を限定した理由について
説明する。
Next, the reason for limiting the component composition in the present invention will be explained.

C・0.20〜0.40% Cは鋼の強度特性と鋳造性を改善させるために必要な元
素であり、前記効果を得るためには少なくとも0,2%
以上を含有させる必要がある。しかし、Cは元来オース
テナイト安定化元素であり、04%を越えて含有される
と、フェライトが形成されにくくなり、二相混合組織が
得られなくなるので、上限を0,4%とした。
C・0.20-0.40% C is an element necessary to improve the strength characteristics and castability of steel, and in order to obtain the above effects, it must be at least 0.2%.
It is necessary to contain the above. However, C is originally an austenite stabilizing element, and if the content exceeds 0.4%, it becomes difficult to form ferrite and a two-phase mixed structure cannot be obtained, so the upper limit was set at 0.4%.

Si 1.5〜25% Siは脱酸剤として有効であるばがってなく、鋳造性お
よび耐酸化性を改善させる元素である。
Si 1.5-25% Si is an element that is effective as a deoxidizing agent and improves castability and oxidation resistance.

1.5%未満の含有量では、前記の改善効果が得られな
いので下限を1.5%とした。しかし、2゜5%を越え
て含有されると、靭性が低下する。また、Siはフェラ
イト安定化元素であり、フェライトが析出し過ぎてしま
うので、上限を2.5%とした。
If the content is less than 1.5%, the above-mentioned improvement effect cannot be obtained, so the lower limit is set to 1.5%. However, if the content exceeds 2.5%, the toughness decreases. Further, since Si is a ferrite stabilizing element and causes excessive precipitation of ferrite, the upper limit was set at 2.5%.

Mn;1.0%以下 Moは脱酸、脱硫剤として作用するとともに、オーステ
ナイト安定化に有効である。しかし、1゜0%を越えて
含有されると、靭性が劣化するので上限を1.0%とし
た。
Mn: 1.0% or less Mo acts as a deoxidizing and desulfurizing agent and is effective in stabilizing austenite. However, if the content exceeds 1.0%, the toughness deteriorates, so the upper limit was set at 1.0%.

P;0.05%以下、S、0.10%以下P、S共にス
テンレス鋼においては有害な元素であり、多く含有され
ると機械的性質を悪化させるので、Pにおいては上限を
0.05%に、Sにおいては上限を0910%に限定し
た。
P: 0.05% or less, S, 0.10% or less Both P and S are harmful elements in stainless steel, and when contained in large amounts, the mechanical properties deteriorate, so the upper limit for P is 0.05%. %, and for S, the upper limit was limited to 0.910%.

Cr;13〜17% Crはステンレス鋼の基本成分であり、耐酸化性に対し
て極めて有効であるが、13%未満ではその効果が充分
でない、また、フェライト安定化元素であるために、目
標のフェライト量となるように考慮すると、17%を越
えてはならない、よってCr含有量は13〜17%とし
た。
Cr: 13-17% Cr is a basic component of stainless steel and is extremely effective for oxidation resistance, but if it is less than 13%, the effect is not sufficient, and since it is a ferrite stabilizing element, it is difficult to achieve the target. Considering that the ferrite content should not exceed 17%, the Cr content was set at 13 to 17%.

N i;4.5〜8.5% NiはCrと作用して耐酸化性を向上するとともにオー
ステナイトを安定化する元素である。4゜5%未満の含
有量では前記効果が充分でないので、下限を4.5%と
した。また、8.5%を越えて含有されるとフェライト
相を消失し、加工性が悪化し、さらにコストアップにも
なるの上限を8.5%とした。
Ni: 4.5 to 8.5% Ni is an element that interacts with Cr to improve oxidation resistance and stabilize austenite. Since the above effect is not sufficient if the content is less than 4.5%, the lower limit was set at 4.5%. Moreover, if the content exceeds 8.5%, the ferrite phase disappears, the workability deteriorates, and the cost increases, so the upper limit was set at 8.5%.

Nb;0.30〜0.70% Nbは強力な炭化物生成元素であり、機械的性質、特に
強度を著しく向上する。前記効果を得るためには少なく
とも0.3%以上含有させる必要がある。しかし、多量
に添加されるとフェライトを安定化してオーステナイト
地を不安定とす2.めで、上限を0.70%としな。
Nb: 0.30-0.70% Nb is a strong carbide-forming element and significantly improves mechanical properties, especially strength. In order to obtain the above effect, it is necessary to contain at least 0.3% or more. However, when added in large amounts, it stabilizes ferrite and destabilizes austenite.2. Please set the upper limit to 0.70%.

本発明鋼において熱処理により、オーステナイト粒内に
析出する微細なフェライト相の間隔を0゜1〜1.0μ
鋼としたのは、フェライト相の間隔が0.1μm未満で
あると、熱膨張係数が充分に低下しないからであり、1
,0μmを越えると所期の高温強度が得られないからで
ある。また、フェライト相の体積率を40〜50%とし
たのは、フェライト相が40%未満であると、熱膨張係
数が大きくなり過ぎるからであり、50%を越えると高
温強度が低くなり過ぎるからである。
In the steel of the present invention, the distance between fine ferrite phases precipitated within austenite grains is reduced to 0°1 to 1.0 μm by heat treatment.
The reason for using steel is that if the spacing between the ferrite phases is less than 0.1 μm, the coefficient of thermal expansion will not decrease sufficiently.
, 0 μm, the desired high temperature strength cannot be obtained. In addition, the reason why the volume fraction of the ferrite phase is set to 40 to 50% is because if the ferrite phase is less than 40%, the coefficient of thermal expansion will be too large, and if it exceeds 50%, the high temperature strength will be too low. It is.

[実施例コ 本発明の実施例を比較例と比較しつつ説明し、本発明の
効果を明らかにする。
[Example] Examples of the present invention will be explained while comparing them with comparative examples to clarify the effects of the present invention.

第1表の示す化学成分の本発明材および比較材を溶製し
た。なお、比較材1はJ I S:5CH2に相当する
フェライト系耐熱用鋳鋼であり、比較材2はASTM:
HK40に相当するオーステナイト系耐熱用鋳鋼であり
、比較材3はASTM・HEに相当するフェライト・オ
ーステナイト系耐熱用鋳鋼である。
Materials of the present invention and comparative materials having the chemical components shown in Table 1 were melted. In addition, comparative material 1 is a ferritic heat-resistant cast steel corresponding to JIS: 5CH2, and comparative material 2 is ASTM:
This is an austenitic heat-resistant cast steel corresponding to HK40, and Comparative Material 3 is a ferritic-austenitic heat-resistant cast steel corresponding to ASTM/HE.

(以下余白) 発明材においては、鋳放し状態における金属組織はオー
ステナイト地にフェライトがまだらに分散した状態であ
った。この熱処理前の発明材の950℃での引張強さお
よび20〜900℃における熱膨張係数を測定した。続
いて、この発明材について熱処理(1050℃で2.5
時間保持→600℃まで炉冷して4.5時間保持→空冷
)を施したところ、第1図の発明材の金属組織を表す顕
微鏡写真に示すように、オーステナイト地に微細なフェ
ライトが析出した組織が得られた。この微細なフェライ
ト相の間隔は0.5μ麟であり、フェライトの体積率は
45%であった。この熱処理後の発明材について、95
0℃での引張強さおよび20〜900℃における熱膨張
係数を測定した。
(The following is a blank space) In the invention material, the metal structure in the as-cast state was a state in which ferrite was scattered in austenite base. The tensile strength at 950°C and the thermal expansion coefficient at 20 to 900°C of the invention material before heat treatment were measured. Subsequently, this invention material was heat treated (at 1050°C for 2.5
As a result of holding for an hour → furnace cooling to 600°C and holding for 4.5 hours → air cooling, fine ferrite was precipitated on the austenite base, as shown in the micrograph showing the metal structure of the invented material in Figure 1. tissue was obtained. The spacing between the fine ferrite phases was 0.5 μm, and the volume fraction of ferrite was 45%. Regarding the invented material after this heat treatment, 95
The tensile strength at 0°C and the coefficient of thermal expansion from 20 to 900°C were measured.

比較材1については、760℃で24時間時効後炉冷し
て、950℃での引張強さおよび20〜900℃におけ
るp!!、l!5張係数を測定した。また、比較材2お
よび比較材3については、錆放しの状態で950℃での
引張強さおよび20〜900℃における熱膨張係数を測
定した。
Comparative material 1 was aged at 760°C for 24 hours and then furnace cooled, and the tensile strength at 950°C and the p! ! , l! The 5 tension coefficient was measured. Further, for Comparative Material 2 and Comparative Material 3, the tensile strength at 950°C and the coefficient of thermal expansion at 20 to 900°C were measured in an unrusted state.

得られた結果は第2表にまとめて示した。The results obtained are summarized in Table 2.

第     2     表 第2表から知られるように、比較材1はフェライト系耐
熱用鋳鋼であるので、熱膨張係数は低いものの、高温強
度が2.0kgf/−鵬2と低い、比較材2はオースビ
ナイト系耐熱用鋳鋼であるので、高温強度は10.2k
gf/am2で高いが、熱膨張係数が17.5 X 1
0−’ 1/’Cと大きい0丈な、比較材3はフェライ
トとオースイナイトの混合組織であるが、フェライトが
微細に混合していないので、高温強さが本発明材よりも
低く、熱膨張係数が19゜OX 10−’ 1/’Cと
大きい。
Table 2 As is known from Table 2, Comparative Material 1 is a ferritic heat-resistant cast steel, so its coefficient of thermal expansion is low, but its high temperature strength is low at 2.0 kgf/-Peng 2. Comparative Material 2 is ausbinite. Since it is a heat-resistant cast steel, the high temperature strength is 10.2K.
Although the gf/am2 is high, the thermal expansion coefficient is 17.5 x 1
Comparative material 3, which has a large length of 0-'1/'C, has a mixed structure of ferrite and ausinite, but since ferrite is not mixed finely, its high temperature strength is lower than that of the inventive material, and its thermal expansion is lower. The coefficient is as large as 19°OX 10-'1/'C.

これに対して本発明材は、鋳放し状態ではオースイナイ
ト地にフェライトがまだらに分散しているため、高温強
さが6.5kgf/s+m2と低く、熱膨張係数も17
.0X10−1/’Cとオーステナイト粒なみとなって
いるが、熱処理したものはオースイナイト地に微細なフ
ェライトを析出させた2相混合組織となったので、高温
強度が9 、1 kgf/am”、熱膨張係数が15.
5 X 10−’ 1/’Cであって、本発明鋼が高温
強度に優れ、低い熱膨張係数を示すことが確認された。
On the other hand, in the as-cast state, the material of the present invention has ferrite scattered in the ausinite base, so its high temperature strength is as low as 6.5 kgf/s+m2, and its coefficient of thermal expansion is also 17.
.. 0x10-1/'C, which is similar to austenite grains, but the heat-treated one has a two-phase mixed structure with fine ferrite precipitated on an ausinite base, so the high temperature strength is 9.1 kgf/am'', Thermal expansion coefficient is 15.
5 x 10-'1/'C, and it was confirmed that the steel of the present invention has excellent high-temperature strength and a low coefficient of thermal expansion.

[発明の効果] 本発明の高耐熱性α、γ微細混合鋳鋼は以上説明したよ
うに、Crを13〜17%、Niを4.5〜8.5%含
有せしめたので、高温強度を向上し、低熱膨張率を確保
し、Nbを0.30〜0.70%含有させたので高温強
度をさらに向上すると共に、オーステナイト粒内に0.
1〜1.0μ輪間隔の微細なフェライト相を体積率で4
0〜50%析出せしめたので、オーステナイト系耐熱用
鋳鋼並の高温強度を確保し、熱膨張係数をフェライト系
耐熱用鋳鋼に近付けることができた。そのため、耐熱用
鋳鋼において、低熱膨張で高温強度の優れた材料を提供
でき、自動車エンジンで耐熱性の必要な排気系部品の薄
肉化が可能となり、燃費の向上、動力性能の向上に極め
て有用である。
[Effect of the invention] As explained above, the high heat-resistant α, γ fine mixed cast steel of the present invention contains 13 to 17% Cr and 4.5 to 8.5% Ni, so it has improved high-temperature strength. However, by ensuring a low coefficient of thermal expansion and containing 0.30 to 0.70% Nb, high-temperature strength is further improved, and 0.3% Nb is contained within the austenite grains.
Fine ferrite phase with a ring spacing of 1 to 1.0μ, with a volume fraction of 4
Since the precipitation was 0 to 50%, it was possible to ensure high-temperature strength comparable to that of austenitic heat-resistant cast steel, and to bring the coefficient of thermal expansion close to that of ferritic heat-resistant cast steel. As a result, we can provide heat-resistant cast steel with low thermal expansion and excellent high-temperature strength, making it possible to reduce the thickness of exhaust system parts that require heat resistance in automobile engines, which is extremely useful for improving fuel efficiency and power performance. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明鋼の金属組織を表す顕微鏡写真である。 特許出願人 トヨタ自動車株式会社 FIG. 1 is a micrograph showing the metal structure of the steel of the present invention. Patent applicant: Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1)重量比で、C;0.20〜0.40%、Si;1
.5〜2.5%、Mn;1.0%以下、Cr;13〜1
7%、Ni;4.5〜8.5%、Nb;0.30〜0.
70%、P;0.05%以下、S;0.10%以下を含
有し、残部がFeおよび不純物元素からなり、オーステ
ナイト粒内に0.1〜1.0μm間隔の微細なフェライ
ト相を体積率で40〜50%析出した組織を有すること
を特徴とする高耐熱性α、γ微細混合鋳鋼。
(1) Weight ratio: C: 0.20-0.40%, Si: 1
.. 5-2.5%, Mn; 1.0% or less, Cr; 13-1
7%, Ni; 4.5-8.5%, Nb; 0.30-0.
70%, P: 0.05% or less, S: 0.10% or less, the remainder consists of Fe and impurity elements, and a fine ferrite phase with an interval of 0.1 to 1.0 μm is formed within the austenite grains. A highly heat-resistant alpha, gamma micro-mixed cast steel characterized by having a structure with a precipitated structure of 40 to 50%.
JP15450090A 1990-06-13 1990-06-13 High heat resistant alpha and gamma finely mixed cast steel Pending JPH0445245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15450090A JPH0445245A (en) 1990-06-13 1990-06-13 High heat resistant alpha and gamma finely mixed cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15450090A JPH0445245A (en) 1990-06-13 1990-06-13 High heat resistant alpha and gamma finely mixed cast steel

Publications (1)

Publication Number Publication Date
JPH0445245A true JPH0445245A (en) 1992-02-14

Family

ID=15585604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15450090A Pending JPH0445245A (en) 1990-06-13 1990-06-13 High heat resistant alpha and gamma finely mixed cast steel

Country Status (1)

Country Link
JP (1) JPH0445245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027889A1 (en) * 1994-04-08 1995-10-19 Nippon Steel Corporation Stress sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027889A1 (en) * 1994-04-08 1995-10-19 Nippon Steel Corporation Stress sensor
US5652394A (en) * 1994-04-08 1997-07-29 Nippon Steel Corporation Stress sensor fabricated from a material having precipitated granular carbides

Similar Documents

Publication Publication Date Title
JP5717359B2 (en) Heat-resistant austenitic stainless steel for metal gaskets
JP3877590B2 (en) Highly elastic metastable austenitic stainless steel sheet and its manufacturing method
JP4222705B2 (en) Manufacturing method of high purity high Cr ferritic heat resistant steel and high purity high Cr ferritic heat resistant steel
JPS61295356A (en) High strength stainless steel
JP3463500B2 (en) Ferritic stainless steel excellent in ductility and method for producing the same
JPS59229468A (en) Austenitic stainless steel with resistance to sulfurization at high temperature
BR0004032B1 (en) process of making ferritic sheet steel strip, and ferritic steel sheet.
JP3752563B2 (en) Heat resistant spheroidal graphite cast iron
JPS5935427B2 (en) Roll materials used in continuous casting equipment
JPH0445245A (en) High heat resistant alpha and gamma finely mixed cast steel
JP3817173B2 (en) Iron-chromium-aluminum alloy for heating wire
JP2014189863A (en) Thermostable austenite stainless steel for metallic gasket
JP2561592B2 (en) Welding material for high Cr ferritic heat resistant steel
JPS61177352A (en) Heat resistant cast steel having superior elongation characteristic at room temperature
JPH11229059A (en) Heat resistant alloy for engine valve
JP2010053417A (en) Ferritic stainless steel excellent in thermal fatigue property, high temperature fatigue property and oxidation resistance
JPH0377269B2 (en)
JP2004190060A (en) Heat-resistant alloy for engine valve
JPH06136488A (en) Ferritic stainless steel excellent in workability, high temperature salt damage resistance, and high temperature strength
JP2857248B2 (en) Low carbon Cr-Mo steel sheet with excellent high temperature strength and weld crack resistance
JPH0627301B2 (en) High strength low thermal expansion alloy for ceramic bonding
JP3524708B2 (en) Carbon steel with excellent high-temperature strength
JPS63140067A (en) Piston ring material
JPH0741905A (en) Steel for automotive exhaust system
JPH0741917A (en) Steel for automotive exhaust system