JPH0443928A - Measuring method for emissivity and temperature of object to be measured - Google Patents

Measuring method for emissivity and temperature of object to be measured

Info

Publication number
JPH0443928A
JPH0443928A JP15115790A JP15115790A JPH0443928A JP H0443928 A JPH0443928 A JP H0443928A JP 15115790 A JP15115790 A JP 15115790A JP 15115790 A JP15115790 A JP 15115790A JP H0443928 A JPH0443928 A JP H0443928A
Authority
JP
Japan
Prior art keywords
emissivity
measured
temperature
output
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15115790A
Other languages
Japanese (ja)
Inventor
Chitayoshi Manabe
知多佳 真鍋
Toshiyuki Yanai
柳井 敏志
Akio Arai
明男 新井
Akio Suzuki
紀生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15115790A priority Critical patent/JPH0443928A/en
Publication of JPH0443928A publication Critical patent/JPH0443928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately find the temperature of the object to be measured by varying the measurement distance of the pocket and finding variation in the output of a heat radiation detector, and finding the emissivity of the object from the output variation value and data on an object whose emissivity is already known. CONSTITUTION:Both radiation detection heads 13a and 13b are arranged at the same distance from the object 16 to be measured and the output of each heat radiation detector 12 corresponding to the same measurement distance h1 is inputted to a storage arithmetic unit 14. When the outputs are both supplied, the storage arithmetic unit 14 calculates the emissivity epsilons of the object 16. Then the obtained emissivity epsilons is used to find the output E(T) of the heat radiation detector 12 at the time of a black body from, for example, E(epsilons,C1)/epsilons, thereby easily finding the temperature T of the object body. The temperature T of the object body is displayed on a display device 15. Thus, the emissivity of the object body is also found, so the temperature of the object body can accurately be found without any temperature measurement error due to a difference in emissivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被測定物の放射率とその温度を測定する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of measuring the emissivity and temperature of an object to be measured.

〔従来の技術〕[Conventional technology]

周知のように、被測定物の温度をその表面からの熱放射
を利用して測定する放射測温方法においては、被測定物
か黒体でない場合、その物体の未知の放射率をいかにし
て処理し、放射率による温度測定誤差を小さくするかと
いうことか課題となっている。そのため、放射率による
温度測定誤差を軽減するように考案された放射温度計と
して、その放射検出ヘッドの構成説明図の第8図に示す
ようなものか知られている。
As is well known, in the radiation thermometry method, which measures the temperature of an object using heat radiation from its surface, if the object to be measured is not a black body, how can the unknown emissivity of the object be determined? The issue is how to process the temperature and reduce temperature measurement errors caused by emissivity. Therefore, as a radiation thermometer devised to reduce temperature measurement errors due to emissivity, there is a known radiation thermometer as shown in FIG. 8, which is an explanatory diagram of the configuration of its radiation detection head.

すなわち、第8図において、51は内面に金めつきを施
した半球形キャビティ(半球形空洞)であり、この半球
形キャビティ51の頂点部に設けられた測定孔の位置に
は、例えばシリコンセルやサーモパイルなとの検出素子
を用いた熱放射検出器52か配設されている。このよう
に構成される放射検出ヘッド53を被測定物の測定面に
接近して位置させると、測定面と半球形キャビティ51
内面とで測定面からの放射線の多重反射か生して黒体条
件に近くなり、みかけの放射率か高められる。これによ
り、被測定物か黒体でないための放射率による温度測定
誤差を小さくするようにしている。
That is, in FIG. 8, 51 is a hemispherical cavity (hemispherical cavity) whose inner surface is gold-plated, and a measurement hole provided at the apex of this hemispherical cavity 51 has, for example, a silicon cell. A thermal radiation detector 52 using a detection element such as a thermopile or the like is provided. When the radiation detection head 53 configured in this way is positioned close to the measurement surface of the object to be measured, the measurement surface and the hemispherical cavity 51
Due to multiple reflections of radiation from the measurement surface and the inner surface, the condition approaches a black body condition, and the apparent emissivity is increased. This reduces temperature measurement errors due to emissivity because the object to be measured is not a black body.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしなから、上記の多重反射を利用する放射温度計に
おいては、被測定物の放射率の違いによる温度測定誤差
は小さくされるようになってはいるか、被測定物の放射
率か求められるようにはなっていないため、放射率か例
えば0,5〜0.6程度と小さい場合には、測定距離の
変動によって大きな温度測定誤差か生じ易いという欠点
かある。
However, in the above-mentioned radiation thermometer that uses multiple reflections, is it possible to reduce the temperature measurement error due to differences in the emissivity of the measured object, or is it possible to calculate the emissivity of the measured object? Therefore, if the emissivity is small, for example, about 0.5 to 0.6, there is a drawback that large temperature measurement errors are likely to occur due to fluctuations in the measurement distance.

この発明は、上記の点に鑑みてなされたものであって、
被測定物の放射率をも求めることにより放射率の違いに
よる温度測定誤差を生じることなく被測定物の温度を正
確に測定し得る新規な測定方法の提供を目的とする。
This invention was made in view of the above points, and
It is an object of the present invention to provide a new measuring method that can accurately measure the temperature of an object to be measured without causing a temperature measurement error due to a difference in emissivity by also determining the emissivity of the object to be measured.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、請求項1の発明による測
定方法は、予め、異なる既知の放射率を有し同一温度に
おける複数の物体それぞれにおいて、キャビティの測定
孔の位置に熱放射検出器を配設した放射検出ヘッドと前
記物体との測定距離を変化させて熱放射検出器の出力を
測定し、前記既知の各放射率における測定距離と熱放射
検出器の出力との関係を放射率測定用データとして求め
ておき、被測定物の測温に際し、前記放射検出ヘッドと
被測定物との測定距離を少なくとも2つの異なった距離
に変化させて熱放射検出器の出力を測定し、この出力の
変化と前記放射率測定用データとから被測定物の放射率
を求め、この求めた放射率を用いて被測定物の温度を測
定するようにしたことを特徴としている。
In order to achieve the above object, the measurement method according to the invention of claim 1 is provided in advance by installing a thermal radiation detector at the position of the measurement hole of the cavity in each of a plurality of objects having different known emissivities and at the same temperature. Measure the output of the thermal radiation detector by changing the measurement distance between the installed radiation detection head and the object, and measure the emissivity of the relationship between the measurement distance and the output of the thermal radiation detector at each known emissivity. When measuring the temperature of the object to be measured, measure the output of the thermal radiation detector by changing the measurement distance between the radiation detection head and the object to at least two different distances, and measure the output of the thermal radiation detector. The present invention is characterized in that the emissivity of the object to be measured is determined from the change in , and the emissivity measurement data, and the temperature of the object to be measured is measured using the determined emissivity.

また、請求項2の発明による測定方法は、予め、異なる
既知の放射率を有し同一温度における複数の物体それぞ
れにおいて、互いに多重反射特性か異なるキャビティの
測定孔の位置に熱放射検出器を配設した二つの放射検出
ヘッドを用いて、各放射検出ヘッドと前記物体との測定
距離を変化させて各熱放射検出器の出力を測定し、前記
両放射検出ヘッドにおいて前記既知の各放射率における
測定距離と熱放射検出器の出力との関係を放射率測定用
データとして求めておき、被測定物の測温に際し、前記
両放射検出ヘッドと被測定物との測定距離を同一にして
各熱放射検出器の出力を測定し、この出力の変化と前記
放射率測定用データとから被測定物の放射率を求め、こ
の求めた放射率を用いて被測定物の温度を測定するよう
にしたことを特徴としている。
Further, in the measurement method according to the invention of claim 2, thermal radiation detectors are arranged in advance at the positions of measurement holes of cavities that have mutually different multiple reflection characteristics in each of a plurality of objects having different known emissivities and at the same temperature. Using the two radiation detection heads set up, the output of each thermal radiation detector is measured by changing the measurement distance between each radiation detection head and the object. The relationship between the measurement distance and the output of the thermal radiation detector is obtained as emissivity measurement data, and when measuring the temperature of the object to be measured, the measurement distance between both radiation detection heads and the object to be measured is the same, and each temperature is The output of the radiation detector is measured, the emissivity of the object to be measured is determined from the change in this output and the data for emissivity measurement, and the temperature of the object to be measured is measured using the determined emissivity. It is characterized by

〔作 用〕[For production]

請求項1の発明に係る測定原理を第2図を参照して説明
する。第2図は、81〜ε、て表す放射率か既知の複数
の物体それぞれにおいて、キャビティの測定孔の位置に
熱放射検出器を配した放射検出ヘッドを用いて、放射検
出ヘッドと物体との測定距離を変化させた場合の測定距
離と熱放射検出器の出力との関係を示す図である。同図
は、熱放射検出器の出力は放射検出ヘッドか被測定物表
面から離れるに従って減少するか、測定距離変化による
熱放射検出器の出力の変化は放射率により異なる傾向を
示している。このことから、測定距離変化による熱放射
検出器の出力の変化から逆に放射率を知ることかできる
。したかって、第2図に示すような放射率測定用データ
を予め求めておいて、被測定物における測定距離変化に
よる熱放射検出器の出力の変化を求め、この出力変化の
値と放射率測定用データから得られる放射率既知の物体
における被測定物測温時の測定距離変化に対応する出力
変化の値とを用いて被測定物の放射率を求めることかで
きる。更に、この放射率を用いて被測定物の温度を測定
することかできる。
The measurement principle according to the invention of claim 1 will be explained with reference to FIG. Figure 2 shows the relationship between the radiation detection head and the object using a radiation detection head with a thermal radiation detector placed at the measurement hole position of the cavity for each of a plurality of objects whose emissivity, expressed as 81 to ε, is known. FIG. 7 is a diagram showing the relationship between the measured distance and the output of the thermal radiation detector when the measured distance is changed. This figure shows that the output of the thermal radiation detector decreases as the radiation detection head moves away from the surface of the object to be measured, and that changes in the output of the thermal radiation detector due to changes in measurement distance tend to vary depending on the emissivity. From this, it is possible to conversely find out the emissivity from the change in the output of the thermal radiation detector due to the change in the measurement distance. Therefore, data for emissivity measurement as shown in Fig. 2 is obtained in advance, and the change in the output of the thermal radiation detector due to the change in the measurement distance on the object to be measured is determined, and the value of this output change and the emissivity measurement are calculated. The emissivity of the object to be measured can be determined using the value of the output change corresponding to the change in the measurement distance when measuring the temperature of the object to be measured for an object with a known emissivity obtained from the data. Furthermore, the temperature of the object to be measured can be measured using this emissivity.

請求項2の発明に係る測定原理を第6図を参照して説明
する。第6図は、ε1〜ε4て表す放射率か既知の複数
の物体それぞれにおいて、互いに多重反射特性か異なる
キャビティの測定孔の位置に熱放射検出器を配した二つ
の放射検出ヘッドを用いて、各放射検出ヘッドと物体と
の測定距離を変化させた場合の測定距離と各熱放射検出
器の出力との関係を示す図である。同図は、キャビティ
の多重反射特性か異なると同一放射率であっても各熱放
射検出器の出力か異なり、しかもキャビティの違いによ
る各熱放射検出器の出力の変化は放射率によりそれぞれ
異なる傾向を示している。このことから、多重反射特性
の異なるキャビティを用いた場合の各熱放射検出器の出
力の変化から逆に放射率を知ることかできる。したかっ
て、予め、既知の放射率における第6図に示すような放
射率測定用データを求めておいて、同一測定距離にした
ときの被測定物におけるキャビティの違いによる各熱放
射検出器の出力の変化を求め、この出力変化の値と放射
率測定用データから得られる放射率既知の物体における
被測定物測温時の測定距離での各熱放射検出器の出力変
化の値とを用いて被測定物の放射率を求めることかでき
る。更に、この放射率を用いて被測定物の温度を測定す
ることかできる。
The measurement principle according to the invention of claim 2 will be explained with reference to FIG. FIG. 6 shows that for each of a plurality of objects whose emissivities, represented by ε1 to ε4, are known, two radiation detection heads with thermal radiation detectors placed at the measurement holes of cavities with different multiple reflection characteristics are used. FIG. 7 is a diagram showing the relationship between the measured distance and the output of each thermal radiation detector when the measured distance between each radiation detection head and an object is changed. The figure shows that the output of each thermal radiation detector differs even if the emissivity is the same depending on the multiple reflection characteristics of the cavity, and the change in the output of each thermal radiation detector due to differences in cavities tends to differ depending on the emissivity. It shows. From this, it is possible to conversely find out the emissivity from the change in the output of each thermal radiation detector when cavities with different multiple reflection characteristics are used. Therefore, emissivity measurement data as shown in Figure 6 at a known emissivity is obtained in advance, and the output of each thermal radiation detector due to the difference in the cavity of the object to be measured when the measurement distance is the same is determined in advance. Using this output change value and the output change value of each thermal radiation detector at the measurement distance when measuring the temperature of an object with a known emissivity obtained from the emissivity measurement data, It is possible to determine the emissivity of the object to be measured. Furthermore, the temperature of the object to be measured can be measured using this emissivity.

〔実施例〕〔Example〕

以下、実施例に基づいてこの発明を説明する。 The present invention will be explained below based on examples.

第1図は請求項1の発明による方法を実施するための放
射温度測定装置の一例を示す構成説明図、第2図は請求
項1の発明に係る放射率測定用データの説明図、第3図
は請求項1の発明による被測定物の放射率を求める手順
の一例を説明するための図、第4図は請求項Iの発明に
よる方法を実施するための放射温度測定装置の他の例を
示す構成説明図である。
FIG. 1 is a configuration explanatory diagram showing an example of a radiation temperature measuring device for carrying out the method according to the invention of claim 1, FIG. 2 is an explanatory diagram of emissivity measurement data according to the invention of claim 1, and FIG. The figure is a diagram for explaining an example of the procedure for determining the emissivity of a measured object according to the invention of claim 1, and FIG. 4 is another example of a radiation temperature measuring device for carrying out the method according to the invention of claim I. FIG.

第1図において、■は内面を金めつきを施して高反射率
鏡面とした半球形キャビティ、2は半球形キャビティ1
の頂点部に設けられた測定孔の位置に配設された熱放射
検出器である。この半球形キャビティ1と熱放射検出器
2により放射検出ヘッド3か構成されている。4は記憶
演算装置、5は表示装置、6は未知の放射率εSを有し
、その温度を求めるへき被測定物である。
In Figure 1, ■ is a hemispherical cavity whose inner surface is gold-plated and has a high reflectance mirror surface, and 2 is a hemispherical cavity 1.
This is a thermal radiation detector disposed at the position of the measurement hole provided at the apex of. This hemispherical cavity 1 and the thermal radiation detector 2 constitute a radiation detection head 3. 4 is a storage/arithmetic device, 5 is a display device, and 6 is an object to be measured having an unknown emissivity εS and whose temperature is to be determined.

このように構成される放射温度測定装置を用いて行われ
る被測定物6の放射率と温度の測定について、第1図〜
第3図を参照しなから、以下に説明する。
Regarding the measurement of the emissivity and temperature of the object to be measured 6 using the radiation temperature measuring device configured as described above, FIGS.
This will be explained below without reference to FIG.

はじめに、第2図を参照しなから、記憶演算装置4に予
め記憶させておく放射率測定用データについて説明する
。異なる既知の放射率を有し同一温度条件における複数
の物体それぞれにおいて、放射検出ヘッド3と物体との
測定距離りを変化させ、既知の放射率を育する複数の物
体における測定距離りと熱放射検出器2の出力Eとの関
係を測定し、これを放射率測定用データとして記憶演算
装置4に予め記憶(入力)させておく。
First, without referring to FIG. 2, the emissivity measurement data stored in advance in the storage/arithmetic device 4 will be explained. For each of a plurality of objects having different known emissivities and under the same temperature condition, the measurement distance between the radiation detection head 3 and the object is changed, and the measurement distance and thermal radiation for the plurality of objects that have a known emissivity are changed. The relationship with the output E of the detector 2 is measured, and this is stored (input) in advance in the storage/arithmetic unit 4 as emissivity measurement data.

図示の例では、既知の放射率と、〜ε、(添字数字の大
きいものはと放射率か大きいことを表す)を存する5種
類の物体から放射率測定用データを求めている。図に示
すように、熱放射検出器2の出力Eは、測定距離りか長
くなるに従って減少するか、その変化の度合いが放射率
によって異なる傾向を示している。
In the illustrated example, data for emissivity measurement is obtained from five types of objects having known emissivities and ~ε (larger subscript numbers represent larger emissivities). As shown in the figure, the output E of the thermal radiation detector 2 shows a tendency to decrease as the measurement distance increases, or that the degree of change varies depending on the emissivity.

このような特性の放射率測定用データを予め記憶演算装
置4に記憶させておき、被測定物6の測温を行う。まず
、放射検出ヘッド3と被測定物6との測定距離を距離h
1に設定し、測定距離h1のときの熱放射検出器2の出
力E(εS、 hl)を記憶演算袋f14に入力する。
Data for emissivity measurement having such characteristics is stored in advance in the storage/arithmetic device 4, and the temperature of the object to be measured 6 is measured. First, the measurement distance between the radiation detection head 3 and the object to be measured 6 is determined by the distance h
1, and the output E (εS, hl) of the thermal radiation detector 2 at the measurement distance h1 is input into the storage calculation bag f14.

続いて放射検出ヘッド3を上方に移動させ、測定距離h
2のときの熱放射検出器2の出力E・(εs、ht)を
記憶演算装置4に入力する。上記の再出力か与えられる
と、記憶演算装置5は、次の手順にて、まず放射率とS
を演算により求める。すなわち、測定距離h1のときの
出力E(εs、t++)に対する測定距離h2のときの
出力E(εs、h2)の比V(εs、 has )を求
める。次いて、予め記憶されている第2図に示す放射率
測定用データから、既知の放射率ε1において、測定距
離か上記り、のときの熱放射検出器2の出力E (ff
+ 、 h+)に対する測定距離が上記h2のときの熱
放射検出器2の出力E(ε、 、 h、)の比V(ε+
 、 To* )を求める。同様にして、上記放射率測
定用データから、他の既知の放射率ε、(n=2〜5)
それぞれにおいて、測定距離り、のときの熱放射検出器
2の出力E(ε、、h、)に対する測定距離h2のとき
の熱放射検出器2の出力E(ε、、h2)の比V(ε、
 、 h+2)を求める。
Subsequently, the radiation detection head 3 is moved upward, and the measurement distance h
The output E·(εs, ht) of the thermal radiation detector 2 at the time of 2 is input to the storage/arithmetic unit 4. When the above re-output is given, the storage/arithmetic unit 5 first calculates the emissivity and S in the following steps.
is calculated by calculation. That is, the ratio V(εs, has) of the output E(εs, h2) when the measurement distance is h2 to the output E(εs, t++) when the measurement distance is h1 is determined. Next, from the pre-stored emissivity measurement data shown in FIG. 2, the output E (ff
The ratio V(ε+) of the output E(ε, , h,) of the thermal radiation detector 2 to
, To*). Similarly, from the above emissivity measurement data, other known emissivity ε, (n=2 to 5)
In each case, the ratio V( ε,
, h+2).

これにより、第3図に示すような、測定距離をhl、h
2に変化させたときの既知の放射率ε、における熱放射
検出器2の出力比V(ε、 、 has )か得られる
。そして、被測定物6にて求めた上記の出力比V(εs
、 t++* )と、既知の放射率ε、(n=1〜5)
における出力比v(ε。、 hat )との値の大小関
係を比較し、例えば第3図に示すような関係にある場合
には、次のような式により被測定物6の放射率εSを求
めることかてきる。
As a result, the measurement distances hl and h as shown in FIG.
The output ratio V(ε, , has ) of the thermal radiation detector 2 at the known emissivity ε when changed to 2 is obtained. Then, the above output ratio V(εs
, t++*) and the known emissivity ε, (n=1 to 5)
Compare the magnitude relationship of the values with the output ratio v (ε., hat ), and if the relationship is as shown in FIG. I can do what I want.

es= (Cεs−ε4)/ (V (ε* 、t++
2)−V(ε4. has))l  ’  (V(εs
、 hat)■(ε、 、 hat ) )+ε4 そして、求めた放射率εSを用いて、例えばE(εs、
h、)/εSから黒体における熱放射検出器2の出力E
 (T)を求めることにより、被測定物の温度Tを容易
に求めることかできる。なお、被測定物の温度Tは表示
装置5にて表示されるようになっている。
es= (Cεs−ε4)/(V (ε*, t++
2)-V(ε4.has))l'(V(εs
, hat)■(ε, , hat))+ε4 Then, using the obtained emissivity εS, for example, E(εs,
h, )/εS to the output E of the thermal radiation detector 2 at the blackbody
By determining (T), the temperature T of the object to be measured can be easily determined. Note that the temperature T of the object to be measured is displayed on the display device 5.

このようにして、被測定物の放射率をも求めることかで
きるので、放射率の違いによる温度測定誤差を生しるこ
となく被測定物の温度を正確に求めることかできる。な
お、上記実施例では被測定物6の測温に際し、−個の放
射検出ヘッド3を用いる構成としたが、第4図に示すよ
うに、放射検出ヘッド3及び同一のキャビティを有する
これとは別の放射検出ヘッド3を異なる測定距離の位置
にそれぞれ位置させるようにしてもよい。また、測定距
離を三通り以上とし、このときの熱放射検出器の出力を
用い補間操作を行って被測定物における測定距離変化に
よる熱放射検出器の出力の変化を求めるようにしてもよ
い。
In this way, the emissivity of the object to be measured can also be determined, so the temperature of the object to be measured can be accurately determined without causing temperature measurement errors due to differences in emissivity. In the above embodiment, - number of radiation detection heads 3 are used to measure the temperature of the object to be measured 6, but as shown in FIG. Other radiation detection heads 3 may be positioned at different measurement distances. Alternatively, three or more measurement distances may be used, and an interpolation operation may be performed using the output of the thermal radiation detector at this time to determine a change in the output of the thermal radiation detector due to a change in the measurement distance of the object to be measured.

第5図は請求項2の発明による方法を実施するための放
射温度測定装置の一例を示す構成説明図、第6図は請求
項2の発明に係る放射率測定用データの説明図、第7図
は請求項2の発明による被測定物の放射率を求める手順
の一例を説明するための図である。
FIG. 5 is a configuration explanatory diagram showing an example of a radiation temperature measuring device for carrying out the method according to the invention of claim 2, FIG. 6 is an explanatory diagram of emissivity measurement data according to the invention of claim 2, and FIG. The figure is a diagram for explaining an example of the procedure for determining the emissivity of the object to be measured according to the second aspect of the invention.

第5図において、13aは第1放射検出ヘツトであって
、内面を金めつきを施して高反射率鏡面とした半球形キ
ャビティllaの頂点部に設けられた測定孔の位置に熱
放射検出器12を配設して構成したものである。また、
13bは第2放射検出ヘツドであって、上記第1放射検
出ヘツト13aの半球形キャビティllaよりも小径と
した半球形キャビティllbの頂点部の測定孔の位置に
熱放射検出器12を配設して構成したものである。14
は記憶演算装置、15は表示装置、16はその放射率ε
Sと温度を求めるへき被測定物である。
In FIG. 5, reference numeral 13a denotes a first radiation detection head, in which a thermal radiation detector is installed at the position of a measurement hole provided at the apex of a hemispherical cavity lla whose inner surface is gold-plated and has a highly reflective mirror surface. 12 are arranged. Also,
Reference numeral 13b denotes a second radiation detection head, in which a thermal radiation detector 12 is disposed at the position of the measurement hole at the apex of a hemispherical cavity llb having a smaller diameter than the hemispherical cavity lla of the first radiation detection head 13a. It is composed of 14
is a storage/arithmetic device, 15 is a display device, and 16 is its emissivity ε
This is the object to be measured for which S and temperature are to be determined.

このように構成される放射温度測定装置を用いて行われ
る被測定物16の放射率と温度の測定について、第5図
〜第7図を参照しなから、以下に説明する。
Measurement of the emissivity and temperature of the object to be measured 16 using the radiation temperature measuring device configured as described above will be described below with reference to FIGS. 5 to 7.

はじめに、第6図を参照しながら、記憶演算装置14に
予め記憶させておく放射率測定用データについて説明す
る。既知の放射率を有し同一温度条件における物体それ
ぞれにおいて、互いに多重反射特性か異なるキャビティ
を備えた上記の二つの放射検出ヘッド13a、 13b
を用いて、各放射検出ヘッド13a、13bと物体との
測定距離りを変化させた場合の測定距離りと各熱放射検
出器12の出力との関係を測定し、これを放射率測定用
データとして記憶演算装置14に予め入力しておく。
First, with reference to FIG. 6, the emissivity measurement data stored in advance in the storage/arithmetic device 14 will be explained. The two radiation detection heads 13a and 13b are provided with cavities having different multiple reflection characteristics for each object having a known emissivity and under the same temperature condition.
is used to measure the relationship between the measurement distance and the output of each thermal radiation detector 12 when the measurement distance between each radiation detection head 13a, 13b and the object is changed, and this is used as emissivity measurement data. The data is input in advance to the storage/arithmetic unit 14 as follows.

図示の例では、既知の放射率ε、〜ε、(添字数字の大
きいものほど放射率か大きいことを表す)を有する4種
類の物体から放射率測定用データを求めている。図に示
すように、キャヒテイlla、llbの多重反射特性か
異なると同一放射率であっても熱放射検出器12の出力
か異なり、しかもキャビティ1laSllbの違いによ
る熱放射検出器I2の出力の変化は放射率によりそれぞ
れ異なる傾向を示している。なお、第6図では測定距離
と熱放射検出器の出力との関係を示す特性か直線で示さ
れているが、実際には右下かりの曲線となる(第2図参
照)。
In the illustrated example, emissivity measurement data is obtained from four types of objects having known emissivities ε, ~ε, (the larger the subscript number, the higher the emissivity). As shown in the figure, if the multiple reflection characteristics of the cavities 1la and llb are different, the output of the thermal radiation detector 12 will be different even if the emissivity is the same, and the change in the output of the thermal radiation detector I2 due to the difference in the cavities 1la and llb is Each shows different trends depending on the emissivity. In addition, in FIG. 6, the characteristic showing the relationship between the measurement distance and the output of the thermal radiation detector is shown as a straight line, but in reality it is a curve sloping to the lower right (see FIG. 2).

このような特性の放射率測定用データを予め記憶演算装
置14に記憶させておき、被測定物16の測温を行う。
Data for emissivity measurement having such characteristics is stored in advance in the storage/arithmetic device 14, and the temperature of the object to be measured 16 is measured.

まず、両放射検出ヘッド13a、 13bを被測定物1
6から同じ距離だけ離し、同一測定距離h1での各熱放
射検出器12の出力を記憶演算装置14に入力する。上
記の両出力が与えられると、記憶演算装置14は、次の
手順にて被測定物16の放射率εSを演算により求める
。すなわち、第1放射検出ヘツド13aの熱放射検出器
12の出力E(εS。
First, both radiation detection heads 13a and 13b are connected to the object to be measured 1.
6 and the outputs of the respective thermal radiation detectors 12 at the same measurement distance h1 are input to the storage/arithmetic device 14. When both of the above outputs are given, the storage/arithmetic unit 14 calculates the emissivity εS of the object to be measured 16 in the following procedure. That is, the output E(εS) of the thermal radiation detector 12 of the first radiation detection head 13a.

C+)に対する第2放射検出ヘツド13bの熱放射検出
器12の出力E (εs、 Cz)の比V Ce s、
 Cat)を求める。次に予め入力されている第6図に
示す放射率測定用データから、放射率か81で測定距離
か上記h1において、第1放射検出ヘツド+3aの熱放
射検出器I2の出力E(C1,C+)に対する第2放射
検出ヘツド13bの熱放射検出器12の出力E Cat
 、 C2) (7)比v(ε+、c+*)ヲ求メル。
Ratio of the output E (εs, Cz) of the thermal radiation detector 12 of the second radiation detection head 13b to C+) V Ce s,
Find Cat). Next, from the emissivity measurement data shown in FIG. 6 that has been inputted in advance, if the emissivity is 81 and the measurement distance is h1, the output E (C1, C+ ) of the thermal radiation detector 12 of the second radiation detection head 13b E Cat
, C2) (7) Find the ratio v(ε+, c+*).

同様にして、上記放射率測定用データから、測定距離り
、での他の既知の放射率ε、(n=2〜4)それぞれに
おいて、第1放射検出ヘツド13aの熱放射検出器12
の出力E(ε、、C,)に対する第2放射検出ヘツト1
3bの熱放射検出器12の出力E(ε、、C2)の比V
(ε。、 C,、>を求める。
Similarly, from the above emissivity measurement data, it is determined that the thermal radiation detector 12 of the first radiation detection head 13a has a different known emissivity ε, (n=2 to 4) at each measurement distance.
The second radiation detection head 1 for the output E(ε, ,C,) of
The ratio V of the output E (ε, , C2) of the thermal radiation detector 12 of 3b
(Determine ε., C,, >.

これにより、第7図に示すような、測定距離h1ての既
知の放射率ε、における各熱放射検出器I2の出力比V
(C1,C1□)か得られる。そして、被測定物16て
求めた上記の出力比V(εs+C+□)と、既知の放射
率ε、(n=1〜4)における上記の出力比V(εs、
C+z)との値の大小関係を比較し、例えば第7図に示
すような関係にある場合には、次のような式により被測
定物16の放射率εSを求めることができる。
Thereby, as shown in FIG. 7, the output ratio V of each thermal radiation detector I2 at a known emissivity ε at a measurement distance h1
(C1, C1□) is obtained. Then, the above output ratio V (εs + C + □) obtained from the object to be measured 16 and the above output ratio V (εs,
C+z), and if the relationship is as shown in FIG. 7, for example, then the emissivity εS of the object to be measured 16 can be determined using the following equation.

εS= ((ε、−ε、)/ (V (ε* +  C
at )−V(εi+  Cat))l  ”  (V
(εs、Cl2)■(ε、 、 C,、’) )十ε。
εS= ((ε, -ε,)/(V (ε* + C
at )−V(εi+Cat))l ”(V
(εs, Cl2) ■ (ε, , C,,') ) ten ε.

そして、求めた放射率εSを用いて、例えばE(εs、
Cυ/εSから黒体における熱放射検出器12の出力E
 (T)を求めることにより、被測定物の温度Tを容易
に求めることができる。なお、被測定物の温度Tは表示
装置t15にて表示されるようになっている。このよう
にして、被測定物の放射率をも求めることかできるので
、放射率の違いによる温度測定誤差を生じることなく被
測定物の温度を正確に求めることができる。
Then, using the obtained emissivity εS, for example, E(εs,
Output E of thermal radiation detector 12 at black body from Cυ/εS
By determining (T), the temperature T of the object to be measured can be easily determined. Note that the temperature T of the object to be measured is displayed on the display device t15. In this way, the emissivity of the object to be measured can also be determined, so the temperature of the object to be measured can be accurately determined without causing temperature measurement errors due to differences in emissivity.

〔発明の効果〕 以上説明したように、請求項1の発明による測定方法に
よれば、被測定物における測定距離を変化させて熱放射
検出器の出力の変化を求め、この出力変化の値と予め求
めておいた放射率既知の物体における放射率測定用デー
タとから被測定物の放射率を求め、被測定物の温度を測
定するようにした方法であるから、放射率の違いによる
温度測定誤差を生じることなく被測定物の温度を正確に
求めることかできる。
[Effects of the Invention] As explained above, according to the measurement method according to the invention of claim 1, the measurement distance at the object to be measured is changed to determine the change in the output of the thermal radiation detector, and the value of this output change is calculated. This method calculates the emissivity of the object to be measured from the emissivity measurement data of an object with a known emissivity obtained in advance, and measures the temperature of the object. The temperature of the object to be measured can be determined accurately without causing any errors.

また、請求項2の発明による測定方法によれば、互いに
多重反射特性か異なる牛ヤヒティの測定孔の位置に熱放
射検出器を配した二つの放射検出ヘッドを用いて、同一
測定距離にしたときの被測定物におけるキャビティの違
いによる各熱放射検出器の出力の変化を求め、この出力
変化の値と予め求めておいた放射率既知の物体における
放射率測定用データとから被測定物の放射率を求め、そ
の温度を測定するようにした方法であるから、放射率の
違いによる温度測定誤差を生しることなく被測定物の温
度を正確に求めることかできる。
Further, according to the measurement method according to the invention of claim 2, when the same measurement distance is obtained using two radiation detection heads each having a thermal radiation detector arranged at the position of the measurement hole of the cow Yachti which has different multiple reflection characteristics, The change in the output of each thermal radiation detector due to the difference in the cavity in the measured object is determined, and the radiation of the measured object is determined from this output change value and the emissivity measurement data for the object with a known emissivity. Since this method calculates the emissivity and then measures the temperature, it is possible to accurately determine the temperature of the object to be measured without causing temperature measurement errors due to differences in emissivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は請求項1の発明による方法を実施するための放
射温度測定装置の一例を示す構成説明図、第2図は請求
項1の発明に係る放射率測定用データの説明図、第3図
は請求項1の発明による被測定物の放射率を求める手順
の一例を説明するための図、第4図は請求項1の発明に
よる方法を実施するための放射温度測定装置の他の例を
示す構成説明図、第5図は請求項2の発明による方法を
実施するための放射温度測定装置の一例を示す構成説明
図、第6図は請求項2の発明に係る放射率測定用データ
の説明図、第7図は請求項2の発明による被測定物の放
射率を求める手順の一例を説明するための図、第8図は
従来の放射温度計の放射検出ヘッドの構成説明図である
。 L 1la111b−半球形キャビティ、2.12−熱
放射検出器、 3−放射検出ヘッド、13a−第1放射検出ヘツド、1
3b−第2放射検出ヘツト、 4.14−記憶演算装置、5.15−表示装置、6.1
6  被測定物。 特許出願人  株式会社神戸製鋼所
FIG. 1 is a configuration explanatory diagram showing an example of a radiation temperature measuring device for carrying out the method according to the invention of claim 1, FIG. 2 is an explanatory diagram of emissivity measurement data according to the invention of claim 1, and FIG. The figure is a diagram for explaining an example of the procedure for determining the emissivity of a measured object according to the invention of claim 1, and FIG. 4 is another example of a radiation temperature measuring device for carrying out the method according to the invention of claim 1. FIG. 5 is a configuration explanatory diagram showing an example of a radiation temperature measuring device for carrying out the method according to the invention of claim 2, and FIG. 6 is an explanatory diagram of emissivity measurement data according to the invention of claim 2. FIG. 7 is a diagram for explaining an example of the procedure for determining the emissivity of a measured object according to the invention of claim 2, and FIG. 8 is a diagram for explaining the configuration of a radiation detection head of a conventional radiation thermometer. be. L 1la 111b - hemispherical cavity, 2.12 - thermal radiation detector, 3 - radiation detection head, 13a - first radiation detection head, 1
3b-Second radiation detection head, 4.14-Storage/arithmetic device, 5.15-Display device, 6.1
6 Object to be measured. Patent applicant Kobe Steel, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)予め、異なる既知の放射率を有し同一温度におけ
る複数の物体それぞれにおいて、キャビティの測定孔の
位置に熱放射検出器を配設した放射検出ヘッドと前記物
体との測定距離を変化させて熱放射検出器の出力を測定
し、前記既知の各放射率における測定距離と熱放射検出
器の出力との関係を放射率測定用データとして求めてお
き、被測定物の測温に際し、前記放射検出ヘッドと被測
定物との測定距離を少なくとも2つの異なった距離に変
化させて熱放射検出器の出力を測定し、この出力の変化
と前記放射率測定用データとから被測定物の放射率を求
め、この求めた放射率を用いて被測定物の温度を測定す
るようにしたことを特徴とする被測定物の放射率と温度
の測定方法。
(1) In advance, for each of a plurality of objects having different known emissivities and at the same temperature, change the measurement distance between the object and the radiation detection head, which has a thermal radiation detector installed at the position of the measurement hole of the cavity. The output of the thermal radiation detector is measured using The output of the thermal radiation detector is measured by changing the measurement distance between the radiation detection head and the object to be measured to at least two different distances, and the radiation of the object to be measured is determined based on the change in output and the emissivity measurement data. A method for measuring the emissivity and temperature of an object to be measured, characterized in that the temperature of the object to be measured is measured using the determined emissivity.
(2)予め、異なる既知の放射率を有し同一温度におけ
る複数の物体それぞれにおいて、互いに多重反射特性が
異なるキャビティの測定孔の位置に熱放射検出器を配設
した二つの放射検出ヘッドを用いて、各放射検出ヘッド
と前記物体との測定距離を変化させて各熱放射検出器の
出力を測定し、前記両放射検出ヘッドにおいて前記既知
の各放射率における測定距離と熱放射検出器の出力との
関係を放射率測定用データとして求めておき、被測定物
の測温に際し、前記両放射検出ヘッドと被測定物との測
定距離を同一にして各熱放射検出器の出力を測定し、こ
の出力の変化と前記放射率測定用データとから被測定物
の放射率を求め、この求めた放射率を用いて被測定物の
温度を測定するようにしたことを特徴とする被測定物の
放射率と温度の測定方法。
(2) Using two radiation detection heads with thermal radiation detectors placed at the measurement holes of cavities with different multiple reflection characteristics for each of multiple objects with different known emissivities and at the same temperature. Then, the output of each thermal radiation detector is measured by changing the measurement distance between each radiation detection head and the object, and the measurement distance and the output of the thermal radiation detector at each of the known emissivities are measured in both radiation detection heads. The relationship between the two radiation detection heads and the object to be measured is determined as data for emissivity measurement, and when measuring the temperature of the object to be measured, the output of each thermal radiation detector is measured with the measurement distance between the two radiation detection heads and the object to be measured to be the same, The emissivity of the measured object is determined from the change in output and the emissivity measurement data, and the temperature of the measured object is measured using the determined emissivity. How to measure emissivity and temperature.
JP15115790A 1990-06-08 1990-06-08 Measuring method for emissivity and temperature of object to be measured Pending JPH0443928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15115790A JPH0443928A (en) 1990-06-08 1990-06-08 Measuring method for emissivity and temperature of object to be measured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15115790A JPH0443928A (en) 1990-06-08 1990-06-08 Measuring method for emissivity and temperature of object to be measured

Publications (1)

Publication Number Publication Date
JPH0443928A true JPH0443928A (en) 1992-02-13

Family

ID=15512599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15115790A Pending JPH0443928A (en) 1990-06-08 1990-06-08 Measuring method for emissivity and temperature of object to be measured

Country Status (1)

Country Link
JP (1) JPH0443928A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208287A (en) * 1994-12-19 2007-08-16 Applied Materials Inc Device for measuring temperature of substrate
JP2020034430A (en) * 2018-08-30 2020-03-05 株式会社チノー Temperature measurement method, and temperature measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208287A (en) * 1994-12-19 2007-08-16 Applied Materials Inc Device for measuring temperature of substrate
JP2020034430A (en) * 2018-08-30 2020-03-05 株式会社チノー Temperature measurement method, and temperature measurement device

Similar Documents

Publication Publication Date Title
US5294200A (en) Autocalibrating dual sensor non-contact temperature measuring device
US11674833B2 (en) Detection of contaminations on a sensing surface of a thermal sensor
US5216625A (en) Autocalibrating dual sensor non-contact temperature measuring device
WO2015137075A1 (en) Internal temperature measurement method and internal temperature measurement device
CN109580033A (en) A kind of concrete dam distributed optical fiber temperature measurement data error compensation method
EP0543326A2 (en) Surface condition measurement apparatus
US20090207882A1 (en) Temperature Sensor Module
JPH0443928A (en) Measuring method for emissivity and temperature of object to be measured
GB2588398A (en) Flow sensor
CN111551258B (en) Multi-infrared-sensor temperature measurement correction method based on self-adaptive weighting
Purpura et al. Gardon gauge heat flux sensor verification by new working facility
JP5540241B2 (en) Heat flux measuring device and heat flux measuring method
Ligęza Use of natural fluctuations of flow parameters for measurement of velocity vector
JPS63286729A (en) Thermopile detector
CN111060215A (en) Method for detecting spatial resolution of distributed optical fiber temperature sensor
JPH04299225A (en) Clinical thermometer
JPH02134522A (en) H2o-absorption correcting type radiation thermometer
CN109631833A (en) The difference barometric leveling method merged based on storage verification with inertial sensor
JPS6215424A (en) Object temperature measuring method utilizing radiation
EP2887034B1 (en) Semiconductor integrated circuit for calculating the temperature of an object
JPH07243920A (en) Optical fiber temperature distribution measuring system
US20210033638A1 (en) Motion sensing module
JP3376237B2 (en) Measuring device and measuring method
JPH03287028A (en) Radiation thermometer
JPH05240717A (en) Optical fiber type temperature distribution measuring device