JPH0443955B2 - - Google Patents

Info

Publication number
JPH0443955B2
JPH0443955B2 JP58222170A JP22217083A JPH0443955B2 JP H0443955 B2 JPH0443955 B2 JP H0443955B2 JP 58222170 A JP58222170 A JP 58222170A JP 22217083 A JP22217083 A JP 22217083A JP H0443955 B2 JPH0443955 B2 JP H0443955B2
Authority
JP
Japan
Prior art keywords
tar
cooler
gas
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58222170A
Other languages
Japanese (ja)
Other versions
JPS60115687A (en
Inventor
Tosha Chikamoto
Katsuaki Makino
Fumio Ogawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nippon Kokan Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58222170A priority Critical patent/JPS60115687A/en
Priority to GB08428741A priority patent/GB2151150B/en
Priority to DE19843442400 priority patent/DE3442400A1/en
Priority to US06/675,069 priority patent/US4702818A/en
Publication of JPS60115687A publication Critical patent/JPS60115687A/en
Publication of JPH0443955B2 publication Critical patent/JPH0443955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0039Recuperation of heat, e.g. use of heat pump(s), compression
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0027Condensation of vapours; Recovering volatile solvents by condensation by direct contact between vapours or gases and the cooling medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S585/00Chemistry of hydrocarbon compounds
    • Y10S585/909Heat considerations
    • Y10S585/91Exploiting or conserving heat of quenching, reaction, or regeneration

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Industrial Gases (AREA)

Description

【発明の詳細な説明】 本発明はタール含有高温ガスの熱回収方法、特
にコークス炉発生粗ガス、石炭の熱分解ガス、減
圧残油部分燃焼ガス等の化石燃料を高温処理する
ことにより発生するタール含有高温ガスの熱回収
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering heat from tar-containing high-temperature gases, particularly those generated by high-temperature treatment of fossil fuels such as coke oven crude gas, coal pyrolysis gas, vacuum residual partially combusted gas, etc. This invention relates to a method for recovering heat from tar-containing high-temperature gas.

従来、コースス炉発生粗ガスはこれに安水をフ
ラツシングすることにより冷却した後ガス精製工
程に移送され、このガスの顕熱は利用されること
なく廃棄されていた。
Conventionally, the crude gas generated in the Cooss furnace was cooled by flushing with ammonium water and then transferred to the gas purification process, and the sensible heat of this gas was discarded without being utilized.

そこで、コークス発生粗ガスを多管式熱交換器
に導いてその顕熱を回収することが試みられた
が、コークス炉発生粗ガス中には低沸点物質のベ
ンゾール類、タール類の高沸点物質やナフタリン
その他の溶解性物質が含まれているので450℃以
上の温度ではタールが高温分解して生ずる炭素が
伝熱管の表面に沈着し、450℃以下の温度ではタ
ール等の高沸点物質が伝熱管表面上に凝縮し、
100℃以下の温度ではナフタリンその他の溶解性
物質が伝熱管表面上に凝縮する。この結果、これ
らの炭素、凝縮物によつてガス流路が閉塞されて
いわゆるコーキングが発生し、ガス流れの圧力損
失の増大、熱交換効率の低下等により装置を安定
して長時間運転することが困難となる。
Therefore, an attempt was made to recover the sensible heat by introducing the coke-generated crude gas into a shell-and-tube heat exchanger, but the coke oven-generated crude gas contains low-boiling point substances such as benzol and high-boiling point substances such as tar. At temperatures above 450°C, carbon produced by high-temperature decomposition of tar will be deposited on the surface of the heat transfer tube, and at temperatures below 450°C, high-boiling substances such as tar will be transferred. condenses on the heat tube surface,
At temperatures below 100°C naphthalene and other soluble substances condense on the tube surface. As a result, the gas flow path is blocked by these carbons and condensates, causing so-called coking, which increases pressure loss in the gas flow and reduces heat exchange efficiency, making it difficult to operate the equipment stably for long periods of time. becomes difficult.

また、コークス炉発生粗ガスにこのガスから溜
出したタール等の高沸点油を噴霧して直接接触さ
せることにより熱交換させてその顕熱を回収する
ことが試みられたが、コークス炉発生粗ガス中に
はナフタリンその他の溶解性物質やダスト等が含
まれているため、これらがタール等の高沸点油中
に混入し、高沸点油噴射ノズルの閉塞、高沸点油
の循環系路の詰り、高沸点油の分解劣化等が発生
するため、装置を長時間安定して運転することが
困難である。
In addition, attempts have been made to spray high-boiling point oil such as tar distilled from coke oven crude gas and bring it into direct contact with the crude gas, thereby exchanging heat and recovering the sensible heat. Since the gas contains naphthalene and other soluble substances and dust, these can mix into high-boiling point oils such as tar, clogging high-boiling point oil injection nozzles and clogging high-boiling point oil circulation lines. , decomposition and deterioration of high boiling point oils occur, making it difficult to operate the equipment stably for long periods of time.

本発明は上記に鑑み発明されたものであつて、
その目的とするところは、タール等の高沸点物質
やナフタリンその他の溶解性物質、ダスト等を含
む高温のガスの顕熱を十分回収し、その熱回収率
を向上させるにある。本発明の他の目的とすると
ころは、この種のガスの顕熱を高温度域の熱とし
て回収し、その利用範囲や利用価値を向上させる
にある。本発明の更に他の目的とするところは、
装置を安定して長時間運転可能にするにある。本
発明の更に他の目的とするところは、タールクー
ルを小型、かつ、効率化するとともに、そのター
ル循環ポンプの駆動動力を低減するにある。本発
明の更に他の目的は、タール含有高温ガスと直接
接触する固体粒子を介して液状熱媒体を加熱する
噴流層クーラと、上記噴流層クーラから流出した
カーボン粉及びガスと直接接触する循環タールを
介して液状熱媒体を加熱する第1のタールクーラ
と、上記第1のタールクーラから流出したガスと
液状熱媒体とを熱交換させ冷却されたガス中に軽
質タールを噴霧する第2のタールクーラとを設
け、上記第1のタールクーラにおいて循環するタ
ールの残部を抽出し、上記第2のタールクーラに
おいて循環する軽質タールの残部を抽出すると共
に、抽出された軽質タールの一部を上記第1のタ
ールクーラの循環タールに混入し、また、上記第
2のタールクーラで予熱された液状熱媒体を上記
第1のタールクーラに導入し、上記第1のタール
クーラで加熱された液状熱媒体を更に高温の噴流
層クーラに導入して加熱することを特徴とするタ
ール含有高温ガスの熱回収方法を提供するにあ
る。本発明の他の利点及び特徴は以下の実施例を
示す図面及びその説明によつて更に明瞭とされ
る。
The present invention was invented in view of the above, and
The purpose is to sufficiently recover the sensible heat of high-temperature gases containing high-boiling substances such as tar, naphthalene and other soluble substances, dust, etc., and to improve the heat recovery rate. Another object of the present invention is to recover the sensible heat of this type of gas as heat in a high temperature range, thereby improving its range of use and value. A further object of the present invention is to
The purpose is to enable stable operation of the equipment for long periods of time. Still another object of the present invention is to make the tar cooler smaller and more efficient, and to reduce the driving power of the tar circulation pump. Still another object of the present invention is to provide a spouted bed cooler that heats a liquid heat medium through solid particles that are in direct contact with a tar-containing hot gas, and a circulating tar that is in direct contact with carbon powder and gas flowing out from the spouted bed cooler. A first tar cooler that heats the liquid heat medium through the first tar cooler, and a second tar cooler that exchanges heat between the gas flowing out from the first tar cooler and the liquid heat medium and sprays light tar into the cooled gas. the remaining tar circulating in the first tar cooler is extracted, the remaining light tar circulating in the second tar cooler is extracted, and a part of the extracted light tar is circulated in the first tar cooler. The liquid heat medium mixed in the tar and preheated by the second tar cooler is introduced into the first tar cooler, and the liquid heat medium heated by the first tar cooler is further introduced into the high-temperature spouted bed cooler. The present invention provides a method for recovering heat from tar-containing high-temperature gas, which comprises heating the tar-containing high-temperature gas. Other advantages and features of the invention will become clearer from the following drawings showing exemplary embodiments and the description thereof.

第1図は本発明の1実施例の図式系統図であ
る。高温(600℃〜800℃程度)のコークス炉発生
粗ガスG1は噴流層クーラ1にその入口ノズルか
ら導入され、ドラフト管2の中を固体粒子aを伴
つて上昇する間にその熱を固体粒子aに与え、同
時にガス中のタール、ピツチは粒子aの表面に凝
縮する。そして、ドラフト管2を上昇したガスは
衝突板3に衝突して固体粒子aと分離される。衝
突板3に衝突した固体粒子aは伝熱管4の周囲を
降下しながら、伝熱管4内を流れる液状熱媒体、
即ち水に熱を与えて冷却され、同時にその外表面
に凝縮したタール、ピツチは炭化されてカーボン
粉となり粒子a相互間の衝突により剥離する水に
熱を与えて冷却された固体粒子aは再び入口ノズ
ルから流入するガスG1に伴なわれてドラフト管
2の中を上昇する。噴流層クーラ1内で冷却され
て400〜500℃程度となつたガスG2はカーボン粉
を伴つて濡壁式のタールクーラ5の上部の気液接
触室11内に流入して、ここでスプレーノズル1
0から噴霧される循環タールと接触してこれに熱
を与えると同時にガス中のカーボン粉及び冷却さ
れて凝縮したタール、ピツチの液滴は循環タール
に吸着されて補集される。そして、循環タールは
薄い液膜となつて竪型伝熱管12内面に沿つて降
下する際、竪型伝熱管12外の水に熱を与えて気
液分離室13に入る。ここで、ガスは循環タール
と分離されて温度200°〜300℃程度のガスG3とな
つて流出する。気液分離室13内で分離されたタ
ールはタール循環ポンプ14により抽き出され、
その大部分はタール循環管15を経てスプレーノ
ズル10に循環せしめられる。残部はタール抜出
管21により系外に抜出される。タールクーラ5
から流出したガスG3は間接接触型熱交換器16
の上部入口室に導びかれ、その竪型伝熱管17を
降下する過程においてその伝熱管17の管外を流
れる水に熱を与えて冷却された後、下部出口室1
8に至り、ここで、冷却されることにより凝縮し
たガス中の軽質タールをノズル19から噴霧され
た軽質タールと接触させて分離した後、80〜120
℃のガスG4となつて流出する。下部出口質18
で分離された軽質の低沸点タールはタールポンプ
20により抽き出され、その1部は上記ノズル1
9に供給されて再循環されるが、その1部は希釈
タール供給管28を経てタールクーラー5の分離
質13内に希釈タールとして返送され、残部余剰
分は抜出管22より系外に取り出される。間接接
触型熱交換器16から流出したガスG4は、気水
接触槽26に導かれ、ここでノズル25から噴霧
される水と接触して冷却された後、気液分離槽2
7内に流入し、ここで水滴と分離されたガスG5
は排風機29を経て排出される。気液分離槽で分
離された水はポンプ30により抽き出されて排出
される。給水ポンプ9により供給された水は配管
23を経て間接接触型熱交換機16の竪型伝熱管
17の管外を流過する際、伝熱管17内を通るガ
スにより加熱された後、配管24を経て汽水ドラ
ム7に供給される。汽水ドラム7内で蒸気と分離
された水はポンプ6により抽き出されて、その1
部は噴流層クーラ1の伝熱管4内を流過する際伝
熱管4外の固体粒子aより熱を奪い加熱されて汽
水ドラム7に戻る。ポンプ6により抽き出された
水の残部はタールクーラ5の竪型伝熱管12外に
導かれて、伝熱管12内を流過するガスと熱交換
して加熱された後汽水ドラム7に戻る。汽水ドラ
ム7に戻つた水は、汽水ドラム7内が飽和蒸気圧
以下とされているので、ここでフラツシユ蒸発
し、蒸気は蒸気管8を経て利用先に供給される。
FIG. 1 is a schematic system diagram of one embodiment of the present invention. High temperature (approximately 600°C to 800°C) coke oven generated crude gas G1 is introduced into the spouted bed cooler 1 from its inlet nozzle, and while rising in the draft pipe 2 with solid particles a, the heat is transferred to the solid particles. At the same time, tar and pitch in the gas condense on the surfaces of particles a. Then, the gas that has ascended through the draft pipe 2 collides with the collision plate 3 and is separated from the solid particles a. The solid particles a that collided with the collision plate 3 fall around the heat exchanger tube 4, and the liquid heat medium flowing inside the heat exchanger tube 4,
That is, the water is heated and cooled, and at the same time, the tar and pitch condensed on its outer surface are carbonized and become carbon powder.The solid particles a, which have been cooled by applying heat to the water, are then separated by collisions between the particles a. It rises in the draft pipe 2 accompanied by the gas G 1 flowing in from the inlet nozzle. The gas G2 , which has been cooled to about 400 to 500°C in the spouted bed cooler 1, flows into the gas-liquid contact chamber 11 above the wet wall tar cooler 5, accompanied by carbon powder, where it is connected to the spray nozzle. 1
At the same time, the carbon powder in the gas and the cooled and condensed tar and pitch droplets are adsorbed and collected by the circulating tar. When the circulating tar turns into a thin liquid film and descends along the inner surface of the vertical heat exchanger tube 12, it gives heat to the water outside the vertical heat exchanger tube 12 and enters the gas-liquid separation chamber 13. Here, the gas is separated from the circulating tar and flows out as gas G3 with a temperature of about 200° to 300°C. The tar separated in the gas-liquid separation chamber 13 is extracted by a tar circulation pump 14,
Most of the tar is circulated through the tar circulation pipe 15 to the spray nozzle 10. The remainder is extracted from the system through the tar extraction pipe 21. tar cooler 5
The gas G3 flowing out from the indirect contact heat exchanger 16
The water flowing outside the heat exchanger tube 17 is cooled by being guided to the upper inlet chamber of the tube, and in the process of descending through the vertical heat exchanger tube 17, is cooled.
8, and here, after the light tar in the gas condensed by being cooled is brought into contact with the light tar sprayed from the nozzle 19 and separated, 80 to 120
It flows out as gas G4 at ℃. Lower outlet quality 18
The light low boiling point tar separated is extracted by the tar pump 20, and a part of it is passed through the nozzle
9 and is recirculated, but part of it is returned as diluted tar to the separated substance 13 of the tar cooler 5 via the diluted tar supply pipe 28, and the remaining surplus is taken out of the system through the extraction pipe 22. It will be done. The gas G 4 flowing out from the indirect contact heat exchanger 16 is guided to the air-water contact tank 26 , where it is cooled by contacting water sprayed from the nozzle 25 , and then transferred to the gas-liquid separation tank 2 .
Gas G 5 flows into G 7 and is separated from water droplets here.
is discharged through the exhaust fan 29. The water separated in the gas-liquid separation tank is extracted and discharged by the pump 30. When the water supplied by the water supply pump 9 passes through the piping 23 and outside the vertical heat exchanger tubes 17 of the indirect contact heat exchanger 16, it is heated by the gas passing through the heat exchanger tubes 17, and then passes through the piping 24. The brackish water is then supplied to the brackish water drum 7. The water separated from the steam in the brackish water drum 7 is extracted by the pump 6.
When flowing through the heat exchanger tubes 4 of the spouted bed cooler 1, the solid particles a absorb heat from the solid particles a outside the heat exchanger tubes 4, are heated, and return to the brackish water drum 7. The remainder of the water extracted by the pump 6 is guided outside the vertical heat exchanger tube 12 of the tar cooler 5, exchanges heat with the gas flowing through the heat exchanger tube 12, and is heated, and then returns to the brackish water drum 7. The water returned to the brackish water drum 7 is flash evaporated here because the pressure inside the brackish water drum 7 is below the saturated vapor pressure, and the steam is supplied to the user through the steam pipe 8.

しかして、温度600°〜1000℃程度の高温のコー
クス炉発生粗ガスG1は先ず噴流層クーラ1に送
られ、ここで400°〜550℃程度まで冷却されるの
で、ガス中のタール等の高沸点物質は固体粒子9
の表面に凝縮した後、この固体粒子aが下降する
際に炭化し、更に固体粒子a相互の衝突により剥
離するので、これら高沸点物質の凝縮物又はその
炭化物が伝熱管4に付着してその熱交換効率を阻
害することはなく、固体粒子aも自動的に再生さ
れるから再循環させて使用できる。なお、噴流層
クーラ1でガスを冷却し過ぎるとタールの凝縮量
が増大して固体粒子aの径が増大し又はその凝集
等が生ずるので、ガスの冷却温度は450℃以上が
適当である。タールクーラ5には噴流層クーラ1
で冷却された400℃〜500℃程度のガスが導入され
るので、ここでガス中のタール・ピツチが凝縮し
てもこれらを大量の循環タールで洗浄することが
できるので、これら凝縮物によるコーキングが発
生することはない。しかも、循環タールはその中
に間接接触型熱交換器16で凝縮した軽質の低沸
点タールが補給されてその粘度を低く維持される
ので、伝熱管12内を流下する液膜の厚さが薄く
なり冷却性能を向上できるとともにタールポンプ
14の駆動動力を低減することができる。なお、
コークス炉発生粗ガスに含まれるタールは425℃
で凝縮が開始し、200℃でタール凝縮率が約50%
に達する。従つて、タールクーラ5では425℃以
下の温度のガスを導入するのが適当である。間接
接触型熱交換器16にはタールクーラ5で200°〜
300℃まで冷却されたガスG3が導入されるのでこ
の温度領域ではもはや伝熱管へのコーキングやタ
ールの固着は起らない。そして、この熱交換器1
6で200℃〜300℃のガスG3を80℃〜120℃まで冷
却することによりこの低温度領域におけるその温
度差に相当するガスの熱で噴流層クーラ1及びタ
ールクーラ5へ供給する熱媒体を予熱することに
より回収できる。即ち、600℃のコークス炉発生
粗ガス30000Nm3/Hを処理した場合の蒸気発生
量と冷却温度との関係が第2図に示され、噴流層
クーラ1とタールクーラ5による2段冷却で250
℃まで冷却した場合の蒸気回収量は7.3TON/H
であるのに対し、これを更に間接接触型熱交換器
16により100℃まで冷却することにより蒸気回
収量は10TON/Hとなり蒸気回収量は45%向上
する。第3図にはタールクーラ5における冷却温
度とタール粘度及びカーボン粉濃度との関係が示
され、希釈タールを供給しない場合のカーボン粉
濃度aに比し希釈タールを供給した場合のカーボ
ン粉濃度bは格段に低く、また、希釈タールを供
給しない場合のタール粘度cに比し、希釈タール
を供給した場合のタール粘度dは格段に低下して
いる。また、第4図には溜出温度と溜出量との関
係が示され、Tは間接接触型熱交換器16の出口
ガス温度を80℃で運転した場合の抜出管22中の
タールの蒸溜曲線であり、Pはタールクーラ5の
出口ガス温度を250℃で運転した場合の抜出管2
1中のタールの蒸溜曲線であり、これから明らか
なように、400℃以上の溜出分と400℃以下の溜出
分に分離されて回収されることが判る。なお、上
記実施例においてはタールクーラとして濡壁式熱
交換器を採用した例について説明したが、タール
クーラとして、第5図に示すようなタールのスプ
レーによる気液接触部とタール循環路に設けたタ
ール冷却部とを有するタールクエンチヤを用いる
ことができる。第5図において、噴流層クーラか
ら供給されたガスG3は気液接触器31に入つて、
ここで噴霧ノズル32から噴霧される循環タール
の液滴と接触して冷却された後、気液分離槽34
に入り、ここで、ガス中のタール液滴を分解した
後ガスは出口35より次段の間接接触型熱交換器
に送られる。気液分離槽34で分離されたタール
はポンプ37で抽き出されて熱交換器38に送ら
れ、ここで液状熱媒体の水39に熱を与えて冷却
された後気液接触器31の噴霧ノズル32から噴
霧され、その1部は抜出管41より抜き出され
る。熱交換器38で加熱された水は汽水ドラムに
供給される。また、上記実施例においては熱媒体
として水を用いたが耐熱油その他の液状熱媒体を
用いうることは勿論である。
The coke oven generated crude gas G1 , which is at a high temperature of about 600° to 1000°C, is first sent to the spouted bed cooler 1, where it is cooled to about 400° to 550°C. High boiling point substances are solid particles 9
After condensing on the surface of the heat exchanger tube 4, the solid particles a are carbonized as they descend, and further peeled off due to collisions with each other, so that the condensate of these high boiling point substances or their carbide adheres to the heat exchanger tube 4, causing Heat exchange efficiency is not inhibited, and the solid particles a are automatically regenerated, so they can be recycled and used. Incidentally, if the gas is cooled too much by the spouted bed cooler 1, the amount of tar condensed increases and the diameter of the solid particles a increases or their aggregation occurs, so the cooling temperature of the gas is preferably 450° C. or higher. Spouted bed cooler 1 is installed in tar cooler 5.
Gas cooled at about 400℃ to 500℃ is introduced, so even if tar and pitches in the gas condense, they can be washed away with a large amount of circulating tar, so coking with these condensates can be avoided. will never occur. Furthermore, the circulating tar is supplemented with light, low-boiling point tar condensed in the indirect contact heat exchanger 16 to keep its viscosity low, so the thickness of the liquid film flowing down inside the heat transfer tubes 12 is thin. Therefore, the cooling performance can be improved and the driving power of the tar pump 14 can be reduced. In addition,
The tar contained in the crude gas generated from a coke oven is 425℃
Condensation starts at 200℃, and the tar condensation rate is about 50%.
reach. Therefore, it is appropriate to introduce gas at a temperature of 425° C. or lower into the tar cooler 5. The indirect contact heat exchanger 16 has a tar cooler 5 with a temperature of 200°
Since gas G3 cooled to 300°C is introduced, coking and tar sticking to the heat exchanger tubes no longer occur in this temperature range. And this heat exchanger 1
By cooling the gas G 3 at 200°C to 300°C to 80°C to 120°C in Step 6, the heat medium to be supplied to the spouted bed cooler 1 and the tar cooler 5 is generated using the heat of the gas corresponding to the temperature difference in this low temperature region. It can be recovered by preheating. In other words, the relationship between the amount of steam generated and the cooling temperature when processing 30,000 Nm 3 /H of crude gas generated from a coke oven at 600°C is shown in Figure 2.
The amount of steam recovered when cooled to ℃ is 7.3TON/H.
However, by further cooling this to 100° C. using the indirect contact heat exchanger 16, the amount of steam recovered becomes 10 TON/H, which is an improvement of 45%. Figure 3 shows the relationship between the cooling temperature, tar viscosity, and carbon powder concentration in the tar cooler 5, and the carbon powder concentration b when diluted tar is supplied is compared to the carbon powder concentration a when diluted tar is not supplied. The tar viscosity d when diluted tar is supplied is much lower than the tar viscosity c when diluted tar is not supplied. In addition, FIG. 4 shows the relationship between the distillation temperature and the distillation amount, and T is the amount of tar in the extraction pipe 22 when the outlet gas temperature of the indirect contact heat exchanger 16 is operated at 80°C. It is a distillation curve, and P is the extraction pipe 2 when the outlet gas temperature of the tar cooler 5 is operated at 250°C.
This is a distillation curve of tar in No. 1, and as is clear from the graph, it can be seen that the distillate fraction above 400°C and the distillate fraction below 400°C are separated and recovered. In the above embodiment, an example was explained in which a wet wall heat exchanger was adopted as the tar cooler. A tar quencher having a cooling section can be used. In FIG. 5, gas G3 supplied from the spouted bed cooler enters the gas-liquid contactor 31,
Here, after being cooled by contacting with the circulating tar droplets sprayed from the spray nozzle 32, the gas-liquid separation tank 34
After decomposing the tar droplets in the gas, the gas is sent from the outlet 35 to the next indirect contact heat exchanger. The tar separated in the gas-liquid separation tank 34 is extracted by a pump 37 and sent to a heat exchanger 38, where it is cooled by applying heat to water 39, which is a liquid heat medium. It is sprayed from the spray nozzle 32, and a part of it is extracted from the extraction pipe 41. The water heated by the heat exchanger 38 is supplied to the brackish water drum. Furthermore, although water is used as the heat medium in the above embodiments, it goes without saying that heat-resistant oil or other liquid heat medium may be used.

以上本発明を実施例について説明したが、勿論
本発明はこのような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。
Although the present invention has been described above with reference to embodiments, it goes without saying that the present invention is not limited to such embodiments, and that various design modifications can be made without departing from the spirit of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例と図式系統図、第2
図は冷却温度と蒸気発生量との関係を示す線図、
第3図はタールクーラにおける冷却温度とカーボ
ン粉濃度並びにタール粘度との関係を示す線図、
第4図は溜出温度と溜出量との関係を示す線図、
第5図はタールクーラの他の例を示す図式系統図
である。 タール含有高温ガス……G1、噴流層クーラ…
…1、タールクーラ……5、間接接触型熱交換器
……16、希釈タール供給管……28。
Figure 1 shows one embodiment of the present invention and a diagrammatic system diagram;
The figure is a diagram showing the relationship between cooling temperature and amount of steam generated.
Figure 3 is a diagram showing the relationship between cooling temperature, carbon powder concentration, and tar viscosity in a tar cooler;
Figure 4 is a diagram showing the relationship between distillation temperature and distillation amount;
FIG. 5 is a schematic system diagram showing another example of the tar cooler. Tar-containing high-temperature gas...G 1 , spouted bed cooler...
...1, Tar cooler...5, Indirect contact heat exchanger...16, Dilution tar supply pipe...28.

Claims (1)

【特許請求の範囲】[Claims] 1 タール含有高温ガスと直接接触する固体粒子
を介して液状熱媒体を加熱する噴流層クーラと、
上記噴流層クーラから流出したカーボン粉及びガ
スと直接接触する循環タールを介して液状熱媒体
を加熱する第1のタールクーラと、上記第1のタ
ールクーラから流出したガスと液状熱媒体とを熱
交換させ冷却されたガス中に軽質タールを噴霧す
る第2のタールクーラとを設け、上記第1のター
ルクーラにおいて循環するタールの残部を抽出
し、上記第2のタールクーラにおいて循環する軽
質タールの残部を抽出すると共に、抽出された軽
質タールの一部を上記第1のタールクーラの循環
タールに混入し、また、上記第2のタールクーラ
で予熱された液状熱媒体を上記第1のタールクー
ラに導入し、上記第1のタールクーラで加熱され
た液状熱媒体を更に高温の噴流層クーラに導入し
て加熱することを特徴とするタール含有高温ガス
の熱回収方法。
1. A spouted bed cooler that heats a liquid heat medium through solid particles that are in direct contact with a tar-containing high-temperature gas;
A first tar cooler that heats a liquid heat medium through circulating tar that is in direct contact with the carbon powder and gas flowing out from the spouted bed cooler, and a heat exchanger between the gas flowing out from the first tar cooler and the liquid heat medium. and a second tar cooler that sprays light tar into the cooled gas, extracting the remainder of the tar circulating in the first tar cooler, extracting the remainder of the light tar circulating in the second tar cooler, and , a part of the extracted light tar is mixed into the circulating tar of the first tar cooler, and the liquid heat medium preheated by the second tar cooler is introduced into the first tar cooler, A method for recovering heat from tar-containing high-temperature gas, characterized in that a liquid heat medium heated in a tar cooler is further heated by introducing it into a high-temperature spouted bed cooler.
JP58222170A 1983-11-28 1983-11-28 Heat recovery from high-temperature gas containing tar Granted JPS60115687A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58222170A JPS60115687A (en) 1983-11-28 1983-11-28 Heat recovery from high-temperature gas containing tar
GB08428741A GB2151150B (en) 1983-11-28 1984-11-14 Process for recovering heat of a tar-containing high temperature gas
DE19843442400 DE3442400A1 (en) 1983-11-28 1984-11-20 METHOD FOR RECOVERING THE HEAT OF A TARGED HIGH TEMPERATURE GAS
US06/675,069 US4702818A (en) 1983-11-28 1984-11-26 Process for recovering heat of a tar-containing high-temperature gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58222170A JPS60115687A (en) 1983-11-28 1983-11-28 Heat recovery from high-temperature gas containing tar

Publications (2)

Publication Number Publication Date
JPS60115687A JPS60115687A (en) 1985-06-22
JPH0443955B2 true JPH0443955B2 (en) 1992-07-20

Family

ID=16778269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58222170A Granted JPS60115687A (en) 1983-11-28 1983-11-28 Heat recovery from high-temperature gas containing tar

Country Status (4)

Country Link
US (1) US4702818A (en)
JP (1) JPS60115687A (en)
DE (1) DE3442400A1 (en)
GB (1) GB2151150B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO159879C (en) * 1986-05-02 1989-02-15 Santo As PROCEDURES FOR OPERATION OF A COMBUSTION PLANT, SEAT FOR IMPLEMENTATION.
SE455226B (en) * 1986-10-23 1988-06-27 Scandiaconsult Ab PROCEDURE AND DEVICE FOR Flue gas condensation, as well as preheating and humidification of combustion air in combustion plants
FI80781C (en) * 1988-02-29 1991-11-06 Ahlstroem Oy SAETT FOER AOTERVINNING AV VAERME UR HETA PROCESSGASER.
US4956509A (en) * 1989-10-16 1990-09-11 Mobil Oil Corp. Integrated paraffin upgrading and catalytic cracking processes
GB2250027A (en) * 1990-07-02 1992-05-27 Exxon Research Engineering Co Process and apparatus for the simultaneous production of olefins and catalytically cracked hydrocarbon products
DE4338928A1 (en) * 1993-11-15 1995-05-18 Kloeckner Humboldt Deutz Ag Cleaning of gas stream by adsorption of harmful substances
EP1743380B1 (en) * 2004-05-06 2016-12-28 Sidense Corp. Split-channel antifuse array architecture
US7755162B2 (en) * 2004-05-06 2010-07-13 Sidense Corp. Anti-fuse memory cell
US7763162B2 (en) 2005-07-08 2010-07-27 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7465388B2 (en) * 2005-07-08 2008-12-16 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7749372B2 (en) * 2005-07-08 2010-07-06 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US7780843B2 (en) * 2005-07-08 2010-08-24 ExxonMobil Chemical Company Patents Inc. Method for processing hydrocarbon pyrolysis effluent
US8524070B2 (en) * 2005-07-08 2013-09-03 Exxonmobil Chemical Patents Inc. Method for processing hydrocarbon pyrolysis effluent
CN102427869B (en) * 2009-03-16 2014-12-10 可持续能源解决方案公司 Methods and systems for separating condensable vapors from gases
CN104736932B (en) 2011-05-26 2017-08-25 可持续能源解决方案公司 The system and method for being separated condensable vapours with light gas or liquid by recuperation low temperature process
CN109554200B (en) * 2018-12-18 2021-06-08 中国平煤神马能源化工集团有限责任公司 Method for treating dust-containing tar-containing gas
CN112179157B (en) * 2020-10-09 2022-07-12 内蒙古万众炜业科技环保股份公司 Coking furnace waste heat full utilization system for preventing graphite from being formed by tar
CN113604256A (en) * 2021-04-30 2021-11-05 武汉科技大学 Coke oven crude gas heat comprehensive utilization and separation integrated system and method
CN115433602B (en) * 2022-08-31 2023-11-17 宝钢工程技术集团有限公司 Dehydration tower series heating device for tar processing and application method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2475255A (en) * 1944-03-17 1949-07-05 Standard Oil Dev Co Method of drying gases
US2541693A (en) * 1947-07-28 1951-02-13 Dow Chemical Co Production of lower olefins
US3253650A (en) * 1960-07-11 1966-05-31 Frank J Mcentee Jr Heat-exchange apparatus
US3593968A (en) * 1968-09-26 1971-07-20 Stone & Webster Eng Corp Rapid cooling for high-temperature gas streams
JPS4820523B1 (en) * 1969-07-18 1973-06-21
DE1952347A1 (en) * 1969-10-17 1971-04-29 Metallgesellschaft Ag Device for breaking high-boiling hydrocarbons into olefins
US4150716A (en) * 1975-02-07 1979-04-24 Chiyoda Chemical Eng. & Constr. Co. Ltd. Method of heat recovery from thermally decomposed high temperature hydrocarbon gas
NL7703939A (en) * 1977-04-12 1978-10-16 Esmil Bv METHOD AND APPARATUS FOR HEAT EXCHANGE
US4351275A (en) * 1979-10-05 1982-09-28 Stone & Webster Engineering Corp. Solids quench boiler and process
US4279733A (en) * 1979-12-21 1981-07-21 Shell Oil Company Coking prevention
DE3102819A1 (en) * 1980-01-29 1982-02-18 Babcock-Hitachi K.K., Tokyo METHOD FOR RECOVERY OF HEAT IN COAL GASIFICATION AND DEVICE THEREFOR
SU881516A1 (en) * 1980-02-25 1981-11-15 Проектный Институт "Авторемпромпроект" Heat exchanger
US4426359A (en) * 1980-07-03 1984-01-17 Stone & Webster Engineering Corp. Solids quench boiler
GB2099567B (en) * 1981-06-02 1984-11-21 British Gas Corp Heat recovery process and apparatus
US4557904A (en) * 1984-03-26 1985-12-10 Union Carbide Corporation Integral reactor apparatus

Also Published As

Publication number Publication date
JPS60115687A (en) 1985-06-22
GB2151150A (en) 1985-07-17
DE3442400A1 (en) 1985-07-18
GB2151150B (en) 1987-03-11
DE3442400C2 (en) 1988-09-01
US4702818A (en) 1987-10-27
GB8428741D0 (en) 1984-12-27

Similar Documents

Publication Publication Date Title
JPH0443955B2 (en)
CN103013583B (en) Process for dust removing, cooling and tar oil recovering of pyrolysis coal gas
JP2018536720A (en) Combined heat and power supply in a delayed coking plant
CN108096999B (en) Reboiler method negative pressure crude benzene distillation process
NL8101711A (en) PYROLYSIS METHOD AND SYSTEM USING PYROLYSIS OIL RECIRCULATION.
CN108795500A (en) A kind of gasification system and technique of high efficient heat recovery
CN108913208A (en) A kind of cold grey formula high efficient heat recovery gasification system of wet process and technique
JPS6041112B2 (en) Reflux return system
JPS6158115B2 (en)
JPS6039115B2 (en) Energy use and recovery method of unconverted carbon in synthesis gas production
US3674679A (en) Process and apparatus for the thermal cracking of heavy hydrocarbon oils
CN107890684B (en) Reboiler method negative pressure crude benzol distillation system
US3451896A (en) Method of cleaning a stream of coke oven gas and apparatus therefor
JP2014527572A (en) Delayed coking of oil residues
CN207734627U (en) A kind of reboiler method negative pressure crude benzol Distallation systm
CN210683638U (en) Device for heating rich oil and distilling crude benzene by using waste heat of raw gas and producing crude benzene by negative pressure
US2675296A (en) Gas purification process
US2899012A (en) Process and apparatus for cooling coke oven gas
US3725491A (en) Process for recovering heat from gas mixtures obtained by the thermal cracking of hydrocarbons
US4244711A (en) Process for minimizing the deposition of materials in the ammonia liquor coolers in the coking of carbonaceous materials
US1958585A (en) Distillation of tar
CN111349476A (en) Method for improving cleaning effect of crude benzene washing benzene tower
CN105779021B (en) Coal tar separation method in a kind of recycling of coking tedge gas energy and coal gas
CN111217664A (en) Device for heating rich oil and distilling crude benzene by using waste heat of raw gas and producing crude benzene by negative pressure
US2671008A (en) Separation of acid gases from coal carbonization gases