JPH0444515B2 - - Google Patents

Info

Publication number
JPH0444515B2
JPH0444515B2 JP57144789A JP14478982A JPH0444515B2 JP H0444515 B2 JPH0444515 B2 JP H0444515B2 JP 57144789 A JP57144789 A JP 57144789A JP 14478982 A JP14478982 A JP 14478982A JP H0444515 B2 JPH0444515 B2 JP H0444515B2
Authority
JP
Japan
Prior art keywords
angle
control
motor
phase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57144789A
Other languages
Japanese (ja)
Other versions
JPS5935576A (en
Inventor
Akinobu Matsumoto
Katsuhiro Nabeshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP57144789A priority Critical patent/JPS5935576A/en
Publication of JPS5935576A publication Critical patent/JPS5935576A/en
Publication of JPH0444515B2 publication Critical patent/JPH0444515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】 本発明は無整流子電動機の転流余裕角制御方法
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a commutation margin angle control method for a commutatorless motor.

無整流子電動機の制御方法においては、複数個
のスイツチング素子からなるサイクロコンバータ
より同期電動機を付勢するものとなつて、その転
流失敗を防止する上で原理的に転流余裕角が必要
となる。これは、前記転流失敗より電源短絡等の
事故を誘発することから従来充分な余裕が見込ま
れ、例えば設定制御進み角が60°程度に設定され
るものとなつていた。しかし、かような無整流子
電動機の運転方法によれば、軽負荷時に転流余裕
角は過大なものとなつて同期電動機の見掛上の力
率および効率を低下させる原因となる。このた
め、転流余裕角が常に必要最小限の一定の値にな
る如く設定制御進み角を制御する方法が考えられ
ている。
In the control method of a commutatorless motor, a synchronous motor is energized by a cycloconverter consisting of multiple switching elements, and a commutation margin angle is required in principle to prevent commutation failure. Become. Conventionally, this has been expected to have a sufficient margin, since the failure of commutation may cause an accident such as a short circuit in the power supply, and for example, the set control advance angle has been set to about 60°. However, according to such a method of operating a commutatorless motor, the commutation margin angle becomes excessive at light loads, which causes a decrease in the apparent power factor and efficiency of the synchronous motor. For this reason, a method has been considered in which the setting control advance angle is controlled so that the commutation margin angle is always a constant value that is the minimum necessary value.

しかしながら、前述したように設定制御進み角
を遅らせることは、見掛上の力率が向上されると
しても誘起電圧が上昇するために電源電圧との平
衡動作が作用して電動機速度が低下する場合を生
じるものとなる。これを従来例によつて説明す
る。
However, as mentioned above, delaying the set control advance angle may improve the apparent power factor, but the induced voltage may increase, causing a balance operation with the power supply voltage and reducing the motor speed. will result in This will be explained using a conventional example.

第1図は従来の一般的な例による無整流子電動
機の概要構成を示すもので、1は交流電源、2は
サイクロコンバータ部、3は同期電動機、4は速
度検出器、5は速度設定器、6は速度制御回路、
7は位相制御回路、8はゲート制御回路、9は転
流余裕角検出回路、10は設定制御進み角制御回
路である。
Figure 1 shows the general configuration of a conventional non-commutator motor, in which 1 is an AC power supply, 2 is a cycloconverter section, 3 is a synchronous motor, 4 is a speed detector, and 5 is a speed setting device. , 6 is a speed control circuit,
7 is a phase control circuit, 8 is a gate control circuit, 9 is a commutation margin angle detection circuit, and 10 is a setting control advance angle control circuit.

すなわち、かくの如き回路構成にあつて、交流
電源1の入力から同期電動器3を付勢するサイク
ロコンバータ部2は、制御回路部の最終出力段の
ゲート制御回路8よりスイツチング動作を行う素
子部分への制御指令を得るものである。これは、
速度設定器5による速度指令信号と速度検出器4
の速度帰還信号が速度制御回路6に与えられ、速
度制御回路6によるPID調整の演算例等から位相
制御角指令信号が発生され、位相制御回路7は電
源との同期作用を行ない位相制御角に対応したタ
イミングでゲート指令信号を与えるものとなる。
ここで、ゲート制御回路8の詳細説明を割愛する
が、分配器や電機子逆起電力等の入力信号から演
算によつて得る同期電動機3の回転子位置信号に
基づきサイクロコンバータ部2のスイツチング素
子の選択を行う論理回路部分とスイツチング素子
の駆動回路部分を有して、選択されたスイツチン
グ素子を駆動する制御指令をサイクロコンバータ
部2に送出する。さらに、転流余裕角制御におい
ては、転流余裕角検出回路9の出力信号を得る設
定制御進み角制御回路10は転流余裕角が常にあ
る一定の範囲に入るよう設定制御進み角指令の信
号をゲート制御回路8に与えるものとなつてい
る。
That is, in such a circuit configuration, the cycloconverter section 2 that energizes the synchronous motor 3 from the input of the AC power source 1 is an element section that performs switching operation from the gate control circuit 8 at the final output stage of the control circuit section. This is to obtain control commands for the this is,
Speed command signal from speed setter 5 and speed detector 4
The speed feedback signal of is given to the speed control circuit 6, a phase control angle command signal is generated from a calculation example of PID adjustment by the speed control circuit 6, and the phase control circuit 7 synchronizes with the power supply to adjust the phase control angle. A gate command signal is given at the corresponding timing.
Although a detailed explanation of the gate control circuit 8 will be omitted here, the switching element of the cycloconverter section 2 is controlled based on the rotor position signal of the synchronous motor 3 obtained by calculation from input signals such as a distributor and armature back electromotive force. It has a logic circuit section for selecting a switching element and a driving circuit section for a switching element, and sends a control command for driving a selected switching element to the cycloconverter section 2. Furthermore, in the commutation margin angle control, the setting control advance angle control circuit 10 that obtains the output signal of the commutation margin angle detection circuit 9 sends a setting control advance angle command signal so that the commutation margin angle is always within a certain range. is provided to the gate control circuit 8.

そして、かくの如き従来の転流余裕角制御にお
いて、特にその余裕角をできる限り少なくなるよ
う制御を行うのが通常である。ここで、電動機端
子に誘起される電圧をVM、内部誘起電圧をBM
して内部抵抗による電圧降下を無視するに、次式
の関係となることが知られている。
In such conventional commutation margin angle control, the margin angle is usually controlled to be as small as possible. Here, it is known that, assuming that the voltage induced at the motor terminals is V M and the internal induced voltage is B M , and ignoring the voltage drop due to internal resistance, the following equation holds.

VM∝EM・cos(βo−μ/2)・cosμ/2 …(1) ただし、βoは設定制御進み角、μは重なり角
である。したがつて、前述した如き転流余裕角制
御によれば、設定制御進み角βoを予め余裕をも
つて固定させる場合に比べてそのβoの値は小さ
い値となり、誘起電圧VMの値が大きなものとな
る。なお、重なり角μの値は負荷電流に依存する
ものになる。また、同期電動機3に供給される電
力においては電源電圧Vs、位相制御角αより、
次式の関係が公知である。
V M ∝E M・cos(βo−μ/2)・cosμ/2 (1) where βo is the setting control advance angle and μ is the overlap angle. Therefore, according to the commutation margin angle control as described above, the value of βo is smaller than when the set control advance angle βo is fixed with a margin in advance, and the value of the induced voltage V M is large. Become something. Note that the value of the overlap angle μ depends on the load current. In addition, in the electric power supplied to the synchronous motor 3, from the power supply voltage V s and the phase control angle α,
The following relationship is known.

VM∝Vs・cosα …(2) このようにして、設定制御進み角βoの減少に
伴い誘起電圧VMが増加した際には(2)式より電源
電圧Vsを増加させるかあるいは位相制御角αを
小さくする必要がある。しかし、電源電圧Vs
通常自由に変更できない。また(cosα)の値は
位相制御角αを進めることによつて増加できるが
1より大きくできず、位相制御角αが0°付近まで
進めば電動機への供給電圧をそれ以上増加させる
ことはできない。なお、電動機の誘起電圧を制御
する一般的な方法としては電動機の界磁電流を減
少させる界磁弱めが採られる。
V M ∝V s・cosα …(2) In this way, when the induced voltage V M increases with a decrease in the set control advance angle βo, the power supply voltage V s is increased or the phase It is necessary to reduce the control angle α. However, the power supply voltage V s usually cannot be changed freely. Also, the value of (cosα) can be increased by advancing the phase control angle α, but it cannot be made larger than 1, and if the phase control angle α advances to around 0°, the voltage supplied to the motor cannot be increased any further. . Note that field weakening, which reduces the field current of the motor, is used as a general method for controlling the induced voltage of the motor.

しかしながらこの方法によれば出力トルクの低
下をきたし、軽負荷時に電動機速度が上昇して誘
起電圧が減少せず、制御動作上安定性が欠けるも
のとなるなどの不具合を生じる。
However, this method causes problems such as a decrease in output torque, an increase in motor speed at light loads, no reduction in induced voltage, and a lack of stability in control operation.

本発明は上述したような点に着目しなされたも
ので、電動機速度を低下させることなく誘起電圧
を降下させるために(1)式の関係に示される如き設
定制御進み角βoを進め、cos(βo−μ/2)の値を小 さくせしめるようにした格別な制御方法を提供す
るものである。
The present invention has been made with attention to the above-mentioned points, and in order to reduce the induced voltage without reducing the motor speed, the set control advance angle βo as shown in the relationship of equation (1) is advanced and cos ( This invention provides a special control method that reduces the value of βo-μ/2).

第2図は本発明の技術思想の理解を容易にする
ため示すものであり、これは第1図装置に類する
装置の概要構成を示すものであつて、10′は設
定制御進み角制御回路、11は位相角検知回路で
ある。図中第1図と同符号のものは同じ機能を有
する部分を示す。
FIG. 2 is shown to facilitate understanding of the technical idea of the present invention, and shows the general configuration of a device similar to the device shown in FIG. 1, in which 10' is a setting control advance angle control circuit; 11 is a phase angle detection circuit. In the figure, the same reference numerals as in FIG. 1 indicate parts having the same function.

すなわち、かくの如く示されるものは、特に位
相角検知回路11および位相角検知回路11出力
を得て設定制御進み角を効果的に進ませる如く作
用する設定制御進み角制御回路10′を具備して
構成されてなる。ここに、転流制御における原理
的な方法および同機電動機3の駆動方法は第1図
で説明した通りであるのでこれを省略するが、位
相角検知回路11は速度制御回路6の出力信号を
入力し、その位相制御角指令信号より位相制御角
αが限界まで達したことを検知して設定制御進み
角制御回路10′に信号発生する。設定制御進み
角制御回路10′は位相角検知回路11が信号発
生時、例えば位相制御角αが0°付近まで達した際
設定制御進み角指令を進ませる如く変化させて信
号送出する。したがつて、(1)式の関係より設定制
御進み角βoが効果的に大きな値となつて同期電
動機3の誘起電圧の上昇を抑制することができ
る。また、前記位相角検知回路11が信号発生さ
れない通常時においては、転流余裕角検出回路9
出力よりこの転流余裕角が可能な限り小さい常に
一定の範囲に入るよう制御される点は第1図装置
と同様である。ここで、設定制御進み角βoを進
ませる量は、転流余裕角制御によつて進ませるべ
き量と前述の位相角検知により進ませるべき量の
多い方を優先させる必要があることは転流失敗を
防止する上で重要である。
That is, the device shown above particularly includes a phase angle detection circuit 11 and a setting control advance angle control circuit 10' which obtains the output of the phase angle detection circuit 11 and operates to effectively advance the setting control advance angle. It is composed of Here, the principle method of commutation control and the method of driving the motor 3 of the same machine are as explained in FIG. Then, it is detected from the phase control angle command signal that the phase control angle α has reached its limit, and a signal is generated to the setting control advance angle control circuit 10'. The setting control advance angle control circuit 10' changes and sends a signal so as to advance the setting control advance angle command when the phase angle detection circuit 11 generates a signal, for example, when the phase control angle α reaches around 0°. Therefore, from the relationship in equation (1), the set control advance angle βo effectively becomes a large value, and an increase in the induced voltage of the synchronous motor 3 can be suppressed. In addition, in normal times when the phase angle detection circuit 11 does not generate a signal, the commutation margin angle detection circuit 9
This is similar to the apparatus shown in FIG. 1 in that the commutation margin angle is controlled to be within a constant range as small as possible based on the output. Here, the amount by which the set control advance angle βo is advanced must be prioritized between the amount to be advanced by the commutation margin angle control and the amount to be advanced by the aforementioned phase angle detection. This is important in preventing failure.

したがつて、かかる技術思想によるものは、誘
起電圧や界磁電流を検出する回路部分を設けるこ
となく、簡単な位相検出回路を付加するのみで電
動機の駆動機能を損なうことなく効用し得る装置
を実現でき、さらにはかかる回路構成より電源電
圧の低下や電動機製作上の誘起電圧の発生係数の
バラツキに対し有効に対応可能になつて無整流子
電動機の設計面および製作面の仕様上の難度が緩
和される利点を有する。
Therefore, a device based on this technical idea can be used without impairing the drive function of the motor by simply adding a simple phase detection circuit without providing a circuit for detecting induced voltage or field current. Furthermore, this circuit configuration makes it possible to effectively deal with a drop in power supply voltage and variations in the generation coefficient of induced voltage during motor manufacturing, thereby reducing the difficulty in designing and manufacturing specifications for commutatorless motors. It has the advantage of being relaxed.

以上説明したように本発明によれば、電源側位
相制御角を監視してこれが所定値に達するに、設
定制御進み角を変化させるようにした簡便な装置
を実現し得る制御方法を提供できる。
As described above, according to the present invention, it is possible to provide a control method that can realize a simple device that monitors the power supply side phase control angle and changes the set control advance angle when the power supply side phase control angle reaches a predetermined value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の一般的な例による無整流子電動
機の概要構成を示すブロツク図、第2図は本発明
の技術思想の理解を容易にするため示したブロツ
ク図である。 2……サイクロコンバータ部、3……同期電動
機、6……速度制御回路、7……位相制御回路、
8……ゲート制御回路、9……転流余裕角検出回
路、10,10′……設定制御進み角制御回路、
11……位相角検知回路。
FIG. 1 is a block diagram showing a general configuration of a conventional non-commutator motor, and FIG. 2 is a block diagram shown to facilitate understanding of the technical idea of the present invention. 2...Cycloconverter section, 3...Synchronous motor, 6...Speed control circuit, 7...Phase control circuit,
8... Gate control circuit, 9... Commutation margin angle detection circuit, 10, 10'... Setting control advance angle control circuit,
11...Phase angle detection circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 転流余裕角を調節する機能を有するサイクロ
コンバータにより同期電動機を付勢する無整流子
電動機の運転方法において、力行領域にて電源側
位相制御角が0°付近の所定値に達した際に設定制
御進み角を現在値より大きくするようにしたこと
を特徴とする無整流子電動機の転流余裕角制御方
法。
1 In a method of operating a non-commutator motor in which a synchronous motor is energized by a cycloconverter that has the function of adjusting the commutation margin angle, when the power supply side phase control angle reaches a predetermined value near 0° in the power running region, A commutation margin angle control method for a commutatorless motor, characterized in that a set control lead angle is made larger than a current value.
JP57144789A 1982-08-23 1982-08-23 Commutation margin angle control system for commutatorless motor Granted JPS5935576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144789A JPS5935576A (en) 1982-08-23 1982-08-23 Commutation margin angle control system for commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144789A JPS5935576A (en) 1982-08-23 1982-08-23 Commutation margin angle control system for commutatorless motor

Publications (2)

Publication Number Publication Date
JPS5935576A JPS5935576A (en) 1984-02-27
JPH0444515B2 true JPH0444515B2 (en) 1992-07-21

Family

ID=15370482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144789A Granted JPS5935576A (en) 1982-08-23 1982-08-23 Commutation margin angle control system for commutatorless motor

Country Status (1)

Country Link
JP (1) JPS5935576A (en)

Also Published As

Publication number Publication date
JPS5935576A (en) 1984-02-27

Similar Documents

Publication Publication Date Title
KR920011003B1 (en) Method and system for reconnecting inverter to rotating motors
FI71047B (en) ANORDNING FOER REGLERING AV EN ASYNKRONMASKIN
JPH0728559B2 (en) Operation method of variable speed power generation system
US4654572A (en) Load-commutated inverter for operating synchronous motor
JP2686095B2 (en) Control circuit for braking a cage motor
JP2003116293A (en) Parallel drive circuit of dc brushless motor
JPH0444515B2 (en)
JP2001190096A (en) Wind power generation device
JPH01298993A (en) Inverter device for driving induction motor
JPH0154960B2 (en)
JPH0444516B2 (en)
JP2578200B2 (en) Voltage control device of power generator
JPH0767311B2 (en) Current and torque limiting circuit for AC motor drive inverter device
JPS6160677B2 (en)
JPH0667261B2 (en) Power converter control device
JP2673994B2 (en) Thyristor Leonard device current limiting method
JPS61124295A (en) Inverter
JPS61258698A (en) Drive device for brushless motor
JP2819561B2 (en) Rotation control device for variable reluctance motor
JPS6256757B2 (en)
SU817951A1 (en) Adjustable dc drive
JPH04261385A (en) Servo motor controller provided with anti-drift rotation function
JPH0428235Y2 (en)
JP2000152685A (en) Electric motor-control device
JPS6321433B2 (en)