JPH044400Y2 - - Google Patents
Info
- Publication number
- JPH044400Y2 JPH044400Y2 JP5697486U JP5697486U JPH044400Y2 JP H044400 Y2 JPH044400 Y2 JP H044400Y2 JP 5697486 U JP5697486 U JP 5697486U JP 5697486 U JP5697486 U JP 5697486U JP H044400 Y2 JPH044400 Y2 JP H044400Y2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- back electrode
- insulating layer
- electrode
- melting point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010409 thin film Substances 0.000 claims description 49
- 230000008018 melting Effects 0.000 claims description 22
- 238000002844 melting Methods 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000007769 metal material Substances 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 16
- 239000000956 alloy Substances 0.000 claims description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 11
- 230000015556 catabolic process Effects 0.000 description 36
- 239000011521 glass Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 230000008020 evaporation Effects 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 239000006059 cover glass Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 229910052797 bismuth Inorganic materials 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 229910052745 lead Inorganic materials 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- 229910052716 thallium Inorganic materials 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920002545 silicone oil Polymers 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910002909 Bi-Te Inorganic materials 0.000 description 1
- 229910020836 Sn-Ag Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020988 Sn—Ag Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Electroluminescent Light Sources (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
本考案は文字、図形等の情報をドツトマトリク
ス表示する薄膜ELマトリクス型デイスプレイパ
ネルに関するものである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thin film EL matrix type display panel that displays information such as characters and figures in a dot matrix.
従来の技術
例えば、薄膜ELマトリクス型デイスプレイパ
ネルの構造例を第2図を参照しながら説明する。
尚、第2図の左半分はX方向の断面図、右半分は
X方向と直交するY方向の断面図である。第2図
において、1は透光性基板であるガラス基板、2
は該ガラス基板1上に形成されたマトリクス型薄
膜EL素子である。この薄膜EL素子2における3
は上記ガラス基板1上にI.T.O等を蒸着法により
X方向に定ピツチで多数のストライプ状に形成し
た透明電極、4は透明電極3及びガラス基板1上
に、Al2O3やY2O3等を蒸着法やスパツタ法で形成
した透明な第1の絶縁層、5はこの第1の絶縁層
4上にZnS:Mn等を蒸着法等で形成した発光層、
6は該発光層5上に、Al2O3やY2O3等を蒸着法や
スパツタ法により形成した透明な第2の絶縁層、
7は第2の絶縁層6上にY方向に定ピツチで多数
のストライプ状に形成したAl蒸着膜による背面
電極である。Prior Art For example, an example of the structure of a thin film EL matrix type display panel will be explained with reference to FIG.
The left half of FIG. 2 is a sectional view in the X direction, and the right half is a sectional view in the Y direction orthogonal to the X direction. In FIG. 2, 1 is a glass substrate that is a transparent substrate;
is a matrix type thin film EL element formed on the glass substrate 1. 3 in this thin film EL element 2
4 is a transparent electrode in which ITO or the like is formed on the glass substrate 1 in the form of a large number of stripes at regular pitches in the X direction by vapor deposition ; 5 is a transparent first insulating layer formed by vapor deposition or sputtering, and 5 is a light emitting layer formed by forming ZnS:Mn or the like on this first insulating layer 4 by vapor deposition, etc.;
6 is a transparent second insulating layer formed of Al 2 O 3 , Y 2 O 3 , etc. by vapor deposition or sputtering on the light emitting layer 5;
Reference numeral 7 denotes a back electrode made of an Al vapor-deposited film formed on the second insulating layer 6 in the form of a large number of stripes at regular pitches in the Y direction.
尚、上記薄膜EL素子2を囲繞するように、凹
板状のカバーガラス8をガラス基板1上に接着材
を介して固着することにより、薄膜ELマトリク
ス型デイスプレイパネルが構成され、更に上記ガ
ラス基板1とカバーガラス8からなる外囲器内
に、薄膜EL素子2の耐湿性を向上させるためシ
リコンオイル等の絶縁性保護流体が封入される
〔特開昭57−7086号公報〕。 A thin film EL matrix type display panel is constructed by fixing a concave plate-shaped cover glass 8 onto the glass substrate 1 via an adhesive so as to surround the thin film EL element 2, and the glass substrate In order to improve the moisture resistance of the thin film EL element 2, an insulating protective fluid such as silicone oil is sealed in the envelope consisting of the thin film EL element 1 and the cover glass 8 [JP-A-57-7086].
この薄膜ELマトリクス型デイスプレイパネル
では、透明電極3と背面電極7が第3図に示すよ
うにマトリクス状に交差して、多数のマトリクス
状の画素m,m……を形成する。この透明電極3
と背面電極7の各一端部は、1本おきにガラス基
板1の反対側の周辺部上まで延設され、この両電
極3,7の延設端部間に駆動電圧を選択的に印加
すると、発光層5の画素部分が選択的に発光して
所望の情報のドツトマトリクス表示が行われる。 In this thin-film EL matrix type display panel, the transparent electrode 3 and the back electrode 7 intersect in a matrix shape as shown in FIG. 3, forming a large number of matrix-shaped pixels m, m, . . . . This transparent electrode 3
One end of each of the back electrodes 7 and 7 is extended to the opposite periphery of the glass substrate 1, and when a driving voltage is selectively applied between the extended ends of the two electrodes 3 and 7, , pixel portions of the light-emitting layer 5 selectively emit light to display desired information in a dot matrix.
考案が解決しようとする問題点
ところで、上記薄膜EL素子2の形成時、第1
の絶縁層4、発光層5及び第2の絶縁層6の膜厚
が均一になるように積層形成するのは困難で、上
記各層4,5,6の膜厚が薄い箇所でピンホール
が発生し易かつた。この結果、透明電極3と背面
電極7間に駆動電圧を印加した際、第1の絶縁層
4、発光層5及び第2の絶縁層6に発生したピン
ホールを介して、上記透明電極3と背面電極7間
で放電現象が生じて両電極3,7が絶縁破壊され
る。ここで、上記背面電極7は、導電性や第2の
絶縁層6に対する接着性が良好で、比較的高融点
(660℃)を有するAl製のものであるため、上述
のように透明電極3と背面電極7間で絶縁破壊が
発生すると、Alでは蒸発飛散機能が乏しい故に、
その破壊域1aがスポツト状となる自己回復型絶
縁破壊(第4図参照)に留まらず、第5図に示す
ように破壊域bが背面電極7の全面に亘つて急速
に拡がる伝播型絶縁破壊へと至る。このように伝
播型絶縁破壊が発生して背面電極7の全面に亘つ
て破壊域bが形成されると、その背面電極7の画
素mの断線により、その画素mから給電点とは逆
方向の全画素m,m……がすべて発光不能となつ
てその表示機能が大幅に低下するという問題点が
あつた。Problems to be solved by the invention By the way, when forming the thin film EL element 2, the first
It is difficult to laminate the insulating layer 4, the light emitting layer 5, and the second insulating layer 6 so that the film thickness is uniform, and pinholes occur in places where the film thickness of each layer 4, 5, and 6 is thin. It was easy. As a result, when a driving voltage is applied between the transparent electrode 3 and the back electrode 7, the transparent electrode 3 and A discharge phenomenon occurs between the back electrode 7 and both electrodes 3 and 7 are dielectrically broken down. Here, the back electrode 7 is made of Al, which has good conductivity and adhesion to the second insulating layer 6, and has a relatively high melting point (660° C.). When dielectric breakdown occurs between the electrode 7 and the back electrode 7, Al has a poor evaporation and scattering function.
This is not limited to self-healing dielectric breakdown in which the breakdown area 1a is spot-like (see Figure 4), but also propagation type dielectric breakdown in which the breakdown area b rapidly spreads over the entire surface of the back electrode 7 as shown in Figure 5. leading to. When a propagation-type dielectric breakdown occurs and a breakdown area b is formed over the entire surface of the back electrode 7, the disconnection of the pixel m of the back electrode 7 causes the pixel m to move from the pixel m in the opposite direction to the feeding point. There was a problem in that all the pixels m, m, .
そこで、本考案者は、絶縁破壊によつて背面電
極であるAlが溶融して断線に至るのを解決する
ために種々実験検討し、Al(融点660℃)よりも
はるかに高融点のITOなどの透明導電薄膜と融点
が1500℃以上の高融点金属薄膜(例えばTi(融点
1675℃)、Ta(融点1996℃)などの積層膜を背面
電極に使用する技術を開示した(実願昭61−4743
号)。この技術により従来のAlよりは溶融切断を
大幅に改良することができたが、まだ完全ではな
かつた。 Therefore, in order to solve the problem of the back electrode Al being melted due to dielectric breakdown, leading to wire breakage, the inventor conducted various experiments and considered ITO, which has a much higher melting point than Al (melting point 660℃). transparent conductive thin film and a high melting point metal thin film with a melting point of 1500℃ or higher (e.g. Ti (melting point
1675℃), Ta (melting point 1996℃), etc. as a back electrode (Utility Application No. 61-4743).
issue). Although this technology was able to significantly improve fusion cutting compared to conventional Al, it was still not perfect.
そこで上記問題点を解決するため本考案者はさ
らに実験検討した結果、低融点材料が極めて有効
であることを見い出し、前記背面電極7を、Sn,
Zn,Pb,Cd,In,Tl,Bi及びSbの郡から選ばれ
たAlよりも低融点の金属材料の1種、または2
種以上の上記金属材料の合金で形成した技術を開
示した(特開昭61−52319号)。これは、Alより
も低融点の蒸発飛散機能を有する金属材料を使用
するため、透明電極3と背面電極7間で絶縁破壊
が発生した場合、上記背面電極7での破壊点周辺
部分を比較的低いエネルギーレベルまたは低電流
レベルで瞬時に蒸発飛散し、放電点(電極)とし
て作用している部分が瞬時に消滅するので、瞬時
に放電が停止し、電極の破壊が停止する。このた
め電極の破壊孔は放電点とその周辺部分に小さく
限定され、第4図に示すように略スポツト状にと
どまる。このように破壊域がスポツト状となる自
己回復型絶縁破壊を積極的に形成して伝播型絶縁
破壊を回避し、背面電極での断線を未然に防止し
ている。 In order to solve the above-mentioned problem, the present inventor conducted further experimental studies and found that a low melting point material is extremely effective, and the back electrode 7 is made of Sn,
One or two metal materials with a lower melting point than Al selected from the group of Zn, Pb, Cd, In, Tl, Bi, and Sb.
A technique for forming an alloy of at least one of the above metal materials was disclosed (Japanese Patent Application Laid-open No. 52319/1983). Since this uses a metal material that has a lower melting point than Al and has an evaporation scattering function, when dielectric breakdown occurs between the transparent electrode 3 and the back electrode 7, the area around the breakdown point on the back electrode 7 is relatively At a low energy level or low current level, it evaporates and scatters instantly, and the part acting as a discharge point (electrode) instantly disappears, so the discharge stops instantly and the electrode breaks down. For this reason, the broken hole in the electrode is limited to a small area at the discharge point and its surrounding area, and remains approximately in the shape of a spot as shown in FIG. In this way, a self-healing dielectric breakdown in which the breakdown region is spot-like is actively formed to avoid propagation type dielectric breakdown and to prevent disconnection at the back electrode.
ところが、上記材質で形成した背面電極7を有
する薄膜ELマトリクス型デイスプレイパネルで
は、前記背面電極7の第2の絶縁層6に対する付
着力が弱いため、背面電極7の両側縁部が浮いた
状態となる。特に、第6図に示すように透明電極
3と背面電極7とが交差する画素mにおいて、上
記背面電極7の幅方向の両側縁部n,nが浮いた
状態にあると、パネル駆動時、その両側縁部n,
nに電界がかかり難くなつて発光しなくなるとい
う問題点が新たに生じてきた。 However, in a thin film EL matrix type display panel having a back electrode 7 made of the above-mentioned material, the adhesion of the back electrode 7 to the second insulating layer 6 is weak, so that both side edges of the back electrode 7 are floating. Become. In particular, in a pixel m where the transparent electrode 3 and the back electrode 7 intersect, as shown in FIG. Its both side edges n,
A new problem has arisen in that it becomes difficult to apply an electric field to n, and it no longer emits light.
そこで、本考案の目的は、絶縁破壊発生時に背
面電極での破壊域の拡がりを抑止した自己回復機
能を有し、且つ、上記背面電極の第2の絶縁層に
対する付着力の大きい薄膜ELパネルを提供する
ことにある。 Therefore, the purpose of the present invention is to provide a thin film EL panel that has a self-healing function that suppresses the spread of the breakdown area at the back electrode when dielectric breakdown occurs, and that has a strong adhesion force to the second insulating layer of the back electrode. It is about providing.
問題点を解決するための手段
本考案は前記問題点を鑑みて提案されたもの
で、上記目的を達成するための技術的手段は、透
光性基板上に、ストライプ状の透明電極、第1の
絶縁層、発光層、第2の絶縁層及びストライプ状
の背面電極を順次積層形成してなる薄膜EL素子
を有する薄膜ELパネルにおいて、Alよりも低融
点の蒸発飛散機能を有する金属材料、または合金
からなる背面電極の下地として、上記第2の絶縁
層に対して付着力の大きい金属薄膜を介在させた
ものである。Means for Solving the Problems The present invention has been proposed in view of the above-mentioned problems.The technical means for achieving the above-mentioned object is to form striped transparent electrodes on a transparent substrate, In a thin film EL panel having a thin film EL element formed by sequentially laminating an insulating layer, a light emitting layer, a second insulating layer, and a striped back electrode, a metal material having an evaporation and scattering function with a lower melting point than Al, or A thin metal film with strong adhesion to the second insulating layer is interposed as a base for the back electrode made of an alloy.
作 用
本考案に係る薄膜ELパネルによれば、Alより
も低融点の蒸発飛散機能を有する金属材料、また
は合金からなる背面電極の下地として、上記第2
の絶縁層に対して付着力の大きい金属薄膜を介在
させたから、透明電極と背面電極間で絶縁破壊が
発生して放電現象が生じた場合、上記背面電極及
び金属薄膜の両者における破壊点周辺部分が共に
比較的低いエネルギーレベルまたは低電流レベル
で瞬時に蒸発飛散し、放電点(電極)として作用
する部分が瞬時に消滅するので、瞬時に放電が停
止し、同時に電極の破壊が停止する。このため電
極の破壊孔は放電点とその周辺部分に小さく限定
され、略スポツト状にとどまる。このように背面
電極及び金属薄膜での破壊域がスポツト状となる
自己回復型絶縁破壊を積極的に形成して伝播型絶
縁破壊による背面電極の断線を回避すると共に、
第2の絶縁層と背面電極間に介在する金属薄膜に
より、上記背面電極の第2の絶縁層に対する密着
性を保持する。Function According to the thin film EL panel according to the present invention, the above-mentioned second layer is used as the base of the back electrode made of a metal material or alloy having a melting point lower than that of Al and having an evaporation scattering function.
Because a metal thin film with strong adhesion is interposed to the insulating layer, if dielectric breakdown occurs between the transparent electrode and the back electrode and a discharge phenomenon occurs, the area around the breakdown point on both the back electrode and the metal thin film Both evaporate and scatter instantaneously at a relatively low energy level or low current level, and the portion that acts as a discharge point (electrode) disappears instantaneously, so that the discharge stops instantaneously, and at the same time, the destruction of the electrode stops. Therefore, the broken hole in the electrode is limited to a small area around the discharge point and its surrounding area, and remains approximately in the shape of a spot. In this way, a self-healing dielectric breakdown in which the breakdown area in the back electrode and metal thin film becomes a spot is actively formed, and disconnection of the back electrode due to propagation type dielectric breakdown is avoided, and
The metal thin film interposed between the second insulating layer and the back electrode maintains the adhesion of the back electrode to the second insulating layer.
実施例
本考案に係る薄膜ELパネルの一実施例を第1
図を参照しながら説明する。尚、第1図の左半分
はX方向の断面図、右半分はY方向の断面図であ
る。第1図において、9は透光性基板であるガラ
ス基板、10は該ガラス基板9上に形成された本
考案に係る薄膜EL素子である。この薄膜EL素子
10における11は上記ガラス基板9上にI.T.O
等を蒸着法等によりX方向に定ピツチで多数のス
トライプ状に形成した透明電極、12は透明電極
11及びガラス基板9上にAl2O3やY2O3等を蒸着
又はスパツタ法で形成した透明な第1の絶縁層、
13はこの第1の絶縁層12上に、ZnS:Mn等
を蒸着法等で形成した発光層、14は該発光層1
3上に、Al2O3やY2O3等を蒸着やスパツタ法によ
り形成した透明な第2の絶縁層、15はこの第2
の絶縁層14上に蒸着法等によりY方向に定ピツ
チで、多数のストライプ状に形成した金属薄膜
で、例えばAl,Ni,Ti,Cr等のように第2の絶
縁層14に対して付着力の大きい金属材料を選定
する。この金属薄膜15の膜厚は、例えば10〜
500Å程度、最適条件としては30〜100Å程度とな
るように可及的に小さく設定する。これは、後述
する背面電極と同様、上記材質のように高融点の
金属材料からなる金属薄膜15が、絶縁破壊発生
時、その破壊点周辺部分を比較的低いエネルギー
レベルまたは低電流レベルで瞬時に蒸発飛散させ
るためである。尚、上述のように金属薄膜15の
膜厚を可及的に小さく設定しても、第2の絶縁層
14に対する付着力が低下することはない。16
は上記金属薄膜15を第2の絶縁層14に対する
下地として、金属薄膜15上に同一パターンで蒸
着法等により積層形成した背面電極で、この背面
電極16は、Alよりも低融点の金属材料、例え
ば先述したようにSn,Zn,Pb,Cd,In,Tl,Bi
及びSbの郡から選ばれた金属材料の1種、また
は2種以上の上記金属材料の合金で形成される。
尚、上記金属薄膜15と背面電極16とは金属同
士であるため、その付着力に問題はない。17は
従来と同様に、ガラス基板9上に接着固定された
凹板状のカバーガラスで、この内部にシリコンオ
イル等の絶縁性保護流体が封入される。Example A first example of a thin film EL panel according to the present invention is shown below.
This will be explained with reference to the figures. The left half of FIG. 1 is a sectional view in the X direction, and the right half is a sectional view in the Y direction. In FIG. 1, 9 is a glass substrate which is a light-transmitting substrate, and 10 is a thin film EL element according to the present invention formed on the glass substrate 9. In FIG. 11 in this thin film EL element 10 is ITO on the glass substrate 9.
12 is a transparent electrode in which Al 2 O 3 , Y 2 O 3, etc. is formed on the transparent electrode 11 and the glass substrate 9 by vapor deposition or sputtering. a transparent first insulating layer,
13 is a light emitting layer formed of ZnS:Mn or the like by vapor deposition on this first insulating layer 12; 14 is the light emitting layer 1;
3, a transparent second insulating layer formed of Al 2 O 3 , Y 2 O 3 , etc. by vapor deposition or sputtering; 15 is this second insulating layer;
A metal thin film formed in a large number of stripes at a constant pitch in the Y direction by vapor deposition or the like on the second insulating layer 14, such as Al, Ni, Ti, Cr, etc., is attached to the second insulating layer 14. Select a metal material with high adhesive strength. The thickness of this metal thin film 15 is, for example, 10~
It is set as small as possible, about 500 Å, and the optimal condition is about 30 to 100 Å. This is because, similar to the back electrode described below, when a dielectric breakdown occurs, the metal thin film 15 made of a metal material with a high melting point, such as the above-mentioned material, instantly applies a relatively low energy level or low current level to the area around the breakdown point. This is to cause it to evaporate and scatter. Note that even if the thickness of the metal thin film 15 is set as small as possible as described above, the adhesion force to the second insulating layer 14 will not decrease. 16
is a back electrode formed by laminating the metal thin film 15 in the same pattern by vapor deposition or the like on the metal thin film 15 as a base for the second insulating layer 14, and this back electrode 16 is made of a metal material having a lower melting point than Al; For example, as mentioned earlier, Sn, Zn, Pb, Cd, In, Tl, Bi
and Sb, or an alloy of two or more of the above metal materials.
Note that since the metal thin film 15 and the back electrode 16 are made of metal, there is no problem in their adhesion. 17 is a concave plate-shaped cover glass which is adhesively fixed on the glass substrate 9, and an insulating protective fluid such as silicone oil is sealed inside this cover glass, as in the conventional case.
前記透明電極10と背面電極16間に駆動電圧
を印加してエージングした場合、その透明電極1
0と背面電極16間で絶縁破壊が発生して放電現
象が生じても、背面電極16を蒸発飛散機能を有
するAlよりも低融点の金属材料の1種、或いは
2種以上の合金で形成し、且つ、金属薄膜15が
高融点の金属材料からなるにもかかわらず、その
膜厚を可及的に小さく設定して蒸発飛散機能を実
質的に保持するため、上記背面電極16及び金属
薄膜15の両者ともその破壊点周辺部分が比較的
低いエネルギーレベルまたは低電流レベルで瞬時
に蒸発飛散し、同時に電極の破壊は停止する。こ
のため電極の破壊孔は放電点とその周辺部分に小
さく限定される。これにより背面電極16及び金
属薄膜15での破壊域が伝播型絶縁破壊に至ら
ず、スポツト状となる自己回復型絶縁破壊に留ま
る。この結果背面電極の断線が防止される。ま
た、上記背面電極16の下地としての金属薄膜1
5により、その背面電極16の第2の絶縁層14
に対する密着性が保持される。 When aging is performed by applying a driving voltage between the transparent electrode 10 and the back electrode 16, the transparent electrode 1
Even if dielectric breakdown occurs between the electrode 0 and the back electrode 16 and a discharge phenomenon occurs, the back electrode 16 is made of one type of metal material or an alloy of two or more types of metal material with a lower melting point than Al, which has an evaporation and scattering function. In addition, although the metal thin film 15 is made of a metal material with a high melting point, the thickness of the metal thin film 15 is set as small as possible to substantially maintain the evaporation and scattering function. In both cases, the area around the breakdown point instantaneously evaporates and scatters at a relatively low energy level or low current level, and at the same time, the breakdown of the electrode stops. Therefore, the fracture hole in the electrode is limited to the discharge point and its surrounding area. As a result, the breakdown region in the back electrode 16 and the metal thin film 15 does not reach a propagation type dielectric breakdown, but remains a self-recovery type dielectric breakdown in the form of a spot. As a result, disconnection of the back electrode is prevented. Further, the metal thin film 1 as a base of the back electrode 16 is
5, the second insulating layer 14 of the back electrode 16
Adhesion to is maintained.
尚、上記実施例では、背面電極16を、Sn,
Zn,Pb,Cd,In,Tl,Bi及びSbの郡から選ばれ
た金属材料の1種、または2種以上の上記金属材
料の合金で形成したが、本考案はこれに限定され
ることなく、上記群の少なくとも1種の金属材料
と、この群以外の他の金属材料との合金、例えば
Sn−Ag,Sn−Cu,Pb−Mg,Pb−Te,In−
Mg,In−Te,Bi−Mg,Bi−Te,Sb−Te合金
や、Sn,In,Mg,Zn,Te及びAgの少なくとも
1種の金属材料とAl又はGaとの合金で背面電極
を形成してもよい。この時、上記合金での金属材
料の組成比を所定値に選定すれば、Alよりも低
融点、例えば600℃以下に、さらに望ましくは400
℃〜200℃程度に設定することが可能である。 In the above embodiment, the back electrode 16 is made of Sn,
Although the invention is made of one kind of metal material selected from the group of Zn, Pb, Cd, In, Tl, Bi, and Sb, or an alloy of two or more of the above metal materials, the present invention is not limited to this. , an alloy of at least one metal material from the above group and another metal material other than this group, e.g.
Sn−Ag, Sn−Cu, Pb−Mg, Pb−Te, In−
The back electrode is formed of Mg, In-Te, Bi-Mg, Bi-Te, Sb-Te alloy, or an alloy of Al or Ga with at least one metal material of Sn, In, Mg, Zn, Te, and Ag. You may. At this time, if the composition ratio of the metal material in the above alloy is selected to a predetermined value, the melting point will be lower than that of Al, for example, 600℃ or less, and more preferably 400℃ or less.
It is possible to set the temperature between ℃ and 200℃.
また一般に低融点材料の薄膜は硬度が低く、ま
た面方向の付着力が弱いので、放電時の蒸発物質
の圧力や熱によつて、低いエネルギーでも容易に
蒸発飛散(蒸発および飛散)するので、放電の持
続を防止でき、破壊孔を小さく抑えることができ
る。したがつて、Alよりも低融点であれば、自
己回復型絶縁破壊モードが出現しやすく、伝播型
絶縁破壊を回避できるので、電極の断線を防止す
ることができる。ただし、融点があまり低すぎる
と背面電極の形成および安定保持が著しく困難に
なる傾向がある。 In addition, thin films of low melting point materials generally have low hardness and weak adhesion in the plane direction, so they easily evaporate and scatter (evaporate and scatter) even at low energy due to the pressure and heat of the evaporated substances during discharge. It is possible to prevent the continuation of electrical discharge and to keep the fracture pores small. Therefore, if the melting point is lower than that of Al, a self-healing dielectric breakdown mode is likely to occur, and propagation type dielectric breakdown can be avoided, so that disconnection of the electrode can be prevented. However, if the melting point is too low, it tends to be extremely difficult to form and stably maintain the back electrode.
考案の効果
本考案に係る薄膜ELパネルによれば、Alより
も低融点の金属材料、または合金からなる背面電
極の下地として、上記第2の絶縁層に対して付着
力の大きい金属薄膜を介在させたから、パネル駆
動時、透明電極と背面電極間で絶縁破壊が発生し
てもその破壊域が伝播型絶縁破壊に至ることな
く、自己回復型絶縁破壊に留めることが現実容易
となつて背面電極の断線を未然に防止できる。ま
た背面電極の第2の絶縁層に対する密着性が保持
され、不所望な非発光部分の発生を未然に防止す
ることができて信頼性の高い薄膜ELパネルを提
供できる。Effects of the invention According to the thin-film EL panel according to the invention, a metal thin film with strong adhesion to the second insulating layer is interposed as a base for the back electrode made of a metal material or alloy having a lower melting point than Al. Because of this, even if dielectric breakdown occurs between the transparent electrode and the back electrode during panel operation, the breakdown region will not become a propagation type dielectric breakdown, and it will be easy to keep it to a self-recovery type dielectric breakdown. It is possible to prevent wire breakage. Further, the adhesion of the back electrode to the second insulating layer is maintained, and the generation of undesired non-light-emitting portions can be prevented, thereby providing a highly reliable thin film EL panel.
第1図は本考案に係る薄膜ELパネルの一実施
例を示す断面図で、左半分はX方向の断面図、右
半分はY方向の断面図である。第2図は従来の薄
膜ELパネルの構造例を示す断面図で、左半分は
X方向の断面図、右半分はY方向の断面図、第3
図は薄膜ELパネルでの画素部分を示す部分平面
図、第4図は背面電極での自己回復型絶縁破壊を
示す部分平面図、第5図は背面電極での伝播型絶
縁破壊を示す部分平面図、第6図は薄膜ELパネ
ルでの画素部分における付着状態を説明するため
の部分平面図である。
9……透光性基板、10……薄膜EL素子、1
1……透明電極、12……第1の絶縁層、13…
…発光層、14……第2の絶縁層、15……金属
薄膜、16……背面電極。
FIG. 1 is a sectional view showing an embodiment of a thin film EL panel according to the present invention, with the left half being a sectional view in the X direction and the right half being a sectional view in the Y direction. Figure 2 is a cross-sectional view showing an example of the structure of a conventional thin-film EL panel. The left half is a cross-sectional view in the X direction, the right half is a cross-sectional view in the Y direction, and the third
The figure is a partial plan view showing the pixel part in a thin-film EL panel, Figure 4 is a partial plan view showing self-healing dielectric breakdown at the back electrode, and Figure 5 is a partial plan view showing propagation type dielectric breakdown at the back electrode. 6 are partial plan views for explaining the adhesion state in the pixel portion of the thin film EL panel. 9...Transparent substrate, 10...Thin film EL element, 1
DESCRIPTION OF SYMBOLS 1... Transparent electrode, 12... First insulating layer, 13...
...Light emitting layer, 14...Second insulating layer, 15...Metal thin film, 16...Back electrode.
Claims (1)
1の絶縁層、発光層、第2の絶縁層及びストライ
プ状の背面電極を順次積層形成してなる薄膜EL
素子を有する薄膜ELパネルにおいて、 Alよりも低融点の金属材料、または合金から
なる背面電極の下地として、上記第2の絶縁層に
対して付着力の大きい金属薄膜を介在させたこと
を特徴とする薄膜ELパネル。[Claims for Utility Model Registration] A thin film EL in which a striped transparent electrode, a first insulating layer, a light emitting layer, a second insulating layer, and a striped back electrode are sequentially laminated on a transparent substrate.
In the thin film EL panel having the element, a metal thin film with strong adhesion to the second insulating layer is interposed as a base for the back electrode made of a metal material or alloy with a lower melting point than Al. Thin film EL panel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5697486U JPH044400Y2 (en) | 1986-04-16 | 1986-04-16 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5697486U JPH044400Y2 (en) | 1986-04-16 | 1986-04-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62168598U JPS62168598U (en) | 1987-10-26 |
JPH044400Y2 true JPH044400Y2 (en) | 1992-02-07 |
Family
ID=30886262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5697486U Expired JPH044400Y2 (en) | 1986-04-16 | 1986-04-16 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH044400Y2 (en) |
-
1986
- 1986-04-16 JP JP5697486U patent/JPH044400Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS62168598U (en) | 1987-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4634934A (en) | Electroluminescent display device | |
US20040115474A1 (en) | Organic light-emitting diode for display and method for fabricating the same | |
JPH08180974A (en) | El element and manufacture thereof | |
JPH044400Y2 (en) | ||
US4672264A (en) | High contrast electroluminescent display panels | |
JPH044398Y2 (en) | ||
US4728519A (en) | Polychromatic electroluminescent panel | |
JPH0539598Y2 (en) | ||
JPH0348622Y2 (en) | ||
CA1256972A (en) | Thin film electroluminescent device | |
JPS62243290A (en) | Thin film el device | |
JP2621057B2 (en) | Thin film EL element | |
JP2838111B2 (en) | Thin film EL device and method of manufacturing the same | |
JPS62243288A (en) | Thin film el device | |
JPS63236292A (en) | Thin film el panel and manufacture of the same | |
JPS62243289A (en) | Manufacture of thin film el panel | |
JPH0524155Y2 (en) | ||
JPH02239593A (en) | Thin film el panel | |
JPS63917B2 (en) | ||
WO1990007254A1 (en) | Thin-film electroluminescent element and method of manufacturing the same | |
JP2773773B2 (en) | Method for manufacturing thin-film EL panel | |
GB2135117A (en) | Electroluminescent display device | |
JPS62211899A (en) | Thin film el device | |
JPS61267297A (en) | Double-side light emitting body | |
JPH0348879Y2 (en) |