JPH0445106B2 - - Google Patents

Info

Publication number
JPH0445106B2
JPH0445106B2 JP61290491A JP29049186A JPH0445106B2 JP H0445106 B2 JPH0445106 B2 JP H0445106B2 JP 61290491 A JP61290491 A JP 61290491A JP 29049186 A JP29049186 A JP 29049186A JP H0445106 B2 JPH0445106 B2 JP H0445106B2
Authority
JP
Japan
Prior art keywords
iridium oxide
oxide layer
ion
layer
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61290491A
Other languages
Japanese (ja)
Other versions
JPS63144244A (en
Inventor
Hideichiro Yamaguchi
Naoto Uchida
Takeshi Shimomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP61290491A priority Critical patent/JPS63144244A/en
Publication of JPS63144244A publication Critical patent/JPS63144244A/en
Publication of JPH0445106B2 publication Critical patent/JPH0445106B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、イオンセンサ、特に半導体のベース
基板となる無機材料からなる絶縁性基板を使用し
たイオンセンサに関するものである。 [従来の技術] 従来のイオンセンサは、導電性基体として炭素
や導電性炭素を使用し、炭素や導電性炭素をイオ
ン選択性を示す層(又は薄膜)で覆うことにより
作成されていたが、最近の半導体技術の進歩と相
俟つて、半導体基板材料を利用したイオンセンサ
が考えられるに至つている。 ところが、この場合まず半導体のベース基板や
半導体のゲート部と、その上に被覆した有機薄膜
との接着性、特に溶液中での安定性が問題とな
る。次に、作成したイオンセンサの特性(ネルン
スト式との合致、応答特性、ドリフトなど)の発
現性が問題である。 [発明が解決しようとする問題点] 本発明は、上記従来の欠点の除去し、半導体の
ベース基板となる無機材料からなる絶縁性基板を
使用した、特性が良く・安定性の高いイオンセン
サを提供する。 [問題点を解決するための手段] この問題点を解決するために、本発明のイオン
センサは、サフアイア、Si3N4、SiO2、石英、ダ
イヤモンド、アルミナから選ばれる無機材料から
なる絶縁性基板と、該絶縁性基板上を被覆する酸
化イリジウム層と、該酸化イリジウム層に接続し
絶縁体に被覆された導電線と、前記酸化イリジウ
ム層を被覆する酸化還元反応を示す酸化還元機能
層とを備える。 又、サフアイア、Si3N4、SiO2、石英、ダイヤ
モンド、アルミナから選ばれる無機材料からなる
絶縁性基板と、該絶縁性基板上を被覆する酸化イ
リジウム層と、該酸化イリジウム層に接続し絶縁
体に被覆された導電線と、前記酸化イリジウム層
を被覆する酸化還元反応を示す酸化還元機能層
と、該酸化還元機能層を被覆するイオン選択性を
示すイオン選択性層とを備える。 ここで、酸化イリジウム層の厚さは300Å以上
である。 [作用] かかる構成において、酸化還元機能層、又はイ
オン選択性層と酸化還元機能層とにより、イオン
濃度に対応して、サフアイア、Si3N4、SiO2、石
英、ダイヤモンド、アルミナから選ばれる無機材
料からなる絶縁性基板上の酸化イリジウム層に発
生する電位を導電線を通して検知する。 [実施例] 導電性を示す導電体層(又は薄膜)上に、酸化
還元機能層を直接被覆し、溶液中のイオン濃度に
測定する方法を本発明者らは出願した(特願昭59
−281076号[特開昭61−155949号])。 最近、半導体技術の進歩と相俟つて、ゲート部
に、導電性薄膜を被覆したイオン選択性電極が注
目されてきている。この場合第1に、半導体のベ
ース基板や半導体のゲート部と、その上に被覆し
た有機薄膜の接着性、特に溶液中での安定性が問
題となる。第2に、この様にして作成した電極特
性(ネルンスト式に合致するか、応特性、ドリフ
トなど)の発現性が問題である。 これまで、炭素材料を導電性基板(薄膜又は薄
層)として用い、その上に直接酸化還元機能層を
被覆又は、さらにイオン選択性層として中性キヤ
リヤ膜を被着したイオンセンサを出願した(特願
昭61−13486号[国内優先出願有り:特願昭61−
115344号]、特願昭61−30394号[国内優先出願有
り:特願昭61−290492号])。 本実施例では、半導体のベース基板となる無機
材料(サフアイヤ、石英、ダイヤモンド、
Si3N4、SiO2)からなる絶縁性基板上に酸化還元
層(又は層)を被着し、又はさらにイオン選択性
層として中性キヤリヤー膜を被着する前に、上記
2つの問題を解決するために、サフアイア、
Si3N4、SiO2、石英、ダイヤモンド、アルミナか
ら選ばれる無機材料からなる絶縁性基板上に酸化
イリジウム層を被覆すると優れた効果を発揮でき
た。 尚、本実施例ではイオンセンサとしてはPHセン
サを、無機材料からなる絶縁性基板としてはサフ
アイア板を代表させて説明する。 実施例 1 本実施例のPHセンサの構成模式図を第1図a,
bに示す。以下第1図a,bに示したPHセンサの
作成方法を説明する。 (1) 酸化イリジウム電極 大きさ15mm×12mm、厚さ0.5mmのサフアイア
板1上に、1.5mm×10mm、厚さ1000Åとなる酸
化イリジウム層2を、反応性スパツタ装置を用
いて被着形成した。当該酸化イリジウム層2の
末端にリード線3を導電性接着剤4(サイコロ
ンB:厚木中央研究所(株)製)で接着し、そのま
わりをエポキシ系接着剤5(アラルダイドラピ
ツド:チバガイギーリミテツド製)で覆い絶縁
した。また隣接する酸化イリジウム層2の間に
も、同接着剤で約0.2mmの壁5aをつくつた。 (2) 酸化還元機能層 上記酸化イリジウム電極10を作用極、白金
巻線を対極、Ag/AgCl電極を参照電極とし
て、以下の条件で電解を行い、酸化イリジウム
表面に、2,6−ジメチルフエノールの電解重
合膜6を直接被着した。 <電解液組成> 2,6−ジメチルフエノール 0.2mol/ 過塩素酸ナトリウム 0.5mol/ アセトニトリル 溶媒 <温度> −20℃ <電解条件> 0〜+1.5V(vs.Ag/Ag/Cl)の間で3回電
位掃引(掃引速度50mV/sec)した後、+
1.5Vで30分間定電位電解した。 実験例 1 実施例1で作成した電極の溶液のPH変化に対す
る応答を調べた。 (試験方法) 実施例1で作製した電極を作用極、白金巻線を
対極、銀−塩化銀電極を基準極とする3電極セル
を用い、基準極に対する作用極の電位を測定し
た。電解液として、PH4.01、6.86、9.18の3種の
標準緩衝液を用いてPHを調整した。なお、測定は
37℃で行つた。 (測定結果) 横軸にPH、縦軸に電位(E)をとりプロツトす
ると第2図の様になり両者の間に良い直線関係が
見られた。 その直線式は、E=983.7−60.03PHとなつた。 実施例2及び実験例2 実施例1の電解重合膜の層下に、さらに、水素
イオンキヤリヤ層を膜厚約0.8mm程度の被覆した。
膜電極でのPH対平衡電極電位1mVの結果は、
E0≒300mV、傾き61.43mV/PH(理論値
61.53:37℃)であり、ネルンストの理論式にほ
ぼ一致する。 水素イオンキヤリヤの膜組成を以下に示す。 水素イオンキヤリヤ組成液 トリドデシルアミン 15.65mg/ml カリウムテトラキス(p−クロロフエニル)
1.565 2−エチルヘキシルセバケート 167.75 ポリ塩化ビニル 81.25 THF 10ml デイツピング条件 デイツピング速度 10cm/min 操作回数 15回 参考例3〜6及び実験例3〜6 実施例1の基板(酸化イリジウム)の代りに白
金、パラジウム、酸化インジウム、銀を用い、こ
の基板上に電解酸化重合を行い、実験例1と同様
にPH対電極電位(mV)対Ag/AgCl(37℃)を
測定した。その結果を表1に示す。
[Industrial Application Field] The present invention relates to an ion sensor, and particularly to an ion sensor using an insulating substrate made of an inorganic material as a base substrate of a semiconductor. [Prior Art] Conventional ion sensors have been created by using carbon or conductive carbon as a conductive substrate and covering the carbon or conductive carbon with a layer (or thin film) that exhibits ion selectivity. Coupled with recent advances in semiconductor technology, ion sensors using semiconductor substrate materials have come to be considered. However, in this case, the first problem is the adhesion between the semiconductor base substrate or the semiconductor gate portion and the organic thin film coated thereon, especially the stability in a solution. Next, there is the issue of the expressivity of the characteristics of the created ion sensor (matching with the Nernst equation, response characteristics, drift, etc.). [Problems to be Solved by the Invention] The present invention eliminates the above-mentioned conventional drawbacks and provides an ion sensor with good characteristics and high stability using an insulating substrate made of an inorganic material as a base substrate of a semiconductor. provide. [Means for Solving the Problem] In order to solve this problem, the ion sensor of the present invention uses an insulating material made of an inorganic material selected from sapphire, Si 3 N 4 , SiO 2 , quartz, diamond, and alumina. a substrate, an iridium oxide layer covering the insulating substrate, a conductive wire connected to the iridium oxide layer and covered with an insulator, and a redox functional layer showing a redox reaction covering the iridium oxide layer. Equipped with. Further, an insulating substrate made of an inorganic material selected from sapphire, Si 3 N 4 , SiO 2 , quartz, diamond, and alumina, an iridium oxide layer covering the insulating substrate, and an insulating layer connected to the iridium oxide layer. The device includes a conductive wire coated on the body, a redox functional layer that coats the iridium oxide layer and exhibits a redox reaction, and an ion selective layer that coats the redox functional layer and exhibits ion selectivity. Here, the thickness of the iridium oxide layer is 300 Å or more. [Function] In such a configuration, the redox functional layer, or the ion selective layer and the redox functional layer, are selected from sapphire, Si 3 N 4 , SiO 2 , quartz, diamond, and alumina depending on the ion concentration. The potential generated in the iridium oxide layer on the insulating substrate made of inorganic material is detected through a conductive wire. [Example] The present inventors have filed an application for a method of directly coating a redox functional layer on a conductive layer (or thin film) exhibiting conductivity and measuring the ion concentration in a solution (Patent Application No. 1983).
-281076 [Unexamined Japanese Patent Publication No. 61-155949]). Recently, along with advances in semiconductor technology, ion-selective electrodes whose gate portions are coated with conductive thin films have been attracting attention. In this case, the first problem is the adhesion between the semiconductor base substrate or the semiconductor gate portion and the organic thin film coated thereon, especially the stability in a solution. Second, there is a problem with the expressivity of the electrode characteristics created in this way (whether they match the Nernst equation, response characteristics, drift, etc.). So far, we have applied for an ion sensor that uses a carbon material as a conductive substrate (thin film or thin layer) and directly coats it with a redox functional layer or further coats a neutral carrier film as an ion-selective layer ( Patent Application No. 13486 (Domestic priority application included: Patent Application No. 1983-13486)
115344], Japanese Patent Application No. 61-30394 [with domestic priority application: Japanese Patent Application No. 290492/1982]). In this example, inorganic materials (sapphire, quartz, diamond,
Before depositing a redox layer (or layers) on an insulating substrate consisting of Si 3 N 4 , SiO 2 ) or additionally a neutral carrier film as an ion-selective layer, the above two problems should be addressed. To solve, Saphire,
Excellent effects were achieved when an iridium oxide layer was coated on an insulating substrate made of an inorganic material selected from Si 3 N 4 , SiO 2 , quartz, diamond, and alumina. In this embodiment, a PH sensor will be used as an ion sensor, and a sapphire plate will be used as a representative example of an insulating substrate made of an inorganic material. Example 1 A schematic diagram of the configuration of the PH sensor of this example is shown in Figure 1a,
Shown in b. The method for creating the PH sensor shown in FIGS. 1a and 1b will be explained below. (1) Iridium oxide electrode On a sapphire plate 1 with a size of 15 mm x 12 mm and a thickness of 0.5 mm, an iridium oxide layer 2 with a size of 1.5 mm x 10 mm and a thickness of 1000 Å was deposited using a reactive sputtering device. . A lead wire 3 is bonded to the end of the iridium oxide layer 2 with a conductive adhesive 4 (Cyron B: manufactured by Atsugi Central Research Institute Co., Ltd.), and the surrounding area is bonded with an epoxy adhesive 5 (Araldide Rapid: manufactured by Ciba Geigy Limited). (made of Tsudo) and insulated. A wall 5a of about 0.2 mm was also created between adjacent iridium oxide layers 2 using the same adhesive. (2) Redox functional layer Electrolysis is performed under the following conditions using the iridium oxide electrode 10 as a working electrode, the platinum winding as a counter electrode, and the Ag/AgCl electrode as a reference electrode, and 2,6-dimethylphenol is applied to the iridium oxide surface. The electropolymerized membrane 6 was directly deposited. <Electrolyte composition> 2,6-dimethylphenol 0.2mol/ Sodium perchlorate 0.5mol/ Acetonitrile Solvent <Temperature> -20℃ <Electrolysis conditions> Between 0 and +1.5V (vs.Ag/Ag/Cl) After sweeping the potential three times (sweep speed 50mV/sec), +
Potential electrolysis was performed at 1.5V for 30 minutes. Experimental Example 1 The response of the electrode prepared in Example 1 to changes in pH of the solution was investigated. (Test Method) Using a three-electrode cell in which the electrode produced in Example 1 was used as a working electrode, the platinum winding was used as a counter electrode, and the silver-silver chloride electrode was used as a reference electrode, the potential of the working electrode with respect to the reference electrode was measured. The pH was adjusted using three standard buffer solutions of PH4.01, 6.86, and 9.18 as electrolytes. In addition, the measurement
It was carried out at 37℃. (Measurement results) When plotted with PH on the horizontal axis and potential (E) on the vertical axis, the result is as shown in Figure 2, and a good linear relationship was observed between the two. The linear equation is E=983.7−60.03PH. Example 2 and Experimental Example 2 Underneath the electropolymerized membrane of Example 1, a hydrogen ion carrier layer was further coated with a thickness of about 0.8 mm.
The results for PH at the membrane electrode versus equilibrium electrode potential of 1 mV are:
E 0 ≒ 300mV, slope 61.43mV/PH (theoretical value
61.53:37℃), which almost matches Nernst's theoretical formula. The membrane composition of the hydrogen ion carrier is shown below. Hydrogen ion carrier composition tridodecylamine 15.65mg/ml Potassium tetrakis (p-chlorophenyl)
1.565 2-Ethylhexyl sebacate 167.75 Polyvinyl chloride 81.25 THF 10ml Dipping conditions Dipping speed 10cm/min Number of operations 15 times Reference Examples 3 to 6 and Experimental Examples 3 to 6 Platinum, palladium was used instead of the substrate (iridium oxide) of Example 1 Electrolytic oxidation polymerization was performed on this substrate using , indium oxide, and silver, and PH versus electrode potential (mV) versus Ag/AgCl (37° C.) was measured in the same manner as in Experimental Example 1. The results are shown in Table 1.

【表】 参考例7〜11及び実験例7〜11 参考例3〜6の各々の基板上/電解膜上に水素
イオンキヤリヤ層を被覆(約6μm)被覆した膜
電極のPH対電極電位(対Ag/AgCl電極)(m
v/PH:37℃)の結果、ネルンスト式の傾きは、
61.03で理論式によく一致する。 以上説明したように、導電体層の厚さが300Å
以上で、好ましくは500Å以上、さらに好ましく
は900Å以上であれば本実施例の電極のネルンス
ト関係式の直線の傾きは61.0〜61.43で、理論値
61.53(37.0℃)によく合致する。 尚、本実施例ではPHセンサについてのみ説明し
たが、イオンキヤリヤ膜組成をそれぞれの被検イ
オンに応じて変えたイオン選択性層を設けたり、
酵素固定化層を設けることにより、他のイオンセ
ンサ及び酵素センサや微生物センサにも適用でき
る。 [発明の効果] 本発明により、半導体のベース基板となる無機
材料からなる絶縁性基板を使用した、特性が良
く・安定性の高いイオンセンサを提供できる。 本発明のイオンセンサが半導体のベース基板と
なる無機材料からなる絶縁性基板を使用して上記
効果を達成したことは、最近の半導体技術の進歩
と相俟つて、特性が良く・安定性の高い、且つ微
細なイオンセンサの提供を可能とした。
[Table] Reference Examples 7 to 11 and Experimental Examples 7 to 11 PH to electrode potential (to Ag /AgCl electrode) (m
v/PH: 37℃), the slope of the Nernst equation is
61.03, which agrees well with the theoretical formula. As explained above, the thickness of the conductor layer is 300Å.
If the above is preferably 500 Å or more, and more preferably 900 Å or more, the slope of the straight line of the Nernst relation for the electrode of this example is 61.0 to 61.43, which is the theoretical value.
61.53 (37.0℃). Although only the PH sensor was explained in this example, it is also possible to provide an ion selective layer in which the ion carrier film composition is changed according to each analyte ion,
By providing an enzyme immobilization layer, it can also be applied to other ion sensors, enzyme sensors, and microbial sensors. [Effects of the Invention] According to the present invention, it is possible to provide an ion sensor with good characteristics and high stability, which uses an insulating substrate made of an inorganic material as a base substrate of a semiconductor. The fact that the ion sensor of the present invention achieves the above effects by using an insulating substrate made of an inorganic material as a semiconductor base substrate is due to the fact that the ion sensor has good characteristics and high stability, coupled with recent advances in semiconductor technology. , and made it possible to provide a minute ion sensor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは本実施例のPHセンサを上から見た模
式図、第1図bは本実施例1のPHセンサの断面
図、第1図Cは本実施例2のPHセンサの断面図、
第1図dは参考例7のPHセンサの断面図、第2図
は実施例1のPHセンサによる測定結果を示す図で
ある。 図中、1……サフアイア、2……酸化イリジウ
ム、3……リード線、4……導電性接着剤、5…
…エポキシ系接着剤、5a……エポキシ系接着剤
の壁、6……電解重合膜、7……水素イオン選択
性層、10……PHセンサである。
FIG. 1a is a schematic diagram of the PH sensor of this embodiment viewed from above, FIG. 1b is a sectional view of the PH sensor of embodiment 1, and FIG. 1C is a sectional view of the PH sensor of embodiment 2. ,
FIG. 1d is a cross-sectional view of the PH sensor of Reference Example 7, and FIG. 2 is a diagram showing the measurement results by the PH sensor of Example 1. In the figure, 1...Saphire, 2...Iridium oxide, 3...Lead wire, 4...Conductive adhesive, 5...
...Epoxy adhesive, 5a... Epoxy adhesive wall, 6... Electrolytic polymer membrane, 7... Hydrogen ion selective layer, 10... PH sensor.

Claims (1)

【特許請求の範囲】 1 サフアイア、Si3N4、SiO2、石英、ダイヤモ
ンド、アルミナから選ばれる無機材料からなる絶
縁性基板と、 該絶縁性基板上を被覆する酸化イリジウム層
と、 該酸化イリジウム層に接続し絶縁体に被覆され
た導電線と、 前記酸化イリジウム層を被覆する酸化還元反応
を示す酸化還元機能層とを備えることを特徴とす
るイオンセンサ。 2 酸化イリジウム層の厚さは300Å以上である
ことを特徴とする特許請求の範囲第1項記載のイ
オンセンサ。 3 サフアイア、Si3N4、SiO2、石英、ダイヤモ
ンド、アルミナから選ばれる無機材料からなる絶
縁性基板と、 該絶縁性基板上を被覆する酸化イリジウム層
と、 該酸化イリジウム層に接続し絶縁体に被覆され
た導電線と、 前記酸化イリジウム層を被覆する酸化還元反応
を示す酸化還元機能層と、 該酸化還元機能層を被覆するイオン選択性を示
すイオン選択性層とを備えることを特徴とするイ
オンセンサ。 4 酸化イリジウム層の厚さは300Å以上である
ことを特徴とする特許請求の範囲第3項記載のイ
オンセンサ。
[Claims] 1. An insulating substrate made of an inorganic material selected from sapphire, Si 3 N 4 , SiO 2 , quartz, diamond, and alumina, an iridium oxide layer covering the insulating substrate, and the iridium oxide. An ion sensor comprising: a conductive wire connected to the iridium oxide layer and covered with an insulator; and a redox functional layer that exhibits a redox reaction and coats the iridium oxide layer. 2. The ion sensor according to claim 1, wherein the iridium oxide layer has a thickness of 300 Å or more. 3. An insulating substrate made of an inorganic material selected from sapphire, Si 3 N 4 , SiO 2 , quartz, diamond, and alumina, an iridium oxide layer covering the insulating substrate, and an insulator connected to the iridium oxide layer. A conductive wire coated with the iridium oxide layer, a redox functional layer showing a redox reaction covering the iridium oxide layer, and an ion selective layer showing ion selectivity covering the redox functional layer. ion sensor. 4. The ion sensor according to claim 3, wherein the iridium oxide layer has a thickness of 300 Å or more.
JP61290491A 1986-12-08 1986-12-08 Ion sensor Granted JPS63144244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61290491A JPS63144244A (en) 1986-12-08 1986-12-08 Ion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61290491A JPS63144244A (en) 1986-12-08 1986-12-08 Ion sensor

Publications (2)

Publication Number Publication Date
JPS63144244A JPS63144244A (en) 1988-06-16
JPH0445106B2 true JPH0445106B2 (en) 1992-07-23

Family

ID=17756708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61290491A Granted JPS63144244A (en) 1986-12-08 1986-12-08 Ion sensor

Country Status (1)

Country Link
JP (1) JPS63144244A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243555A (en) * 1984-05-18 1985-12-03 Fuji Photo Film Co Ltd Ion-selecting electrode and manufacture thereof
JPS61213661A (en) * 1985-03-19 1986-09-22 Terumo Corp Ph sensor
JPS61251764A (en) * 1985-04-30 1986-11-08 Terumo Corp Ph sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60243555A (en) * 1984-05-18 1985-12-03 Fuji Photo Film Co Ltd Ion-selecting electrode and manufacture thereof
JPS61213661A (en) * 1985-03-19 1986-09-22 Terumo Corp Ph sensor
JPS61251764A (en) * 1985-04-30 1986-11-08 Terumo Corp Ph sensor

Also Published As

Publication number Publication date
JPS63144244A (en) 1988-06-16

Similar Documents

Publication Publication Date Title
KR900005619B1 (en) Enzymatic sensor
Bobacka et al. All solid-state poly (vinyl chloride) membrane ion-selective electrodes with poly (3-octylthiophene) solid internal contact
JP2943700B2 (en) Biosensor
US4927516A (en) Enzyme sensor
AU581701B2 (en) Apparatus for use in electrical, e.g. electrochemical, measurement procedures, and its production and use, and composite assemblies incorporating the apparatus
JPS5924242A (en) Reference electrode
CA2416207A1 (en) Electrochemical method for measuring chemical reaction rates
WO1992019961A1 (en) Two-terminal voltammetric microsensors
JP2003515097A (en) Reference electrode
CA1315927C (en) Ion carrier membrane, and ion sensor having same
JPS62277547A (en) Gas sensor
EP0345347B1 (en) Fet electrode
US3794575A (en) Oxygen sensor
US3835013A (en) Oxygen sensor and electrode device therefor
JP2000266715A (en) Electrochemical sensor
CA1297947C (en) Electrochemical electrodes
US4699806A (en) Method of producing fluoride-sensitive diaphragms
JPH0445106B2 (en)
JPH02296141A (en) Functional element and fet sensor provided with functional element
KR920003086B1 (en) On sensor
WO1989010554A1 (en) Ion-sensitive film, a process for producing the same, and ion sensor
US20080053826A1 (en) Ion solution concentration-detecting device
Matsumoto et al. Surface structures and electrochemical activity of palladium–niobium binary alloy electrodes, and glucose biosensor with palladium–niobium binary alloy electrode
JPH0287056A (en) Enzyme sensor
Janata Center for Sensor Technology University of Utah, Salt Lake City Utah, 84112, USA

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees