JPH0444932B2 - - Google Patents

Info

Publication number
JPH0444932B2
JPH0444932B2 JP4323884A JP4323884A JPH0444932B2 JP H0444932 B2 JPH0444932 B2 JP H0444932B2 JP 4323884 A JP4323884 A JP 4323884A JP 4323884 A JP4323884 A JP 4323884A JP H0444932 B2 JPH0444932 B2 JP H0444932B2
Authority
JP
Japan
Prior art keywords
equipment
monitored
component
signal
physical signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4323884A
Other languages
Japanese (ja)
Other versions
JPS60186717A (en
Inventor
Satoshi Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4323884A priority Critical patent/JPS60186717A/en
Publication of JPS60186717A publication Critical patent/JPS60186717A/en
Publication of JPH0444932B2 publication Critical patent/JPH0444932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は産業設備、即ち各種生産機械、工作機
械等の性能低下、故障発生の可能性等の監視方法
に関する。 〔従来技術〕 工場等における生産・工作機械等の設備状態の
監視は、その故障による操業停止の防止は無論の
こと、エネルギー効率の向上、部品交換時機の適
正化による経済性の向上、更には環境保全の観点
からの騒音、振動等の防止等の面において重要と
なつている。 しかし、従来は一般的には市販の汎用信号処理
装置を用いて監視対象の設備から採取されたデー
タの解析処理を行つていたため、その精度、確度
は信号処理に供せされる信号処理装置の能力によ
り制約を課せられていた。 従つて従来は、監視対象の機械設備が発生する
振動・圧力又は音等の変化の周波数分析、あるい
は相関分析程度のデータ解析した行われず、この
ためしばしば予期せぬ故障の発生を見たり、ある
いは不良製品の生産等の事態が惹待されることが
あつた。 ところで本願発明者らの行つた実験によると、
機械設備に性能低下又は以上発生等があつた場合
には、その機械設備から発生される物理的信号の
周波数成分は勿論のこと、位相成分、振幅成分等
も性能低下の程度、異常の種類等に応じて変化す
ることが判明した。 〔発明の目的〕 本発明は前述の如き問題点に鑑み、また本願発
明者らの上述の如き知見に基づいてなされたもの
であり、従来に比してより高度の解析を多項目に
亘つて行うことにより、機械設備等の状態の監視
をより高精度、高確度にて行い、これにより従来
は見過され、あるいは予測されなかつた性能低
下、故障発生等を事前に予測可能にした設備状態
監視方法の提案を目的とする。 〔発明の原理〕 次に本発明方法の原理について説明する。 ある機械設備の状態を表す物理的(振動、騒音
等)信号f(t)、その量子化データをf(k)とする
と、信号f(t)の有限離散化フーリエ変換F(n/N) は下記(1)式にて与えられる。 F(n/N)=1/NN-1k=0 f(k)e-j2nk/n …(1) ただし、N:データ数 n:0、1、2…、N/2 K:n/N j:√−1 また信号f(t)のフーリエ逆変換式は下記(2)式と
なる。 f(n)=a0N-1k=1 a(k/N)cos(j2πkn/N) +N-1k=1 b(b/N)sin(j2πkn/N) …(2) ただし、 a(n/N)=1/NN-1k=0 f(k)cos(−j2πkn/N) …(3) b(n/N)=1/NN-1k=0 f(k)sin(−j2πkn/N) …(4) この(3)、(4)式から位相成分φ(n/N)は下記(5)
式 として求まる。 φ(n/N)=tan-1b(n/N)/a(n/N)…(5) また信号f(t)の振幅成分、平均値、実効値
Urms、2乗平均値Ur、最大値U^、4次の確率モ
ーメント(偏平度)βはそれぞれ下記(6)〜(10)式に
より与えられる。 =1/T∫T/0|f(t)|dt …(6) Urms=〔1/T∫T/0f2(t)dt〕1/2 …(7) Ur=〔1/T∫T/0√(t)dt〕2 …(8) U^=E{max|f(t)|} …(9) β=∫-∞f4(t)・P(t)dt/σ …(10) ただし、T:信号周期 P(t):f(t)の確率密度関数 σ:f(t)の標準偏差 以上により信号f(t)の周波数成分は(1)式にて、
位相成分は(5)式にて、振幅成分は(6)〜(10)にてそれ
ぞれ求められる。 このようにして得られた各成分のデータの判定
基準、換言すれば性能低下した機械設備が発生す
る機械的信号の周波数成分、位相成分、振幅成分
等の特徴は、人為的に性能低下された各種の機械
設備を対象とする測定及び実機から採取したデー
タの検証とから本願発明者らによりすでに明らか
にされており、その一例として回転機械の場合を
第1表に表わす。
[Industrial Application Field] The present invention relates to a method for monitoring industrial equipment, ie, various production machines, machine tools, etc., for performance deterioration, possibility of failure, etc. [Prior art] Monitoring the status of equipment such as production and machine tools in factories, etc. not only helps prevent operational stoppages due to malfunctions, but also improves energy efficiency, improves economic efficiency by optimizing the timing of parts replacement, and more. It has become important in terms of preventing noise, vibration, etc. from the perspective of environmental conservation. However, conventionally, commercially available general-purpose signal processing equipment was generally used to analyze and process data collected from equipment to be monitored. were constrained by their abilities. Therefore, in the past, data analysis at the level of frequency analysis or correlation analysis of changes in vibration, pressure, or sound generated by the mechanical equipment to be monitored was not performed, and as a result, unexpected failures often occurred or Occasionally, situations such as production of defective products were expected. By the way, according to experiments conducted by the inventors of the present application,
If there is a performance drop or above occurrence in mechanical equipment, the frequency component, phase component, amplitude component, etc. of the physical signal generated by the mechanical equipment will be examined, such as the degree of performance decline, the type of abnormality, etc. It was found that it changes depending on [Object of the Invention] The present invention has been made in view of the above-mentioned problems and based on the above-mentioned knowledge of the inventors of the present invention, and has been made by conducting a more advanced analysis on multiple items than in the past. By doing so, the condition of machinery and equipment can be monitored with higher precision and accuracy, making it possible to predict in advance performance deterioration, failure occurrence, etc. that would have been overlooked or predicted in the past. The purpose is to propose monitoring methods. [Principle of the Invention] Next, the principle of the method of the present invention will be explained. If a physical (vibration, noise, etc.) signal f(t) representing the state of a certain mechanical equipment and its quantized data are f(k), then the finite discretized Fourier transform F(n/N) of the signal f(t) is is given by the following equation (1). F(n/N)=1/N N-1k=0 f(k)e -j2nk/n …(1) where, N: number of data n: 0, 1, 2…, N/2 K: n/N j: √-1 Further, the inverse Fourier transform equation for the signal f(t) is the following equation (2). f(n)=a 0 + N-1k=1 a(k/N) cos(j2πkn/N) + N-1k=1 b(b/N) sin(j2πkn/N) …(2 ) However, a(n/N)=1/N N-1k=0 f(k)cos(-j2πkn/N) …(3) b(n/N)=1/N N-1k =0 f(k)sin(−j2πkn/N) …(4) From equations (3) and (4), the phase component φ(n/N) is as follows (5)
It can be found as a formula. φ(n/N)=tan -1 b(n/N)/a(n/N)...(5) Also, the amplitude component, average value, and effective value of signal f(t)
Urms, root mean square value Ur, maximum value U^, and fourth-order probability moment (flatness) β are given by the following equations (6) to (10), respectively. =1/T∫ T/0 |f(t)|dt …(6) Urms=[1/T∫ T/0 f 2 (t)dt] 1/2 …(7) Ur=[1/T∫ T/0 √(t)dt〕 2 …(8) U^=E{max|f(t)} …(9) β=∫ -∞ f 4 (t)・P(t)dt/ σ …(10) Where, T: Signal period P(t): Probability density function of f(t) σ: Standard deviation of f(t) From the above, the frequency component of signal f(t) can be calculated using equation (1). ,
The phase component is obtained using equation (5), and the amplitude component is obtained using equations (6) to (10). The criteria for determining the data of each component obtained in this way, in other words, the characteristics of the frequency component, phase component, amplitude component, etc. of mechanical signals generated by mechanical equipment with degraded performance are determined to be artificially degraded. This has already been clarified by the inventors of the present application through measurements on various mechanical equipment and verification of data collected from actual machines, and Table 1 shows the case of rotating machines as an example.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 監視対象設備がその運動により発生する物理
的信号を検出し、 該物理的信号を予め設定されたサンプリング周
期又は前記監視対象設備の運動により規定される
サンプリング周期にて量子化データに変換し、 該量子化データをスペクトル解析して前記物理
的信号の周波数成分、位相成分及び振幅成分をそ
れぞれ抽出し、 これらの各成分を予め定められた判断基準と比
較することにより前記監視対象設備の状態を判定
することを特徴とする設備状態監視方法。
[Claims] 1. Detecting a physical signal generated by the movement of the equipment to be monitored, and converting the physical signal into a quantum signal at a preset sampling period or a sampling period defined by the movement of the equipment to be monitored. quantized data, perform spectrum analysis on the quantized data to extract the frequency component, phase component, and amplitude component of the physical signal, and compare each of these components with predetermined criteria. An equipment status monitoring method characterized by determining the status of equipment to be monitored.
JP4323884A 1984-03-06 1984-03-06 Monitoring method of facility state Granted JPS60186717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4323884A JPS60186717A (en) 1984-03-06 1984-03-06 Monitoring method of facility state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4323884A JPS60186717A (en) 1984-03-06 1984-03-06 Monitoring method of facility state

Publications (2)

Publication Number Publication Date
JPS60186717A JPS60186717A (en) 1985-09-24
JPH0444932B2 true JPH0444932B2 (en) 1992-07-23

Family

ID=12658318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4323884A Granted JPS60186717A (en) 1984-03-06 1984-03-06 Monitoring method of facility state

Country Status (1)

Country Link
JP (1) JPS60186717A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304125A (en) * 1995-04-28 1996-11-22 Toshiba Corp Plant diagnosing apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6026348A (en) * 1997-10-14 2000-02-15 Bently Nevada Corporation Apparatus and method for compressing measurement data correlative to machine status
JP6724847B2 (en) 2017-03-31 2020-07-15 オムロン株式会社 Control device, control program, control system, and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08304125A (en) * 1995-04-28 1996-11-22 Toshiba Corp Plant diagnosing apparatus

Also Published As

Publication number Publication date
JPS60186717A (en) 1985-09-24

Similar Documents

Publication Publication Date Title
CN115935243B (en) Fault analysis method based on data processing
Gu et al. Non-stationary signal analysis and transient machining process condition monitoring
Benali et al. Importance of the fourth and fifth intrinsic mode functions for bearing fault diagnosis
Jiang et al. Fault detection of rolling element bearing based on principal component analysis
Chemseddine et al. Gear fault feature extraction and classification of singular value decomposition based on Hilbert empirical wavelet transform
Betta et al. A DSP-based FFT-analyzer for the fault diagnosis of rotating machine based on vibration analysis
JPH0444932B2 (en)
Afshar et al. Generalized roughness bearing fault diagnosis using time series analysis and gradient boosted tree
US4255978A (en) Torsional vibration monitoring apparatus for a rotating shaft system
CN110411730B (en) Fault judgment method and system for rotating equipment and readable storage medium
Tse et al. Enhanced eigenvector algorithm for recovering multiple sources of vibration signals in machine fault diagnosis
Ferracuti et al. MSPCA with KDE thresholding to support QC in electrical motors production line
Buzzoni et al. Development of an indicator for the assessment of damage level in rolling element bearings based on blind deconvolution methods
US4294120A (en) Torsional vibration monitoring apparatus for rotating shaft system
Asakura et al. Fault diagnosis system for machines using neural networks
De Ketelaere et al. PH—Postharvest technology: advances in spectral analysis of vibrations for non-destructive determination of tomato firmness
CN114090949A (en) Robust vibration signal characteristic value calculation method
Li et al. Study on a novel fault diagnosis method of rolling bearing in motor
CN112881839A (en) Transformer diagnosis method based on mutual information of frequency concentration and vibration stability
Tafazzoli et al. Smart Wind Turbine: Artificial Intelligence based Condition Monitoring System.
US4267733A (en) Torsional vibration monitoring method and an apparatus for performing the same
Perez-Ramirez et al. Homogeneity-based approach for bearing fault detection in induction motors by means of vibrations
Azergui et al. Bearing fault classification based on the adaptive orthogonal transform method
RU2787309C1 (en) Method for identifying multisinusoidal digital signals
CN116533253B (en) Industrial robot fault diagnosis method based on feedback current spectrum analysis