JPH0444013B2 - - Google Patents

Info

Publication number
JPH0444013B2
JPH0444013B2 JP61102839A JP10283986A JPH0444013B2 JP H0444013 B2 JPH0444013 B2 JP H0444013B2 JP 61102839 A JP61102839 A JP 61102839A JP 10283986 A JP10283986 A JP 10283986A JP H0444013 B2 JPH0444013 B2 JP H0444013B2
Authority
JP
Japan
Prior art keywords
weight
tin oxide
acid
manufacturing
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61102839A
Other languages
Japanese (ja)
Other versions
JPS62263312A (en
Inventor
Takahiro Ogawa
Shinichi Hasebe
Nobuyuki Nishi
Kanji Tomioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP10283986A priority Critical patent/JPS62263312A/en
Publication of JPS62263312A publication Critical patent/JPS62263312A/en
Publication of JPH0444013B2 publication Critical patent/JPH0444013B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は高度な難燃性と極めて優れた光沢、透
明性を有する酸化スズを含有するアクリル系合成
繊維の製造方法に関するものである。 「従来技術と問題点」 アクリル系繊維に高度な難燃性を付与すること
が知られている酸化スズを繊維中に含有せしめ
て、難燃性と共に優れた光沢と透明性を得るに
は、酸化スズを極めて微細に粉砕して、フアイバ
ー中で凝集せず、均一に分散して含有させる必要
がある。しかし乍ら、フアイバー品質を損なう分
散剤等を添加、使用することなく、微細に粉砕し
た酸化スズをフアイバー中で凝集せず均一に分散
して含有させることは極めて困難であり、従来の
高度な難燃性アクリル系合成繊維は、全て不透明
なダルフアイバーである。かくして、高度な難燃
性と極めて優れた光沢透明性を兼備するアクリル
系繊維の容易且つ安価な製造方法の出現が切望さ
れている。 例えば特開昭57−89613にはアクリル系ポリマ
ーとの相溶性に優れた有機スズを難燃剤として用
いた方法が提案されている。しかし、有機スズは
その特性上、光や熱に対して反応性が高く、繊維
としての基本的品質である耐光性や耐熱性に劣る
と共に極めて高価であり、臭気や排気物処理の課
題が存在する。更には難燃性の有機基をその分子
内に含有しているために難燃性に劣つている。 一方、本発明者らは特開昭59−211616におい
て、無機スズ化合物、好ましくは四塩化スズを水
系重合反応混合物に添加することにより、難燃性
と光沢、透明性を両立させたアクリル系合成繊維
の製造方法を提案した。しかし、この方法も新た
な設備を必要とする上、重合後処理工程での品質
切替となるため、昨今の消費者の要求にあわせた
少量多品種化の流れに対して工業的に不利であ
る。又、水系重合法を採用しない場合には適用で
もないし、一般的な紡糸原液工程における各種添
加剤の混合用設備の利用もできない。 「問題点を解決するための手段」 本発明者らはかかる実情に鑑み、難燃剤として
酸化スズを紡糸原液工程において添加混合して、
難燃性のみならず光沢、透明性に優れたフアイバ
ーを得る方法については鋭意研究した結果、本発
明に到達したものである。 即ち、本発明は10〜50重量%の酸化スズ及び該
酸化スズ重量の1/2量以下の酸を含有する水系混
合物を紡糸原液に添加、含有せしめて紡糸するこ
とを特徴とするアクリル系合成繊維の製造方法を
内容とするものである。 本発明におけるアクリル系合成繊維とは、アク
リロニトリルの重合体を主成分とする合成繊維で
あり、好ましくはハロゲン含有ビニル系単量体、
例えば塩化ビニル、塩化ビニリデン、臭化ビニル
等を30〜70重量%共重合して含有するアクリロニ
トリル系重合体、更に好ましくはスルホン酸基含
有ビニル系単量体、例えばメタクリルスルホン酸
ソーダ、スチレンスルホン酸ソーダ等を0.1〜10
重量%とハロゲン含有ビニル系モノマーを30〜70
重量%を共重合して含有するアクリロニトリル系
重合体から成る。 アクリロニトリル系重合体にハロゲン含有ビニ
ル系単量体を共重合させることにより、難燃性が
向上し、スルホン酸基含有ビニル系単量体を共重
合させることにより、染色性等繊維の加工性、商
品性に必須の基本的特性、機能を付加することが
できる。他に、例えばアクリル酸、メタクリル酸
やそれらのエステル等繊維の品質向上に必要な単
量体を共重合しても良い。 難燃剤として酸化スズを好ましくは0.1μm以下
の平均粒子径で均一に分散させアクリロニトリル
系合成繊維中に0.2〜20重量%含有せしめる。0.2
重量%未満だと難燃性向上の程度が小さく、20重
量%を超えると、光沢、透明性、強度等の繊維と
しての基本的機能を損なう。好ましくは0.5〜10
重量%含有せしめることにより、所望のアクリル
系合成繊維を得ることができる。 そのために、前述のアクリロニトリル系重合体
を、好ましくは有機溶剤、更に好ましくはアセト
ンもしくはアセトニトリルに溶解せしめた紡糸原
液に、酸化スズを10〜50重量%、好ましくは20〜
45重量%の酸化スズ及び酸、好ましくは塩酸を前
記酸化スズ重量の1/2量、好ましくは1/100〜1/3
量含有する水系混合物として、好ましくは、平均
粒子径を0.1μm以下に微細に粉砕、分散して紡糸
原液に添加せしめる。 紡糸原液に添加される酸及び水は、紡糸原液や
製造される繊維の性状を損なわないためにはでき
る限り少量であることが好ましいが、微細に粉
砕、分散した、或いはされやすい酸化スズあるい
は酸や水と複合した酸化スズを安定に保つために
は酸化スズ重量の1/2量以下、好ましくは1/100〜
1/3量の酸を含有する水系混合物であることが必
要である。酸の量が上記範囲を超えると、紡糸原
液や繊維中の酸成分の洗浄除去が困難となり、繊
維中に残存するために製造工程、後加工工程の機
器の発錆を招くと共に、紡糸原液に含有された他
の添加剤の効果を損なう。逆に酸の濃度が低すぎ
ると、酸化スズ成分が水混合物中で不安定とな
り、紡糸原液や繊維中に酸化スズを微細且つ均一
に分散、含有せしめることが困難となる。 一方、酸化スズ成分が10重量%未満では紡糸原
液中に水成分を多量に添加することになり、紡糸
原液の安定性を損ない、又緻密な繊維を得ること
もできない。逆に水系混合物中の酸化スズ成分が
50重量%を超えると、酸化スズ含有粒子が不安定
となり、紡糸原液や繊維に含有される粒子が凝集
する。 紡糸原液に添加する酸化スズを含有する水系混
合物は種々の方法で調製されるが、例えば四塩化
スズを水と混合、反応させて、酸化スズと塩酸を
含有する水系混合物を得て、それをイオン交換法
や蒸留法等で脱塩酸することにより、所望の組成
を得ることができる。アルカリ等を用いて中和す
る脱塩酸方法は、望糸原液中に塩やアルカリを含
有せしめることになり、緻密な繊維構造を得るこ
とができない。 四塩化スズの一部又は全部を金属スズ、二塩化
スズあるいは酸化スズに替えて、塩酸、塩素ある
いは過酸化水素等及び水を用いて混合、反応さ
せ、必要に応じて湿式粉砕して同様の水系混合物
を得ることもできるし、これらの混合順序、方
法、条件も特に問わないが、少なくとも酸化スズ
と酸が前述の比率で含有された水系混合物でなけ
ればならない。 紡糸原液を構成する一部もしくは全部の成分や
他の化合物を含有することは差し支えないが、例
えばアルカリや塩のように、水系混合物やその含
有する粒子の安定性に影響を及ぼし、紡糸原液や
繊維製造上の問題を包含し繊維品質を損なう物質
は好ましくない。 酸化スズ及び酸を含有する水系混合物中では、
酸化スズは水酸化スズあるいは酸や水と結合した
様々な組成をしており、例えば酸が塩酸の場合は
SnOx(OH)yClzで表わされるオキシ塩化スズと
総称される組成が考えられる。かくして、酸化ス
ズを主成分とする粒子は、前述の紡糸原液及び繊
維中で極めて微細に、且つ均一に分散して含有さ
れやすい微粒子に調製される。 該水系混合物を分離精製する等の方法により酸
化スズ粒子を粉末等の形態で単離することは、酸
化スズが凝集し固くなり、たとえ分散剤を用いた
としても、再び元の微粒子に戻して紡糸原液や繊
維中に極めて微細且つ均一に分散して含有せしめ
ることは困難である。 紡糸原液には、酸化スズ、水の他に、繊維の品
質改良剤、例えば耐光、耐熱安定性、光沢、透明
性調節剤、染料、顔料、他の難燃剤、染色性改良
剤、繊維比重調節剤等の化合物、オリゴマー、ポ
リマー等を加えても良いし、紡糸方法は湿式法、
乾式法等公知の方法が適用され、繊維の表面改質
剤、油剤等一般的な繊維の製造方法が好適に適用
される。 「作用・効果」 本発明によれば、酸化スズを極めて微細且つ均
一に分散してアクリル系繊維に含有せしめること
ができる。その結果、高度な難燃性と極めて優れ
た光沢、透明性を繊維に付与できるばかりでな
く、染色性の大巾な改良が出来、極めて高品位の
繊維を得ることができる。しかも、紡糸原液工程
において、微細な酸化スズの添加のみならず、他
の品質改良剤をも自在に添加することができるの
で、極めて優れた光沢、透明性と高度な難燃性を
兼備する繊維のみならず、多種多様の繊維を工業
的に有利に製造でき、その有用性は頗る大であ
る。 「実施例」 以下、実施例及び比較例を挙げて本発明を更に
詳細に説明するが、本発明はこれらにより何ら制
限されるものではない。 以下の実施例、比較例における特性値は下記の
方法に基づいて測定されたものである。 酸素指数とは、総繊度5400デニールのフイラメ
ントを25インチ取つて75回撚りをかけ、それを2
本組み合わせて45回逆撚りをかけて縄状の試料と
する。それを170℃で5分間加熱処理して酸素指
数試料器のホルダーに直立させ、この試料が5cm
燃え続けるのに必要な酸素パーセントの測定を行
つた。酸素指数値は大きい方がより難燃性であ
る。この酸素指数及びその難焼状態や燃焼後の試
料を観察して繊維の難燃性及び総合評価を下記の
基準で行つた。 A:非常に優れている B:優れている C:乏しい D:不良である 繊維の透明性は繊維をジメチルホルムアミドに
溶解して5%溶液として、その1cmの溶液の波長
650μmにおける光の透過率を分光光度計にて測
定し、ジメチルホルムアミドを透過率100として
比較した。 酸化スズを主成分とする繊維中の難燃剤粒子の
直径は電子顕微鏡により観察し、凝集しているも
のについは1粒子としてその平均直径を算出し
た。 前期の透過率、粒子径及び繊維の光沢性、透明
性を観察して、繊維の光沢、透明性及び総合評価
を下記の基準で行つた。 A:非常に優れている B:優れている C:乏しい D:不良である 実施例 1 無水四塩化スズ38重量部を水62重量部に耐酸容
器中でゆつくりと混合し、イオン交換法により脱
塩酸を行つて、SnO230重量%、HCl4重量%を含
有する水系混合物を得た。 尚、SnO2濃度は水混合物を加熱乾固した重量
%で表し、HCl濃度は水混合物を水で更に希釈し
てNaOHによる中和滴定によつた。 上記の如くして得られた酸化スズを含む水系混
合物1重量部を乾固することなく、アクリロニト
リル45重量%、塩化ビニリデン34重量%、塩化ビ
ニル20重量%、スチレンスルホン酸ソーダ1重量
%からなるアクリル系共重合体を30重量%含有す
るアセトンを溶剤とする紡糸原液100重量部に添
加、混合して調製した。 これを紡糸口金よりアセトン水溶液中に吐出
し、常法により水洗、延伸、熱処理をして所望の
繊維を得た。得られた繊維の各種特性値を第1表
に示した。 得られた繊維は難燃性、並に光沢、透明性共に
良好であり、所定の酸化スズが凝集することなく
極めて均一に分散して含有されていることを示し
ており、他の繊維の基本的特性即ち染色性、染色
失透性、耐光性、その他の物性においても極めて
良好であり、酸化スズ等を添加、含有しない繊維
(比較例1)の難燃性を除く全ての品質レベルを
保持していた。 実施例 2 酸化スズ30重量部、水67重量部、HCl6重量部
と共に湿式粉砕した。 この酸化スズ含有水系混合物を乾固することな
く、実施例1と同様に紡糸原液100重量部に対し
て1重量部添加含有せしめた。 得られた繊維は、紡糸原液の均一性状を損なう
事なく安定に製造され、平均0.2μmの酸化スズを
含有し、光沢と難燃性に優れたものであつた。 比較例 1 実施例1において、酸化スズ及び酸を含む水系
混合物を添加しない他は同様に、紡糸して繊維を
得た、光沢、透明性には優れているが難燃性に劣
るものであつた。 比較例 2 市販のメタスズ酸をボールミルを用いて粉砕
し、更に少量の希釈紡糸原液を加えて分散した。
このものは平均0.45μmの酸化スズを30重量%含
有しており、実施例1と同様に紡糸原液100重量
部に対して1重量部添加含有せしめた。 得られた繊維は難燃性に優れたものであるが、
光沢、透明性には劣つていた。 【表】
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for producing acrylic synthetic fiber containing tin oxide, which has a high degree of flame retardancy and extremely excellent gloss and transparency. "Prior Art and Problems" In order to obtain flame retardance as well as excellent gloss and transparency by incorporating tin oxide, which is known to impart a high degree of flame retardancy to acrylic fibers, It is necessary to grind the tin oxide extremely finely so that it is contained in the fiber in a uniformly dispersed manner without agglomerating it. However, it is extremely difficult to uniformly disperse and contain finely ground tin oxide in a fiber without agglomerating it without adding or using a dispersant that impairs fiber quality. All flame-retardant acrylic synthetic fibers are opaque dalph iver. Therefore, there is a strong desire for an easy and inexpensive method for producing acrylic fibers that have both high flame retardancy and excellent gloss and transparency. For example, JP-A-57-89613 proposes a method using organic tin, which has excellent compatibility with acrylic polymers, as a flame retardant. However, due to its characteristics, organic tin is highly reactive to light and heat, has inferior light resistance and heat resistance, which are the basic qualities of fibers, is extremely expensive, and has problems with odor and exhaust gas treatment. do. Furthermore, since it contains a flame-retardant organic group in its molecule, it has poor flame retardancy. On the other hand, the present inventors, in JP-A-59-211616, synthesized an acrylic system that achieved both flame retardancy, gloss, and transparency by adding an inorganic tin compound, preferably tin tetrachloride, to an aqueous polymerization reaction mixture. A method for producing fibers was proposed. However, this method also requires new equipment and requires quality switching in the post-polymerization process, making it industrially disadvantageous in response to the recent trend towards small-lot, high-mix production in line with consumer demands. . Furthermore, if the aqueous polymerization method is not adopted, it is not applicable, and equipment for mixing various additives in a general spinning dope process cannot be used. "Means for Solving the Problems" In view of the above circumstances, the present inventors added and mixed tin oxide as a flame retardant in the spinning dope process.
The present invention was developed as a result of extensive research into a method for obtaining fibers that are not only flame retardant but also have excellent gloss and transparency. That is, the present invention is an acrylic synthesis method characterized in that an aqueous mixture containing 10 to 50% by weight of tin oxide and an acid in an amount of 1/2 or less of the weight of the tin oxide is added to a spinning dope and then spun. The content is the method for producing fibers. The acrylic synthetic fiber in the present invention is a synthetic fiber mainly composed of an acrylonitrile polymer, preferably a halogen-containing vinyl monomer,
For example, an acrylonitrile polymer containing 30 to 70% by weight copolymerization of vinyl chloride, vinylidene chloride, vinyl bromide, etc., more preferably a vinyl monomer containing a sulfonic acid group, such as sodium methacryl sulfonate, styrene sulfonic acid, etc. Soda etc. 0.1~10
wt% and halogen-containing vinyl monomers from 30 to 70
It consists of an acrylonitrile-based polymer copolymerized and containing % by weight. Copolymerizing a halogen-containing vinyl monomer with an acrylonitrile polymer improves flame retardancy, and copolymerizing a sulfonic acid group-containing vinyl monomer improves fiber processability such as dyeability. Basic characteristics and functions essential for marketability can be added. In addition, monomers necessary for improving the quality of fibers, such as acrylic acid, methacrylic acid, and esters thereof, may be copolymerized. As a flame retardant, tin oxide is preferably uniformly dispersed with an average particle diameter of 0.1 μm or less, and is contained in the acrylonitrile synthetic fiber in an amount of 0.2 to 20% by weight. 0.2
If it is less than 20% by weight, the degree of improvement in flame retardancy will be small, and if it exceeds 20% by weight, the basic functions of fibers such as gloss, transparency, and strength will be impaired. Preferably 0.5-10
By containing it in a weight percent, a desired acrylic synthetic fiber can be obtained. For this purpose, 10 to 50% by weight of tin oxide, preferably 20 to 50% by weight, is added to a spinning stock solution in which the above-mentioned acrylonitrile polymer is dissolved in an organic solvent, more preferably acetone or acetonitrile.
45% by weight of tin oxide and an acid, preferably hydrochloric acid, in an amount of 1/2, preferably 1/100 to 1/3 of the weight of the tin oxide.
Preferably, the aqueous mixture containing this amount is finely pulverized and dispersed to an average particle size of 0.1 μm or less, and then added to the spinning dope. It is preferable that the amount of acid and water added to the spinning dope be as small as possible in order not to impair the properties of the spinning dope or the fibers to be manufactured. In order to keep the tin oxide compounded with water and water stable, the amount should be less than 1/2 of the weight of tin oxide, preferably 1/100 ~
It is necessary to be an aqueous mixture containing 1/3 of the amount of acid. If the amount of acid exceeds the above range, it will be difficult to wash and remove the acid components in the spinning dope and fibers, and as they remain in the fibers, this will lead to rusting of equipment in the manufacturing process and post-processing process. Impairs the effectiveness of other additives contained. On the other hand, if the acid concentration is too low, the tin oxide component becomes unstable in the water mixture, making it difficult to finely and uniformly disperse and contain the tin oxide in the spinning dope or fiber. On the other hand, if the tin oxide component is less than 10% by weight, a large amount of water component will be added to the spinning dope, impairing the stability of the spinning dope and making it impossible to obtain dense fibers. Conversely, the tin oxide component in the aqueous mixture
If it exceeds 50% by weight, the tin oxide-containing particles become unstable and the particles contained in the spinning dope and fibers aggregate. The aqueous mixture containing tin oxide to be added to the spinning dope can be prepared by various methods. For example, tin tetrachloride is mixed with water and reacted to obtain an aqueous mixture containing tin oxide and hydrochloric acid, and then mixed with water. A desired composition can be obtained by removing hydrochloric acid using an ion exchange method, a distillation method, or the like. A dehydrochloric acid method in which neutralization is performed using an alkali or the like results in the inclusion of salt or alkali in the silk stock solution, making it impossible to obtain a dense fiber structure. Replacing some or all of tin tetrachloride with metal tin, tin dichloride, or tin oxide, mixing and reacting with hydrochloric acid, chlorine, hydrogen peroxide, etc., and water, and wet-pulverizing as necessary to produce a similar product. It is possible to obtain an aqueous mixture, and the mixing order, method, and conditions are not particularly limited, but the aqueous mixture must contain at least tin oxide and acid in the above-mentioned ratio. Although it is acceptable to contain some or all of the components constituting the spinning dope and other compounds, for example, alkalis and salts may affect the stability of the aqueous mixture and the particles it contains, and may Substances that cause problems in fiber production and impair fiber quality are not preferred. In an aqueous mixture containing tin oxide and acid,
Tin oxide has various compositions in which it is combined with tin hydroxide, acid, or water; for example, when the acid is hydrochloric acid,
A possible composition is generally known as tin oxychloride, represented by SnOx(OH)yClz. In this way, the particles containing tin oxide as a main component are prepared into fine particles that can be easily contained in the above-mentioned spinning dope and fibers by being extremely finely and uniformly dispersed. Isolating tin oxide particles in the form of powder or the like by separating and refining the aqueous mixture will cause the tin oxide to aggregate and become hard, and even if a dispersant is used, it will not be possible to return to the original fine particles. It is difficult to contain it in a spinning dope or fiber in an extremely fine and uniformly dispersed manner. In addition to tin oxide and water, the spinning stock solution contains fiber quality improvers such as light resistance, heat resistance stability, gloss, transparency control agents, dyes, pigments, other flame retardants, dyeability improvers, and fiber specific gravity control agents. Compounds such as agents, oligomers, polymers, etc. may be added, and the spinning method may be a wet method,
A known method such as a dry method is applied, and a general fiber manufacturing method such as a fiber surface modifier, an oil agent, etc. is preferably applied. "Action/Effect" According to the present invention, tin oxide can be contained in acrylic fibers in an extremely finely and uniformly dispersed manner. As a result, it is possible not only to impart a high degree of flame retardancy and extremely excellent gloss and transparency to the fibers, but also to greatly improve the dyeability, and to obtain fibers of extremely high quality. Furthermore, in addition to the addition of fine tin oxide in the spinning dope process, it is also possible to freely add other quality improvers, resulting in fibers with extremely high gloss, transparency, and high flame retardancy. In addition, a wide variety of fibers can be produced industrially advantageously, and its usefulness is extremely large. "Examples" The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited by these in any way. The characteristic values in the following Examples and Comparative Examples were measured based on the following method. The oxygen index is calculated by taking 25 inches of filament with a total fineness of 5400 denier, twisting it 75 times, and twisting it 25 times.
This combination is reverse twisted 45 times to form a rope-shaped sample. The sample was heated at 170℃ for 5 minutes and placed upright in the holder of the oxygen index sampler.
They measured the percentage of oxygen needed to keep burning. The larger the oxygen index value, the more flame retardant. The oxygen index, its flame retardant state, and the sample after combustion were observed, and the flame retardancy and overall evaluation of the fibers was performed according to the following criteria. A: Very good B: Excellent C: Poor D: Poor Fiber transparency is determined by dissolving the fiber in dimethylformamide to make a 5% solution, and measuring the wavelength of 1 cm of the solution.
The light transmittance at 650 μm was measured using a spectrophotometer, and comparison was made with the transmittance of dimethylformamide as 100. The diameter of the flame retardant particles in the fiber containing tin oxide as a main component was observed using an electron microscope, and if the flame retardant particles were aggregated, the average diameter was calculated as one particle. The transmittance, particle size, glossiness and transparency of the fibers in the first period were observed, and the glossiness, transparency and overall evaluation of the fibers were performed according to the following criteria. A: Very good B: Excellent C: Poor D: Poor Example 1 38 parts by weight of anhydrous tin tetrachloride was slowly mixed with 62 parts by weight of water in an acid-proof container, and the mixture was mixed by ion exchange method. Dehydrochlorination was performed to obtain an aqueous mixture containing 30% by weight of SnO 2 and 4% by weight of HCl. Incidentally, the SnO 2 concentration was expressed in weight % of the water mixture heated to dryness, and the HCl concentration was determined by neutralization titration with NaOH after further diluting the water mixture with water. Without drying 1 part by weight of the aqueous mixture containing tin oxide obtained as described above, the mixture was made of 45% by weight of acrylonitrile, 34% by weight of vinylidene chloride, 20% by weight of vinyl chloride, and 1% by weight of sodium styrene sulfonate. It was prepared by adding and mixing 100 parts by weight of a spinning stock solution containing 30% by weight of an acrylic copolymer and using acetone as a solvent. This was discharged from a spinneret into an aqueous acetone solution, washed with water, stretched, and heat treated in a conventional manner to obtain a desired fiber. Table 1 shows various characteristic values of the obtained fibers. The obtained fibers had good flame retardancy, gloss, and transparency, and the specified tin oxide content was extremely uniformly dispersed without agglomeration. It has extremely good physical properties such as dyeability, dyeing devitrification, light resistance, and other physical properties, and maintains all quality levels except flame retardancy of fibers that do not contain or contain tin oxide (Comparative Example 1). Was. Example 2 Wet grinding was carried out with 30 parts by weight of tin oxide, 67 parts by weight of water, and 6 parts by weight of HCl. This tin oxide-containing aqueous mixture was added in an amount of 1 part by weight to 100 parts by weight of the spinning stock solution in the same manner as in Example 1 without drying. The obtained fibers were stably produced without impairing the uniform properties of the spinning dope, contained tin oxide with an average size of 0.2 μm, and had excellent gloss and flame retardancy. Comparative Example 1 Fibers were obtained by spinning in the same manner as in Example 1, except that the aqueous mixture containing tin oxide and acid was not added, and the fibers were excellent in gloss and transparency but poor in flame retardancy. Ta. Comparative Example 2 Commercially available metastannic acid was pulverized using a ball mill, and a small amount of diluted spinning stock solution was added and dispersed.
This material contained 30% by weight of tin oxide with an average diameter of 0.45 μm, and as in Example 1, 1 part by weight was added to 100 parts by weight of the spinning dope. The obtained fibers have excellent flame retardancy, but
It was inferior in gloss and transparency. 【table】

Claims (1)

【特許請求の範囲】 1 10〜50重量%の酸化スズ及び該酸化スズ重量
の1/2量以下の酸を含有する水系混合物を紡糸原
液に添加、含有せしめて紡糸することを特徴とす
るアクリル系合成繊維の製造方法。 2 水系混合物中の酸が酸化スズ重量の1/100〜
1/3量である特許請求の範囲第1項記載の製造方
法。 3 水系混合物中の酸が塩酸である特許請求の範
囲第1項記載の製造方法。 4 酸化スズを0.1μm以下の平均粒子径で0.2〜
20重量%含有する特許請求の範囲第1項記載の製
造方法。 5 アクリル系合成繊維がハロゲン含有ビニル系
単量体30〜70重量%を共重合したアクリロニトリ
ル共重合体を主成分とする特許請求の範囲第1項
記載の製造方法。 6 アクリル系合成繊維がハロゲン含有ビニル系
単量体30〜70重量%、スルホン酸基含有ビニル系
単量体0.1〜10重量%を共重合したアクリロニト
リル共重合体を主成分とする特許請求の範囲第5
項記載の製造方法。 7 紡糸原液が有機溶剤を溶媒とする紡糸原液で
ある特許請求の範囲第1項記載の製造方法。 8 紡糸原液がアセトン又はアセトニトリルを溶
媒とする紡糸原液である特許請求の範囲第7項記
載の製造方法。
[Scope of Claims] 1. An acrylic material that is spun by adding and containing an aqueous mixture containing 10 to 50% by weight of tin oxide and an acid in an amount of 1/2 or less of the weight of the tin oxide to a spinning stock solution. A method for producing synthetic fibers. 2 The acid in the aqueous mixture is 1/100 to 1/100 of the weight of tin oxide.
The manufacturing method according to claim 1, wherein the amount is 1/3. 3. The manufacturing method according to claim 1, wherein the acid in the aqueous mixture is hydrochloric acid. 4 Tin oxide with an average particle size of 0.1 μm or less
The manufacturing method according to claim 1, which contains 20% by weight. 5. The manufacturing method according to claim 1, wherein the acrylic synthetic fiber is mainly composed of an acrylonitrile copolymer copolymerized with 30 to 70% by weight of a halogen-containing vinyl monomer. 6 Claims in which the acrylic synthetic fiber is mainly composed of an acrylonitrile copolymer obtained by copolymerizing 30 to 70% by weight of a halogen-containing vinyl monomer and 0.1 to 10% by weight of a sulfonic acid group-containing vinyl monomer. Fifth
Manufacturing method described in section. 7. The manufacturing method according to claim 1, wherein the spinning dope is a spinning dope using an organic solvent as a solvent. 8. The manufacturing method according to claim 7, wherein the spinning dope is a spinning dope using acetone or acetonitrile as a solvent.
JP10283986A 1986-05-02 1986-05-02 Production of acrylic synthetic fiber Granted JPS62263312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10283986A JPS62263312A (en) 1986-05-02 1986-05-02 Production of acrylic synthetic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10283986A JPS62263312A (en) 1986-05-02 1986-05-02 Production of acrylic synthetic fiber

Publications (2)

Publication Number Publication Date
JPS62263312A JPS62263312A (en) 1987-11-16
JPH0444013B2 true JPH0444013B2 (en) 1992-07-20

Family

ID=14338149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10283986A Granted JPS62263312A (en) 1986-05-02 1986-05-02 Production of acrylic synthetic fiber

Country Status (1)

Country Link
JP (1) JPS62263312A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644164A (en) * 1979-09-14 1981-04-23 Matsushita Electric Ind Co Ltd Information signal reproducing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644164A (en) * 1979-09-14 1981-04-23 Matsushita Electric Ind Co Ltd Information signal reproducing device

Also Published As

Publication number Publication date
JPS62263312A (en) 1987-11-16

Similar Documents

Publication Publication Date Title
US4127698A (en) Composite fiber
US4618469A (en) Flame-retardant acrylic fibers and process for preparing same
JPH0444013B2 (en)
US4447568A (en) Flame-retardant polyacrylonitrile fiber
JP2826136B2 (en) Flame retardant composition
JPS62263313A (en) Production of acrylic synthetic fiber
JPS62263311A (en) Production of acrylic fiber
US4604428A (en) Method of producing a flame-retardant acrylic polymer
JPH08158201A (en) Flame retardant fabric excellent in light fastness
JPS636645B2 (en)
JPH06287806A (en) Acrylic synthetic fiber improved in flame retrardancy and its production
JPS59204916A (en) Acrylic flame-retardant yarn
JP3421093B2 (en) Flame retardant fiber composite
JP2505352B2 (en) Composite flame retardant fiber
JPS60110940A (en) Composite fire retardant fiber
JPS59211615A (en) Production of acrylic fiber of high flame retardation
JPH0770817A (en) Flame-retardant acrylic fiber and flame-retardant fiber composite produced by using it
JPS59211613A (en) Flame-retardant fiber and its manufacture
JPH08269813A (en) Flame retardant acrylic synthetic fiber and its production
JP2505377B2 (en) Composite flame retardant fiber
JPS59204649A (en) Acrylic polymer composition
JP3172545B2 (en) Method for producing acrylonitrile polymer
JP2593988B2 (en) Textile products for clothing
JP2005314817A (en) Halogen-containing fiber and flame-retardant fiber product using the same
JPH02104717A (en) Production of highly flame-retardant acrylic fiber