JPH0443859B2 - - Google Patents

Info

Publication number
JPH0443859B2
JPH0443859B2 JP11888489A JP11888489A JPH0443859B2 JP H0443859 B2 JPH0443859 B2 JP H0443859B2 JP 11888489 A JP11888489 A JP 11888489A JP 11888489 A JP11888489 A JP 11888489A JP H0443859 B2 JPH0443859 B2 JP H0443859B2
Authority
JP
Japan
Prior art keywords
weight
oxide
glass
powder
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11888489A
Other languages
Japanese (ja)
Other versions
JPH02296749A (en
Inventor
Yasuto Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11888489A priority Critical patent/JPH02296749A/en
Publication of JPH02296749A publication Critical patent/JPH02296749A/en
Publication of JPH0443859B2 publication Critical patent/JPH0443859B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明はセラミツク基体に導電性被膜を形成す
るための導電ペーストに関するものである。 〔従来の技術〕 セラミツク基体上に導電回路や電極等の導電性
被膜を形成するため、導電性粉末としてAg,
Pd,Pt,Au等の貴金属粉末を、単体、合金又は
混合物で80〜96重量%、軟化点400〜700℃の硼珪
酸鉛ガラス粉末2〜10重量%及び酸化ビスマスや
酸化銅粉末などの無機充填剤2〜10重量%の固形
分をビヒクルと混合したペースト状組成物が用い
られている。 このような組成物をセラミツク基体上にスクリ
ーン印刷法や転写法等により所望形状に塗布し、
600〜900℃で焼成すれば、基体上に所望形状の導
電性被膜を形成することができる。 上記の組成物において、ガラス粉末は導電性粉
末をセラミツク基体上に固着するための結合剤で
あつて、無機充填剤である酸化ビスマス粉末は導
電性粉末とガラス、ガラスとセラミツク基体との
濡れ性を改善するために添加され、酸化銅粉末は
基体中のアルミナと反応して接着強度を改善する
為に添加される。 このような従来の導電性被膜は、被膜上に部品
を半田付けした初期においては、接着強度に何等
問題がないが、半田付けした状態で150℃程度の
温度にさらしておくと導電性被膜とセラミツク基
体との接着力が著しく低下する欠点があつた。 このような高温放置後の強度をエージング強度
と呼ぶが、この特性の良否は製品の信頼性を直接
左右する。 このエージング強度の低下を防止するには、ガ
ラス粉末を多く含有せしめれば良いが、そうする
と、逆に半田濡れ性が低下する。半田濡れ性の低
下は、生産能率を低下させると共に製品歩留り悪
化の原因にもなる。 〔発明が解決しようとする課題〕 本発明は、半田濡れ性を維持しながら必要なエ
ージング強度を有する導電性被膜を得ることので
きる導電ペーストを提供することにある。 〔課題を解決するための手段〕 本発明による上記の課題を解決するための手段
は、 (1) 酸化銅と酸化マンガンをそれぞれ5重量%以
上と、これらの合計量より多い酸化ビスマスを
含有し、且つこれらの成分を合計で80重量%以
上含有してなる組成のガラス粉末を2〜10重量
%と、貴金属粉末を85〜98重量%とを、全固形
分100重量%中に含有している導電ペースト、 (2) 全固形分100重量部と、ビヒクル12〜25重量
部との混合物からなる上記(1)に記載の導電ペー
スト、 にある。 本発明のガラスは酸化銅、酸化マンガン、酸化
ビスマス及びガラス形成剤例えば二酸化珪素、酸
化鉛、酸化硼素、酸化亜鉛、酸化モリブデンなど
の酸化物粉末を配合して900〜1500℃で熔融した
後急冷してガラスとする。酸化銅、酸化マンガ
ン、酸化ビスマスだけでガラスを形成しても良い
が、ガラス形成剤を添加した方がガラス化が容易
である。 このガラス粉末は、導電性被膜に加工される加
工温度との関係から軟化点が400〜700℃の範囲に
あるように調製される。 貴金属粉末としてAg,Pd,Pt,Au等の粉末
を単体、合金又は混合物として用いることが出来
る。Ag粉末のみを用いた場合には、高い導電性
は得られるが、半田に溶け込んだり流動しやすい
ので、これを防止するためにPdやPtを混合して
用いると良い。導電性粉末としての貴金属粉末は
導電ペーストの全固形分中への配合割合が、導電
性や半田濡れ性、半田に対する耐食性等を考慮し
て定められるが、従来と同程度の85〜98重量%の
範囲で使用出来る。 導電ペーストの全固形分中には、熱膨張率の調
整等のために、酸化モリブデン、二酸化珪素、酸
化亜鉛、酸化鉛、酸化クロムなどの無機質充填剤
粉末を5重量%以下添加することが出来る。 ビヒクルは従来と同様にターピネオール、ブチ
ルカルビトール、トルエンなどの溶媒にエチルセ
ルロース、メタクリレート樹脂などを溶解したも
のが用いられる。ビヒクルの配合量は従来と同様
に全固形分100重量部に対して12〜25重量部であ
る。 固形分粉末は、ビヒクルと混練してペースト状
とし、150〜400メツシユスクリーンを通して基体
に塗布される。ペーストがスクリーンを円滑に通
過しうるようにするためには、固形分は10μm以
上の粒子が殆どない粉末として用いるのが良く、
平均粒径2μm以下のものとして用いるのが良い。 この導電ペーストを適用する基体としては、ア
ルミナ、シリカ−アルミナ等の耐火性酸化物が挙
げられる。 〔作用〕 本発明のガラスには、酸化銅、酸化マンガン、
酸化ビスマスが必須成分であり、これら何れが欠
けてもエージング強度と、半田濡れ性の両方を満
足することが出来ない。酸化銅と酸化マンガンが
5重量%未満の場合や何れが欠けても、エージン
グ強度が小さくなる。又、酸化ビスマスが酸化銅
と酸化マンガンの合計量より少ないと、半田濡れ
性が悪くなりガラスの軟化点が上昇する。 ガラス中でこれら三成分が80重量%未満では半
田濡れ性が悪くなるか、エージング強度が悪くな
る。 導電ペースト中の全固形分中でガラス粉末の量
が2重量%未満では、導電性被膜と基体とのエー
ジング強度が著しく小さくなり、10重量%を超え
ると、半田濡れ性が悪くなる。 本発明ガラス成分は80重量%以上がガラス化さ
れた酸化銅、酸化マンガン、酸化ビスマスからな
るので、これらが単独で添加されている場合と異
なり、焼成により軟化し流動して導電性被膜と基
体との界面に容易に移動し、酸化銅、酸化マンガ
ン、酸化ビスマスが基体と反応して接着するの
で、従来の硼珪酸鉛ガラスに比べて強固に基体に
接着し、半田濡れ性を保ちつつエージング強度の
低下が小さくなるものと考えられる。 〔実施例〕 第1表にガラスフリツトの組成を示す。このガ
ラスフリツトを用いて以下のペーストを調整し
た。 導電粉末として粒径が1.2μmのAg粉末、及び
粒径が0.1μmのPd粉末、第1表のガラスフリツ
トを第2表の割合に配合し、この固形分100重量
部と液体ビヒクル20重量部を混練した。有機質ビ
ヒクルにはエチルセルロースを8重量部含有する
ターピネオール溶液を用いた。 上記ペースト状組成物をアルミナ基体上にテス
ト用パターンでスクリーン印刷し、ピーク温度
850℃、ピーク時間8分、全焼成サイクル60分の
ベルト式焼成炉で空気雰囲気焼成し、テストパタ
ーンの焼成被膜について次のような試験を行なつ
た。 (イ) 半田濡れ性……10mm角のパターン上にフラツ
クス(タムラ化研製、XA−100)を塗布して
該パターンを37Pb/63Sn半田浴(230℃)に5
秒間浸漬し、冷却後パターン上の半田の濡れ面
積比率を求める。 (ロ) 接着強度……2mm角のパターン上に直径0.65
mmのSnメツキ銅線を37Pb/63Snの半田を用い
て半田付けし、垂直方向に引張つて剥離し、剥
離時の引張力を求める。 (ハ) エージング強度……上記と同様にしてSnメ
ツキ銅線を半田付けした基板を150℃の恒温槽
中に300時間放置した後、上記と同様の剥離試
験に供する。 (イ)〜(ハ)の方法で測定された結果は、半田濡れ80
%以上、接着強度4.0Kg以上、エージング強度2.0
Kg以上の値が要求される。 第3表によれば、試験No.1〜4,13〜16で半田
濡れ性が80%以上であり、エージング強度も要求
される2.0Kgの1.5倍以上であり、本発明が半田濡
れ性を阻害せずにエージング強度を増大できるこ
とを示している。 これに対してNo.5〜12では、半田濡れが不充分
であつたり、又エージング強度も特に大きくない
ことから、ガラス組成が限定される。 又、No.17と18によれば、ガラスが多すぎると半
田濡れに悪影響を与えることを示し、ガラスが少
なすぎるとエージング強度が弱くなることを示し
ている。
[Industrial Application Field] The present invention relates to a conductive paste for forming a conductive film on a ceramic substrate. [Prior art] In order to form conductive films such as conductive circuits and electrodes on ceramic substrates, Ag, Ag, etc. are used as conductive powders.
Precious metal powder such as Pd, Pt, Au, etc. as a single substance, alloy or mixture is 80 to 96% by weight, 2 to 10% by weight of lead borosilicate glass powder with a softening point of 400 to 700℃, and inorganic materials such as bismuth oxide and copper oxide powder. Paste compositions have been used in which a solids content of 2 to 10% by weight of filler is mixed with a vehicle. Such a composition is applied onto a ceramic substrate in a desired shape by a screen printing method, a transfer method, etc.
By firing at 600 to 900°C, a conductive film in a desired shape can be formed on the substrate. In the above composition, the glass powder is a binder for fixing the conductive powder onto the ceramic substrate, and the bismuth oxide powder, which is an inorganic filler, is used to improve the wettability between the conductive powder and the glass, and between the glass and the ceramic substrate. Copper oxide powder is added to improve adhesive strength by reacting with alumina in the substrate. Conventional conductive coatings like this do not have any problems with adhesive strength when parts are soldered onto the coating, but if the soldered state is exposed to temperatures of about 150°C, the conductive coating will deteriorate. The drawback was that the adhesive strength with the ceramic substrate was significantly reduced. The strength after being left at high temperatures is called aging strength, and the quality of this property directly affects the reliability of the product. In order to prevent this decrease in aging strength, it is sufficient to include a large amount of glass powder, but this will conversely decrease solder wettability. Decrease in solder wettability not only reduces production efficiency but also causes deterioration in product yield. [Problems to be Solved by the Invention] An object of the present invention is to provide a conductive paste capable of obtaining a conductive film having necessary aging strength while maintaining solder wettability. [Means for Solving the Problems] Means for solving the above problems according to the present invention are as follows: (1) Containing copper oxide and manganese oxide in an amount of 5% by weight or more each, and bismuth oxide in an amount greater than the total amount of these. , and contains 2 to 10% by weight of glass powder having a composition containing 80% by weight or more of these components in total and 85 to 98% by weight of noble metal powder in 100% by weight of the total solid content. (2) The conductive paste according to (1) above, comprising a mixture of 100 parts by weight of total solids and 12 to 25 parts by weight of vehicle. The glass of the present invention is prepared by blending copper oxide, manganese oxide, bismuth oxide, and glass forming agents such as oxide powders such as silicon dioxide, lead oxide, boron oxide, zinc oxide, and molybdenum oxide, melting the mixture at 900 to 1500°C, and then rapidly cooling the mixture. and make it into glass. Although glass may be formed using only copper oxide, manganese oxide, and bismuth oxide, it is easier to form a glass by adding a glass forming agent. This glass powder is prepared to have a softening point in the range of 400 to 700°C in relation to the processing temperature at which it is processed into a conductive film. As the noble metal powder, powders such as Ag, Pd, Pt, and Au can be used alone, as an alloy, or as a mixture. If only Ag powder is used, high conductivity can be obtained, but it tends to dissolve into solder or flow, so to prevent this, it is better to use it in combination with Pd or Pt. The proportion of noble metal powder used as a conductive powder in the total solid content of the conductive paste is determined by considering conductivity, solder wettability, corrosion resistance to solder, etc., but it is 85 to 98% by weight, which is the same as conventional powder. Can be used within the range. Up to 5% by weight of inorganic filler powder such as molybdenum oxide, silicon dioxide, zinc oxide, lead oxide, and chromium oxide can be added to the total solid content of the conductive paste to adjust the coefficient of thermal expansion. . As in the conventional case, a vehicle prepared by dissolving ethyl cellulose, methacrylate resin, etc. in a solvent such as terpineol, butyl carbitol, or toluene is used. The blending amount of the vehicle is 12 to 25 parts by weight based on 100 parts by weight of the total solid content, as in the conventional case. The solid powder is kneaded with a vehicle to form a paste and applied to the substrate through a 150-400 mesh screen. In order for the paste to pass through the screen smoothly, it is best to use a powder containing almost no particles of 10 μm or larger in solid content.
It is preferable to use particles with an average particle size of 2 μm or less. Examples of the substrate to which this conductive paste is applied include refractory oxides such as alumina and silica-alumina. [Function] The glass of the present invention contains copper oxide, manganese oxide,
Bismuth oxide is an essential component, and if any of these is lacking, both aging strength and solder wettability cannot be satisfied. If the content of copper oxide and manganese oxide is less than 5% by weight, or if either of them is missing, the aging strength will be reduced. Furthermore, if the amount of bismuth oxide is less than the total amount of copper oxide and manganese oxide, the solder wettability will deteriorate and the softening point of the glass will increase. If these three components are less than 80% by weight in the glass, the solder wettability or aging strength will deteriorate. If the amount of glass powder is less than 2% by weight of the total solid content in the conductive paste, the aging strength of the conductive coating and the substrate will be significantly reduced, and if it exceeds 10% by weight, the solder wettability will deteriorate. The glass component of the present invention consists of 80% by weight or more of vitrified copper oxide, manganese oxide, and bismuth oxide. Copper oxide, manganese oxide, and bismuth oxide react with and adhere to the substrate, so it adheres more strongly to the substrate than conventional lead borosilicate glass, and can be aged while maintaining solder wettability. It is thought that the decrease in strength will be smaller. [Example] Table 1 shows the composition of the glass frit. The following paste was prepared using this glass frit. As a conductive powder, Ag powder with a particle size of 1.2 μm, Pd powder with a particle size of 0.1 μm, and glass frit shown in Table 1 were mixed in the proportions shown in Table 2, and 100 parts by weight of this solid content and 20 parts by weight of a liquid vehicle were mixed. Kneaded. A terpineol solution containing 8 parts by weight of ethyl cellulose was used as the organic vehicle. The above paste-like composition was screen printed in a test pattern on an alumina substrate, and the peak temperature
Firing was carried out in an air atmosphere in a belt-type firing furnace at 850°C, peak time 8 minutes, and total firing cycle 60 minutes, and the following tests were conducted on the fired film of the test pattern. (a) Solder wettability: Apply flux (XA-100, manufactured by Tamura Kaken) on a 10 mm square pattern and place the pattern in a 37Pb/63Sn solder bath (230℃) for 5 minutes.
Dip for a second, and after cooling, determine the wetted area ratio of the solder on the pattern. (b) Adhesive strength... 0.65mm diameter on a 2mm square pattern
Solder mm mm Sn-plated copper wire using 37Pb/63Sn solder, peel it by pulling it in the vertical direction, and measure the tensile force at the time of peeling. (c) Aging strength: A board to which Sn-plated copper wire was soldered in the same manner as above was left in a thermostat at 150°C for 300 hours, and then subjected to the same peel test as above. The results measured using methods (a) to (c) are solder wetness 80
% or more, adhesive strength 4.0Kg or more, aging strength 2.0
A value of Kg or more is required. According to Table 3, the solder wettability was 80% or more in Test Nos. 1 to 4 and 13 to 16, and the aging strength was also 1.5 times or more than the required 2.0 kg. This shows that aging strength can be increased without inhibition. On the other hand, in Nos. 5 to 12, the glass composition is limited because the solder wetting is insufficient and the aging strength is not particularly high. Further, according to Nos. 17 and 18, it is shown that too much glass has an adverse effect on solder wetting, and too little glass shows that the aging strength is weakened.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半田濡れ性及びエージング強
度に優れた導電被膜を形成できること上述の通り
であり、半田濡れ性向上により不良率を低減する
ことが出来る。又、接着強度、エージング強度は
増大するので製品の信頼性が向上する。
As described above, according to the present invention, a conductive film having excellent solder wettability and aging strength can be formed, and the defect rate can be reduced by improving the solder wettability. Furthermore, since the adhesive strength and aging strength are increased, the reliability of the product is improved.

Claims (1)

【特許請求の範囲】 1 酸化銅と、酸化マンガンをそれぞれ5重量%
以上と、これらの合計量より多い酸化ビスマスを
含有し、且つこれらの成分を合計で80重量%以上
含有してなる組成のガラス粉末を2〜10重量%
と、貴金属粉末を85〜98重量%とを、全固形分
100重量%中に含有している導電ペースト。 2 全固形分100重量部と、ビヒクル12〜25重量
部との混合物からなる請求項1に記載の導電ペー
スト。
[Claims] 1 5% by weight of each of copper oxide and manganese oxide
2 to 10% by weight of glass powder having a composition containing more bismuth oxide than the total amount of the above and 80% by weight or more of these components in total.
and 85-98% by weight of precious metal powder, total solid content
Conductive paste containing 100% by weight. 2. The conductive paste of claim 1, comprising a mixture of 100 parts by weight of total solids and 12 to 25 parts by weight of vehicle.
JP11888489A 1989-05-12 1989-05-12 Electric conductive paste Granted JPH02296749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11888489A JPH02296749A (en) 1989-05-12 1989-05-12 Electric conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11888489A JPH02296749A (en) 1989-05-12 1989-05-12 Electric conductive paste

Publications (2)

Publication Number Publication Date
JPH02296749A JPH02296749A (en) 1990-12-07
JPH0443859B2 true JPH0443859B2 (en) 1992-07-17

Family

ID=14747524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11888489A Granted JPH02296749A (en) 1989-05-12 1989-05-12 Electric conductive paste

Country Status (1)

Country Link
JP (1) JPH02296749A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850388B2 (en) * 2010-08-26 2016-02-03 日本電気硝子株式会社 Electrode forming glass and electrode forming material using the same

Also Published As

Publication number Publication date
JPH02296749A (en) 1990-12-07

Similar Documents

Publication Publication Date Title
JPS6016041B2 (en) Paste for forming thick film conductors
JPH0334162B2 (en)
JPH07500450A (en) Silver-rich conductor composition with high thermal cycle adhesion and aging adhesion
US4318830A (en) Thick film conductors having improved aged adhesion
JPS62104878A (en) Copper-containing conductive paint for magnetized metal substrate
JPH01192781A (en) Thick film copper conductor composition
JPS5848987A (en) Conductor composition for porcelain iron unit base
JP4163003B2 (en) Use of conductor compositions in electronic circuits
JP2004524665A (en) Use of conductor compositions in electronic circuits
JP2795467B2 (en) Good adhesive metal paste
JPH0443859B2 (en)
JPH06215617A (en) Conductive paste for baking
JPH04190502A (en) Copper conductor paste
JP2917457B2 (en) Conductor paste
JPH0259563B2 (en)
JP4252315B2 (en) Conductor composition and use thereof
JP4838469B2 (en) Conductor composition
JPS60137847A (en) Composition for forming thick film
JP3227868B2 (en) Solder paste
JP2550630B2 (en) Copper paste for conductive film formation
JPH0349108A (en) Copper conductor composition material
JPH0596396A (en) Creamy solder
JP6836184B2 (en) Composition for forming a thick film conductor and a method for producing a thick film conductor
JPH0850806A (en) Composition for thick film conductor
JPS61247672A (en) Method of joining metal particle to substrate and adhesive composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070717

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080717

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20090717

EXPY Cancellation because of completion of term