JPH0444616B2 - - Google Patents

Info

Publication number
JPH0444616B2
JPH0444616B2 JP58058839A JP5883983A JPH0444616B2 JP H0444616 B2 JPH0444616 B2 JP H0444616B2 JP 58058839 A JP58058839 A JP 58058839A JP 5883983 A JP5883983 A JP 5883983A JP H0444616 B2 JPH0444616 B2 JP H0444616B2
Authority
JP
Japan
Prior art keywords
glass
oxides
weight
ion exchange
knoop hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58058839A
Other languages
Japanese (ja)
Other versions
JPS58185451A (en
Inventor
Georugu Guriimeroosu
Rootaa Metsukeru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glaswerke AG filed Critical Schott Glaswerke AG
Publication of JPS58185451A publication Critical patent/JPS58185451A/en
Publication of JPH0444616B2 publication Critical patent/JPH0444616B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass

Abstract

A watch glass which, due to chemical curing by means of ion exchange, has high flexural and good scratch resistance comprises (in % by weight) Si 55-68, Al2O3 11-21, B2O3 0-6, La2O3 0-2, TiO2 0-1, NaO 9-15, K2O 1-8, MgO 0.5-4, CaO 0-2 and other oxides 0-7, including pigment oxides, for example CoO, in order to achieve a blue colouration.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、時計用ガラスに関し、さらに詳しく
は高いヌーブ硬度を有する化学的硬化された時計
用ガラスに関するものである。 時計及びそれに類する計器は、該当する計器の
性質に応じて透明なプラスチツク又はガラスから
製造されたカバープレートを有している。以下、
本明細書においては、簡明を期するため、時計用
のカバープレートについてのみ説明し、全てを含
めて“時計用ガラス”と略称する。 硬度が小さいことに基づくプラスチツクの掻き
傷を受け易いという性質は、この材料の重大な欠
点である。従つて、比較的早い時期には、所謂
「鉱物ガラス」が再び用いられるようになつた。
鉱物ガラスというのは、原理的には研磨された硬
質ガラス製品以外のなにものでもなく、今日では
概ねフロートガラスから、或いはまたB270又は
D263(DESAG,グリユーネンプラン)から、比
較的高い透過率をもつたものとして製造される。 特に高級な時計用の材料としてはサフアイアも
使用されるが、この材料の価格は上記の鉱物ガラ
スの価格よりはるかに高く、鉱物ガラスですらプ
ラスチツクより高価である。 更に、鉱物ガラスにおけるイオン交換法を利用
した化学的硬化処理によつて、少なくともその曲
げ引張り強さ(Biegezugufestigkeit)が高めら
れているような材料を製造する試みも既に提案さ
れている。これに関しては、ドイツ連邦共和国特
許出願公告DE−AS第2614566号明細書に、イオ
ン交換された強化ガラスを使用することが記載さ
れている。そのほかにも、特開昭54−152013号及
び同54−152014号明細書によれば、やはりイオン
交換によつて強化されたガラスを時計のカバープ
レート(保護ガラス)として用いることが開示さ
れている。さらに、特開昭56−59642号明細書に
示されている公知技術もこれに類する。特にこの
出願明細書においては、イオン交換によつて応力
層を生ぜしめることが強調されており、その場合
圧縮応力ゾーンの厚さは15μmであり、圧縮応力
値は60Kgmm2にまで達する。 鉱物ガラスと称されるガラス組成物は、その組
成がそれぞれ異なつているため、種々異なる強度
及び硬度を示す。ガラス組成と、一方ではイオン
交換による化学的ガラス硬化の可能性及び他方で
はガラスの硬度との関係は、グリーンメロート
(Gliemeroth)の論文(初応力(Vorspannung)
を有するガラス及びこれをもたないガラスに対す
る衝撃の作用について」(ガラス工業報告、第47
号、第97頁〜第106頁、1974)で詳細に取り扱わ
れている。この場合特に強調れねばならないの
は、イオン交換による曲げ引張強さの増大が、イ
オン交換ゾーンにおける種々異なつた厚さとは無
関係に、ガラスの硬度に対しては全く影響を及ぼ
さないか、或いは及ぼしたにしても極く僅かなも
のにしかすぎないということである。上記の論文
の第3表には、イオン交換による硬化処理に基づ
く化学的初応力を有するものとこれを有していな
い選定されたガラスの特性、特にイオン交換の前
後におけるヌーブ硬度の推移が示されている。こ
の文献に記載されたタイプのガラス(B270)は、
時計用ガラス工業において今日最も頻繁に使用さ
れる鉱物ガラスである。 本発明の目的とするところは、高い曲げ引張強
さと掻き傷に対する高い抵抗力との面で優れてい
るようなガラスを提供することにあり、この場合
曲げ強度は、イオン交換処理に基づく化学的硬化
によつて達成される。 イオン交換されてないこのガラスでも、既にか
なり高い抗掻き傷特性(500Kpmm-2のヌープ硬
度)を示すことが出来るが、イオン交換処理を施
すことによつてこの値を600Kpmm-2以上にするこ
とが可能である。 さらに、本発明によるこの新規なガラスは、研
磨乃至磨き仕上げせずに直接使用出来る程度の表
面特性を有する薄層ガラス(厚さ:0.5〜1.5mm)
として、引き抜き加工されうるような結晶化特性
及び粘度特性を有しているので、時計用ガラスを
製作するためには、単に薄層ガラスから所望の寸
法及び形状のガラスを切り出し、化学的な硬化処
理を施し、最後に時計に嵌め込むだけでよい。 本発明によるこの新規なガラスは、これ以外に
も、すぐれた化学的耐性を有しており、さらに、
淡い青口(染料の青味色)を用いてこのガラスを
着色することにより、所定の天然サフアイアのよ
うな外見を与えることも可能である。 所定のガラスは、極く限られた組成範囲内で、
イオン交換により、申し分のない層厚さと応力と
が得られるように硬化可能であり、且つ少なくと
も500Kpmm-2の比較的高い出発ヌープ硬度を有す
るこれらの組成物は、イオン交換処理によつてさ
らに600Kpmm-2以上のヌープ硬度にまで改良可能
であることが見出された。このようなガラス組成
物は、本発明の各特許請求の範囲に記載されてい
る。 さらにこれらのガラスは、引き抜き工法により
厚さ0.5〜1.5mmで問題なく大量生産されうるよう
な結晶化特性及び粘度特性を有している。その原
料コストは、ランタンー重フリントガラス(クリ
スタルガラス)、ランタン−フリントガラス及び
ランタン−クラウンガラスなどより著しく低廉で
ある。 本発明によるガラス類の引き抜き加工後におけ
る表面特性は、後からの研磨乃至磨き仕上げを必
要としないほど良好である。 360℃以上の温度におけるカリウムイオン含有
塩浴内でイオン交換を行なうことによつて、5000
mm/cm以上の圧縮応力を有する厚さ80μm以上の
硬化ゾーンが生ぜしめられる。 ヌープ硬度は、負荷によつて左右される。本発
明の特許請求の範囲第1項では、200gの負荷が
問題にされている。その他の負荷との比較を行な
うことによつて、本発明によるガラスにおけるの
と同じ組成が解明される: 負荷50g(0.49N)HK770Kpmm-2 負荷200g(1.96N)HK630Kpmm-2 本発明によるガラスの組成は、以下に示すような
重量パーセントで合成される: SiO2 55〜68 B2O3 0〜4.5 ΣSiO2+B2O3+P2O5+GeO2= 55〜68 Al2O3 11〜21 La2O3 2以下(但し、零を含まず) TiO2 0〜1 ΣAl2O3+La2O3+TiO2+ZrO2 +Nb2O5= 11〜24 Na2O 9〜15 K2O 1〜8 Σアルカリ金属酸化物= 10〜18 MgO 0.5〜4 CaO 0〜2 ΣMgO+CaO+BaO+SrO +ZnO= 0.5〜6 その他の酸化物 0〜7 なお、La2O3の代りに、他の稀土類酸化物を用
いることも出来る。 着色時計用ガラスを製造するために、少量の着
色酸化物をこの組成に添加することが可能であ
る。例えば、0.001重量パーセントの酸化コバル
トを添加するならば、屡々特定のサフアイアにお
いて見られるような青みを生ぜしめることが出来
る。 最も重要な諸特性に対するこのガラス組成の影
響は、以下に示す比較例から充分に認められる。
なおこの表において、ガラス:5999及びガラス:
6029は、本発明による例であり、ガラス:6115、
ガラス:6105及びガラス:0038は比較対照例であ
る。
FIELD OF THE INVENTION The present invention relates to watch glasses, and more particularly to chemically hardened watch glasses with high Knube hardness. Clocks and similar instruments have a cover plate made of transparent plastic or glass, depending on the nature of the instrument in question. below,
In this specification, for the sake of simplicity, only the cover plate for a watch will be explained, and all of the cover plates will be collectively referred to as "watch glass." The susceptibility of plastics to scratching due to their low hardness is a significant disadvantage of this material. Therefore, at a relatively early stage, so-called "mineral glasses" came back into use.
Mineral glass is, in principle, nothing more than polished hard glass products, and today it is generally produced from float glass or also from B270 or
Manufactured from D263 (DESAG, Grünenplan) with relatively high transmittance. Sapphire is also used, especially for high-end watches, but the price of this material is much higher than that of mineral glass, and even mineral glass is more expensive than plastic. Furthermore, attempts have already been made to produce materials whose at least their flexural tensile strength is increased by chemical hardening using ion exchange methods in mineral glasses. In this connection, German Patent Application DE-AS 2614566 describes the use of ion-exchanged tempered glasses. In addition, JP-A-54-152013 and JP-A-54-152014 also disclose the use of glass strengthened by ion exchange as a cover plate (protective glass) for watches. . Furthermore, the known technique disclosed in Japanese Patent Application Laid-Open No. 56-59642 is also similar to this. Particular emphasis is placed in this application on the creation of a stress layer by means of ion exchange, the thickness of the compressive stress zone being 15 μm and compressive stress values of up to 60 kg mm 2 . Glass compositions called mineral glasses exhibit different strengths and hardnesses because of their different compositions. The relationship between the glass composition and the possibility of chemical hardening of the glass by ion exchange on the one hand and the hardness of the glass on the other hand is described in the paper of Gliemeroth (Initial stress).
"On the effects of impact on glass with and without it" (Glass Industry Report, No. 47)
No. 97-106, 1974). It must be particularly emphasized in this case that the increase in bending tensile strength due to ion exchange has no or no influence on the hardness of the glass, independent of the different thicknesses in the ion exchange zone. Even so, it is only a very small amount. Table 3 of the above-mentioned paper shows the properties of selected glasses with and without chemical initial stress based on ion exchange hardening treatment, in particular the evolution of Knoub hardness before and after ion exchange. has been done. The type of glass described in this document (B270) is
It is the mineral glass most frequently used today in the watch glass industry. It is an object of the present invention to provide a glass which is distinguished by a high flexural tensile strength and a high resistance to scratching, the flexural strength being determined by a chemical treatment based on an ion exchange treatment. Achieved by curing. This non-ion-exchanged glass can already exhibit fairly high anti-scratch properties (Knoop hardness of 500 Kpmm -2 ), but this value can be increased to over 600 Kpmm -2 by applying ion exchange treatment. is possible. Furthermore, this new glass according to the present invention is a thin layer glass (thickness: 0.5 to 1.5 mm) that has surface properties that allow it to be used directly without polishing or polishing.
As such, it has crystallization and viscosity properties that allow it to be drawn and processed. Therefore, in order to produce watch glass, glass of the desired size and shape is simply cut from a thin layer of glass, and then chemically hardened. All you have to do is process it and then fit it into your watch. The new glass according to the invention also has excellent chemical resistance and furthermore:
It is also possible to color this glass with a pale blue tint (blue tint of dye) to give it the appearance of a given natural sapphire. Within a very limited composition range, a given glass
These compositions which can be cured by ion exchange to obtain satisfactory layer thicknesses and stresses and which have a relatively high starting Knoop hardness of at least 500 Kpmm -2 can be further hardened to 600 Kpmm by ion exchange treatment. It was found that it is possible to improve the Knoop hardness to -2 or higher. Such glass compositions are described in the claims of the invention. Furthermore, these glasses have crystallization and viscosity properties that allow them to be mass-produced without problems in a thickness of 0.5 to 1.5 mm by the drawing method. Its raw material cost is significantly lower than lanthanum-heavy flint glass (crystal glass), lanthanum-flint glass, and lanthanum-crown glass. The surface properties of glass after drawing according to the present invention are so good that no subsequent polishing or polishing is required. 5000 by ion exchange in a potassium ion-containing salt bath at temperatures above 360°C.
A hardened zone with a thickness of more than 80 μm with a compressive stress of more than mm/cm is produced. Knoop hardness is dependent on load. In claim 1 of the present invention, a load of 200g is at issue. Comparisons with other loads reveal the same composition as in the glass according to the invention: Load 50 g (0.49 N) HK 770 Kpmm -2 Load 200 g (1.96 N) HK 630 Kpmm -2 The composition is synthesized in weight percentages as shown below: SiO2 55-68 B2O3 0-4.5 ΣSiO2 + B2O3 + P2O5 + GeO2 = 55-68 Al2O3 11-21 La 2 O 3 2 or less (however, not including zero) TiO 2 0-1 ΣAl 2 O 3 + La 2 O 3 + TiO 2 + ZrO 2 + Nb 2 O 5 = 11-24 Na 2 O 9-15 K 2 O 1- 8 ΣAlkali metal oxide = 10-18 MgO 0.5-4 CaO 0-2 ΣMgO+CaO+BaO+SrO +ZnO = 0.5-6 Other oxides 0-7 Note that other rare earth oxides may be used instead of La 2 O 3 You can also do it. In order to produce colored watch glasses, it is possible to add small amounts of colored oxides to this composition. For example, the addition of 0.001 weight percent cobalt oxide can produce the blue tint often seen in certain saphires. The influence of this glass composition on the most important properties can be fully appreciated from the comparative examples shown below.
In this table, glass: 5999 and glass:
6029 is an example according to the present invention, glass: 6115,
Glass: 6105 and Glass: 0038 are comparative examples.

【表】【table】

【表】 結晶化を一様に回避した状態で粘度を低下させ
るため組成を変化すれば、イオン交換(IA)に
よるヌープ硬度の付加的な上昇を即座に無に帰せ
しめうることは明らかである。 このイオン交換は、それ自体公知の条件下、例
えば410℃の温度で8時間の間、カリウムを含有
する塩浴、例えばKNO3浴内において行なわれ
る。 イオン交換ゾーンときこのゾーン内に生ずる応
力との測定は、光弾性的に行なわれる(グリーン
メロート、ガラス工業報告第47号,1974,第97〜
106頁参照)。 粘度特性の測定は、公知の定点Tg(変換温度)、
EW(軟化点)及びVA(処理温度)について行なわ
れる。この測定からは、VFT−方程式による粘
度経過が、各温度につき5dPas〜1015dPAsの間で
申し分なく正確に検出され、0.5〜1.5mmのガラス
厚さにおける延性は、約4×103dPasで測定され
る。引き抜き加工されたガラスにおけるこの厚さ
は、時計用ガラスの場合最も頻繁に利用されるも
のである(最高0.8mm)。本発明によるガラスの有
効な特性に基づいて、その他の厚さで引き抜くこ
とも可能であり、結晶化は行なわれない。(引き
抜かれたガラス表面は、引き抜きノズルのところ
で生長した結晶によつて縞状の条痕を生ぜしめら
れるので、この引き抜き範囲における結晶化傾向
は不都合なことである。)本発明によるガラスの
結晶化傾向は極度に低く抑えられているので、引
き抜かれたガラスは後から研磨乃至磨き仕上げ処
理を施されることなく、そのまま時計用ガラスと
して加工出来る。 化学的耐性における極端な尺度としての耐酸性
は、本発明によるガラスの場合、ドイツ工業規格
(DIN)によるクラス2より優れている。例えば
465℃での明らかに短かいイオン交換時間(一時
間未満)も、本発明によるガラスにおける充分な
曲げ強さと高いヌープ硬度とに寄与する。 実施例 この実施例におけるガラスには、以下に示すよ
うな重量部で各成分が配量された: 砂 1682.52 硼酸 198.41 アルミニウム−水和物 537.77 酸化ランタン 28.18 ソーダ 641.95 カリ 641.95 硫酸ナトリウム 31.00 炭酸マグネシウム 127.81 ルチル 14.10 酸化砒素 14.03 酸化コバルト 0.048 このガラスは、各成分の配量後に混合され、
1320℃の温度で融解せしめられ、攪拌処理によつ
て均質化され、1110℃の温度で0.9mmの厚さに引
き抜かれ、直径27mmの円形ガラス板として切り出
された。このガラスは、1.508のnd,90.6×10-7
(20〜300℃)のAK、567℃のTg、782℃のEW
1140℃のVA及び負荷200gにおける550Kpmm-2
ヌープ硬度を有する。この円形ガラス板は、
KNO3浴内において16時間の間400℃の温度で硬
化され、この処理後には、200gの負荷における
660Kpmm-2のヌープ硬度と、110μmの圧縮応力ゾ
ーン厚さと、このゾーン内における7300nm/cm
の圧縮応力と、DINのクラス2より優れた耐酸
特性とを示した。
[Table] It is clear that the additional increase in Knoop hardness due to ion exchange (IA) can be immediately negated by changing the composition to reduce the viscosity while uniformly avoiding crystallization. . This ion exchange is carried out under conditions known per se, for example at a temperature of 410° C. for 8 hours in a potassium-containing salt bath, for example a KNO 3 bath. The measurement of the ion exchange zone and the stress generated within this zone is carried out photoelastically (Green Meroth, Glass Industry Report No. 47, 1974, No. 97-
(See page 106). Measurement of viscosity characteristics is carried out at a known fixed point Tg (conversion temperature),
This is done for E W (softening point) and V A (processing temperature). From these measurements, the viscosity profile according to the VFT-equation is determined perfectly accurately at each temperature between 5 dPas and 10 15 dPas, and the ductility at glass thicknesses of 0.5 to 1.5 mm is approximately 4×10 3 dPas. be measured. This thickness in drawn glass is the one most frequently used for watch glasses (up to 0.8 mm). Owing to the advantageous properties of the glass according to the invention, it is also possible to draw it in other thicknesses, without crystallization. (This tendency to crystallization in the drawing area is disadvantageous, since the drawn glass surface is streaked by crystals grown at the drawing nozzle.) Crystallization of the glass according to the invention Since the tendency to oxidation is suppressed to an extremely low level, the drawn glass can be processed into watch glass as it is without any subsequent polishing or polishing treatment. The acid resistance, as an extreme measure of chemical resistance, is better for the glasses according to the invention than class 2 according to the German Industrial Standard (DIN). for example
The distinctly short ion exchange time (less than one hour) at 465° C. also contributes to the sufficient bending strength and high Knoop hardness in the glasses according to the invention. EXAMPLE The glass in this example was dosed with the following parts by weight: Sand 1682.52 Boric acid 198.41 Aluminum hydrate 537.77 Lanthanum oxide 28.18 Soda 641.95 Potash 641.95 Sodium sulfate 31.00 Magnesium carbonate 127.81 Rutile 14.10 Arsenic oxide 14.03 Cobalt oxide 0.048 This glass is mixed after metering each component,
It was melted at a temperature of 1320°C, homogenized by stirring, drawn to a thickness of 0.9 mm at a temperature of 1110°C, and cut into a circular glass plate with a diameter of 27 mm. This glass is 1.508 nd, 90.6×10 -7
AK at (20~300℃), Tg at 567℃, E W at 782℃,
It has a Knoop hardness of 550 Kpmm -2 at a V A of 1140°C and a load of 200 g. This circular glass plate is
Cured at a temperature of 400 °C for 16 hours in a KNO 3 bath, after this treatment the
Knoop hardness of 660Kpmm -2 and compressive stress zone thickness of 110μm and 7300nm/cm within this zone
of compressive stress and acid resistance properties superior to DIN class 2.

Claims (1)

【特許請求の範囲】 1 重量%で以下の組成 SiO2 55〜68 B2O3 0〜4.5 ΣSiO2+B2O3+P2O5= 55〜68 Al2O3 11〜21 La2O3 2以下(但し、零を含まず) ΣAl2O3+La2O3+TiO2+ZrO2+Nb2O5
11〜24 TiO2 0〜1 Na2O 9〜15 K2O 1〜8 Σアルカリ金属酸化物= 10〜18 MgO 0.5〜4 CaO 0〜2 Σアルカリ土金属酸化物+ZnO= 0.5〜6 その他の酸化物 0〜7 を有し、より高い曲げ引張強さまで化学的にイオ
ン交換され、600KPmm-2以上のヌープ硬度を有す
ることを特徴とする200g荷重により500KPmm-2
上のヌープ硬度を有するカバープレート用珪酸塩
ガラス。 2 重量%で以下の組成SiO2 57〜63 B2O3 2〜4.5 Al2O3 14〜19 La2O3 0.2〜1.4 TiO2 0.1〜0.9 MgO 0.7〜2.5 CaO 0.1〜1.6 Na2O 9〜14 K2O 0.3〜6 その他の酸化物 0〜5 例えば清澄化酸化物、着色酸化物及び他の酸化物
など を有することを特徴とする特許請求の範囲第1項
に記載のガラス。 3 1.5重量%までの着色酸化物を含有すること
を特徴とする特許請求の範囲第1項または第2項
に記載のガラス。 4 青色を得るために0.0003〜0.0014重量%の酸
化コバルトを含有することを特徴とする特許請求
の範囲第3項に記載のガラス。
[Claims] The following composition in 1% by weight: SiO 2 55-68 B 2 O 3 0-4.5 ΣSiO 2 +B 2 O 3 +P 2 O 5 = 55-68 Al 2 O 3 11-21 La 2 O 3 2 or less (excluding zero) ΣAl 2 O 3 +La 2 O 3 +TiO 2 +ZrO 2 +Nb 2 O 5 =
11-24 TiO 2 0-1 Na 2 O 9-15 K 2 O 1-8 ΣAlkali metal oxide = 10-18 MgO 0.5-4 CaO 0-2 ΣAlkaline earth metal oxide + ZnO = 0.5-6 Other A cover plate having a Knoop hardness of 500 KP mm -2 or more with a load of 200 g, characterized in that it has a Knoop hardness of 600 KP mm -2 or more and is chemically ion-exchanged to a higher bending tensile strength and has a Knoop hardness of 600 KP mm -2 or more. silicate glass. 2 The following composition in weight% SiO 2 57-63 B 2 O 3 2-4.5 Al 2 O 3 14-19 La 2 O 3 0.2-1.4 TiO 2 0.1-0.9 MgO 0.7-2.5 CaO 0.1-1.6 Na 2 O 9 -14 K2O 0.3-6 Other oxides 0-5 Glass according to claim 1, characterized in that it contains, for example, clarified oxides, colored oxides and other oxides. 3. Glass according to claim 1 or 2, characterized in that it contains up to 1.5% by weight of colored oxides. 4. Glass according to claim 3, characterized in that it contains 0.0003 to 0.0014% by weight of cobalt oxide to obtain a blue color.
JP58058839A 1982-04-05 1983-04-05 Chemically hardened watch glass with high hardness Granted JPS58185451A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3212612A DE3212612C2 (en) 1982-04-05 1982-04-05 Chemically hardenable watch glass with high Knoop hardness in the system SiO ↓ 2 ↓ -Al ↓ 2 ↓ O ↓ 3 ↓ -MgO-Na ↓ 2 ↓ O-K ↓ 2 ↓ O (-B ↓ 2 ↓ O ↓ 3 ↓ La ↓ 2 ↓ O ↓ 3 ↓)
DE3212612.3 1982-04-05

Publications (2)

Publication Number Publication Date
JPS58185451A JPS58185451A (en) 1983-10-29
JPH0444616B2 true JPH0444616B2 (en) 1992-07-22

Family

ID=6160263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58058839A Granted JPS58185451A (en) 1982-04-05 1983-04-05 Chemically hardened watch glass with high hardness

Country Status (3)

Country Link
JP (1) JPS58185451A (en)
CH (1) CH662918GA3 (en)
DE (1) DE3212612C2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348588A (en) * 2016-08-11 2017-01-25 东旭科技集团有限公司 Composition for glass, alumina silicate glass and preparation method and application of alumina silicate glass

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4335462A1 (en) * 1993-10-18 1995-04-20 Dragon Werk Georg Wild Gmbh & Chemically hardened abrasion-resistant grinding media
GB2335423A (en) * 1998-03-20 1999-09-22 Pilkington Plc Chemically toughenable glass
DE10133963B4 (en) * 2001-07-17 2006-12-28 Schott Ag Boroalkali silicate glass and its uses
US7666511B2 (en) 2007-05-18 2010-02-23 Corning Incorporated Down-drawable, chemically strengthened glass for cover plate
JP5467490B2 (en) 2007-08-03 2014-04-09 日本電気硝子株式会社 Method for producing tempered glass substrate and tempered glass substrate
JP5339173B2 (en) * 2007-09-27 2013-11-13 日本電気硝子株式会社 Tempered glass substrate, glass and method for producing tempered glass substrate
WO2009099614A1 (en) * 2008-02-08 2009-08-13 Corning Incorporated Damage resistant, chemically-toughened protective cover glass
EP2535320A3 (en) 2008-02-26 2014-05-14 Corning Incorporated Fining agents for silicate glasses
US8673163B2 (en) 2008-06-27 2014-03-18 Apple Inc. Method for fabricating thin sheets of glass
US7810355B2 (en) 2008-06-30 2010-10-12 Apple Inc. Full perimeter chemical strengthening of substrates
JP5614607B2 (en) * 2008-08-04 2014-10-29 日本電気硝子株式会社 Tempered glass and method for producing the same
JP5622069B2 (en) * 2009-01-21 2014-11-12 日本電気硝子株式会社 Tempered glass, tempered glass and method for producing tempered glass
CN102388003B (en) 2009-03-02 2014-11-19 苹果公司 Techniques for strengthening glass covers for portable electronic devices
US8549882B2 (en) 2009-09-30 2013-10-08 Apple Inc. Pre-processing techniques to produce complex edges using a glass slumping process
US9778685B2 (en) 2011-05-04 2017-10-03 Apple Inc. Housing for portable electronic device with reduced border region
EP2531459A2 (en) * 2010-02-02 2012-12-12 Apple Inc. Enhanced chemical strengthening glass of covers for portable electronic devices
JP5683971B2 (en) * 2010-03-19 2015-03-11 石塚硝子株式会社 Chemically strengthened glass composition and chemically strengthened glass material
US9207528B2 (en) 2010-06-04 2015-12-08 Apple Inc. Thin sheet glass processing
US9213451B2 (en) 2010-06-04 2015-12-15 Apple Inc. Thin glass for touch panel sensors and methods therefor
JP2010202514A (en) * 2010-06-10 2010-09-16 Hoya Corp Glass substrate for mobile liquid crystal display and method for producing the same, and mobile liquid crystal display using the same
US8923693B2 (en) 2010-07-30 2014-12-30 Apple Inc. Electronic device having selectively strengthened cover glass
US10189743B2 (en) 2010-08-18 2019-01-29 Apple Inc. Enhanced strengthening of glass
US8873028B2 (en) 2010-08-26 2014-10-28 Apple Inc. Non-destructive stress profile determination in chemically tempered glass
US8824140B2 (en) 2010-09-17 2014-09-02 Apple Inc. Glass enclosure
US10781135B2 (en) 2011-03-16 2020-09-22 Apple Inc. Strengthening variable thickness glass
US9725359B2 (en) 2011-03-16 2017-08-08 Apple Inc. Electronic device having selectively strengthened glass
US9128666B2 (en) 2011-05-04 2015-09-08 Apple Inc. Housing for portable electronic device with reduced border region
TWI591039B (en) 2011-07-01 2017-07-11 康寧公司 Ion exchangeable glass with high compressive stress
US9944554B2 (en) 2011-09-15 2018-04-17 Apple Inc. Perforated mother sheet for partial edge chemical strengthening and method therefor
US9516149B2 (en) 2011-09-29 2016-12-06 Apple Inc. Multi-layer transparent structures for electronic device housings
US10144669B2 (en) 2011-11-21 2018-12-04 Apple Inc. Self-optimizing chemical strengthening bath for glass
US10133156B2 (en) 2012-01-10 2018-11-20 Apple Inc. Fused opaque and clear glass for camera or display window
US8684613B2 (en) 2012-01-10 2014-04-01 Apple Inc. Integrated camera window
US8773848B2 (en) 2012-01-25 2014-07-08 Apple Inc. Fused glass device housings
JP5502937B2 (en) * 2012-06-11 2014-05-28 Hoya株式会社 GLASS SUBSTRATE FOR DISPLAY, PROCESS FOR PRODUCING THE SAME AND DISPLAY USING THE SAME
EP2885253B1 (en) * 2012-08-17 2021-06-02 Corning Incorporated Ultra-thin strengthened glasses
US9946302B2 (en) 2012-09-19 2018-04-17 Apple Inc. Exposed glass article with inner recessed area for portable electronic device housing
JP5796905B2 (en) * 2012-12-25 2015-10-21 日本電気硝子株式会社 Tempered glass substrate, glass and method for producing tempered glass substrate
JP5413817B2 (en) * 2013-05-08 2014-02-12 日本電気硝子株式会社 Tempered glass substrate, glass and method for producing tempered glass substrate
US9459661B2 (en) 2013-06-19 2016-10-04 Apple Inc. Camouflaged openings in electronic device housings
US9886062B2 (en) 2014-02-28 2018-02-06 Apple Inc. Exposed glass article with enhanced stiffness for portable electronic device housing
CN108046588A (en) * 2017-10-26 2018-05-18 中国南玻集团股份有限公司 Alumina silicate glass and preparation method thereof, touched panel glass cover board
CN109320071B (en) * 2018-10-16 2021-07-20 东旭光电科技股份有限公司 Aluminosilicate glass composition, aluminosilicate glass, and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939897A (en) * 1972-08-26 1974-04-13

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2456894C3 (en) * 1974-12-02 1978-04-06 Jenaer Glaswerk Schott & Gen., 6500 Mainz Inorganic, vitreous material for use in an ion exchange for the purpose of generating a refractive index gradient while largely avoiding a change in the coefficient of thermal expansion
US4119760A (en) * 1975-08-15 1978-10-10 Ppg Industries, Inc. Chemical strengthening of glass
JPS5354216A (en) * 1976-10-28 1978-05-17 Hoya Glass Works Ltd Glass for cover of liquid crystal watch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939897A (en) * 1972-08-26 1974-04-13

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106348588A (en) * 2016-08-11 2017-01-25 东旭科技集团有限公司 Composition for glass, alumina silicate glass and preparation method and application of alumina silicate glass
CN106348588B (en) * 2016-08-11 2020-12-15 东旭光电科技股份有限公司 Composition for glass, aluminosilicate glass, and preparation method and application thereof

Also Published As

Publication number Publication date
JPS58185451A (en) 1983-10-29
CH662918GA3 (en) 1987-11-13
DE3212612A1 (en) 1983-10-13
DE3212612C2 (en) 1985-12-19

Similar Documents

Publication Publication Date Title
JPH0444616B2 (en)
CN110316974B (en) Alkali-containing aluminosilicate glass, product, strengthening method and application thereof
US11203549B2 (en) Chemically temperable glass sheet
US10457585B2 (en) Chemically temperable glass sheet
US10294141B2 (en) Chemically temperable glass sheet
JP2022550970A (en) Lithium zirconium aluminosilicate glass, tempered glass, manufacturing method thereof and display parts
CN104986954B (en) Zircon aluminum silicate glass and preparation method thereof
CN115385571A (en) Chemically strengthened glass and glass for chemical strengthening
TW201412676A (en) Ion exchangeable li-containing glass compositions for 3-D forming
JP4279349B1 (en) Glass article
KR20080056023A (en) Crystal glass article
CN102417301A (en) Glass composition and glass made of the composition, preparation method and purpose
US10669187B2 (en) Pink aluminosilicate glass
JP2001236634A (en) Magnetic disk substrate comprising glass composition for chemical strengthening and magnetic disk medium
JP2001229526A (en) Magnetic disk substrate consisting of glass composition for chemical strengthening and magnetic disk medium
JPWO2016104446A1 (en) Glass and chemically tempered glass
CN104803602A (en) High-alkali high-alumina silicate glass suitable for chemical enhanced treatment
WO2022166028A1 (en) Aluminosilicate tempered glass and preparation method therefor
JP6962512B1 (en) Crystallized glass and chemically strengthened glass
WO2020078075A1 (en) Zinc-phospho-alumino-silicate glass having high strain point, capable of fast ion exchange, and having weak-acid resistance
US2599349A (en) Green-colored opal glass
JPS5930731A (en) High refractive index, low dispersion and low density glass
US11718552B2 (en) Chemically temperable glass sheet
JP7339605B2 (en) aluminosilicate glass
JP2001226137A (en) Method for manufacturing glass base plate for chemical reinforcement and chemically reinforced glass article obtained by using the same