JPH0443833A - Fuel supply device for internal combustion engine - Google Patents

Fuel supply device for internal combustion engine

Info

Publication number
JPH0443833A
JPH0443833A JP15149390A JP15149390A JPH0443833A JP H0443833 A JPH0443833 A JP H0443833A JP 15149390 A JP15149390 A JP 15149390A JP 15149390 A JP15149390 A JP 15149390A JP H0443833 A JPH0443833 A JP H0443833A
Authority
JP
Japan
Prior art keywords
fuel
fuel supply
temperature
correcting
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15149390A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aizawa
博之 相沢
Tadaki Ota
太田 忠樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP15149390A priority Critical patent/JPH0443833A/en
Publication of JPH0443833A publication Critical patent/JPH0443833A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve startability, especially high temperature re-startability and operability by correcting a fuel supply quantity based on fuel composition, fuel temperature, and fuel residence characteristic of a fuel supply means. CONSTITUTION:A fuel temperature detecting means E to detect temperature of mixed fuel, a vapor correcting quantity setting means F to set a vapor correcting quantity based on the detected mixed fuel temperature and fuel composition, a characteristic correcting quantity setting means G to set a characteristic correcting quantity of a fuel supply means C based on a fuel residence characteristic of the means, and a correcting means H to correct a fuel supply quantity based on a set vapor correcting quantity and characteristic correcting quantity, are provided. Thus, the fuel supply quantity is corrected based on the composition of mixed fuel and the fuel temperature, and set in optimum regardless of a vapor generating quantity. Further, the fuel supply quantity is corrected based on the fuel remaining characteristic of the fuel supply means, and optimum fuel supply quantity is insured regardless of the sort of the fuel supply means. Hereby, startability and operability are improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、メタノール等の燃料とガソリン等の他の燃料
とを複数混合した混合燃料を使用する内燃機関の燃料供
給装置に関し、特に高温再始動性の向上技術に関する。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a fuel supply system for an internal combustion engine that uses a mixed fuel of a plurality of fuels such as methanol and other fuels such as gasoline, and particularly relates to Regarding technology for improving startability.

〈従来の技術〉 この種の内燃機関の燃料供給装置の従来例(4?開昭6
2−243937号公報参照)として、以下のようなも
のかある。
<Prior art> Conventional example of this type of fuel supply device for an internal combustion engine (4?
2-243937)) are as follows.

すなわち、例えば機関回転速度と吸入空気流量(機関負
荷)とから基本噴射量を演算した後、この基本噴射量を
冷却水温度、アルコール濃度等により補正して燃料噴射
量を算出する。そして、算出された燃料噴射量に対応す
る噴射パルス信号を燃料噴射弁に出力し、機関に燃料を
供給する。
That is, after calculating the basic injection amount from, for example, the engine rotational speed and the intake air flow rate (engine load), the basic injection amount is corrected based on the cooling water temperature, alcohol concentration, etc. to calculate the fuel injection amount. Then, an injection pulse signal corresponding to the calculated fuel injection amount is output to the fuel injection valve to supply fuel to the engine.

また、始動時(クランキング時)には始動性を向上させ
るために、前記燃料噴射量算出とは別に始動時噴射量を
求めて燃料を機関に供給するようにしている。
Further, at the time of starting (during cranking), in order to improve startability, a starting injection amount is calculated separately from the fuel injection amount calculation, and fuel is supplied to the engine.

〈発明が解決しようとする課題〉 ところで、アルコール混合燃料においては、混合燃料濃
度によって燃料の蒸気圧か変化するので、ベーパ発生量
も燃料濃度によって変化するため、燃料濃度によっては
始動性及び運転性を悪化させるという不具合かある。特
に、混合燃料の高温時にはベーパ発生量か多くなるので
、高温時の再始動性及び運転性の悪化が顧著となる。
<Problems to be Solved by the Invention> By the way, in alcohol mixed fuel, the vapor pressure of the fuel changes depending on the mixed fuel concentration, so the amount of vapor generated also changes depending on the fuel concentration, so starting performance and drivability may vary depending on the fuel concentration. There is a problem in that it makes things worse. In particular, when the mixed fuel is at a high temperature, the amount of vapor generated increases, so restartability and drivability at high temperatures are adversely affected.

本発明は、このような実状に鑑みてなされたもので、始
動性及び運転性を向上できる内燃機関の燃料供給装置を
提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel supply device for an internal combustion engine that can improve startability and drivability.

〈課題を解決するための手段〉 このため、本発明は第1図に示すように、複数種類の燃
料を混合させた混合燃料を機関に供給するものであって
、前記混合燃料の組成を検出する燃料組成検出手段Aと
、検出された燃料組成に基づいて燃料供給量を設定する
燃料供給量設定手段Bと、設定された燃料供給量に基づ
いて燃料供給手段Cを駆動制御する駆動制御手段りと、
を備えるものにおいて、前記混合燃料の温度若しくはこ
れに関連する温度を検出する燃料温度検出手段Eと、検
出された混合燃料温度と燃料組成とに基づいて蒸気補正
量を設定する蒸気補正量設定手段Fと、前記燃料供給手
段Aの特性補正量を該燃料供給手段Aの燃料滞留特性に
基づいて設定する特性補正量設定手段Gと、設定された
蒸気補正量と特性補正量とに基づいて前記燃料供給量を
補正する補正手段Hと、を備えるようにした。
<Means for Solving the Problems> Therefore, as shown in FIG. 1, the present invention supplies a mixed fuel in which a plurality of types of fuel are mixed to an engine, and detects the composition of the mixed fuel. a fuel composition detecting means A for detecting the fuel composition; a fuel supply amount setting means B for setting the fuel supply amount based on the detected fuel composition; and a drive control means for driving and controlling the fuel supply means C based on the set fuel supply amount. Rito,
a fuel temperature detection means E for detecting the temperature of the mixed fuel or a temperature related thereto, and a steam correction amount setting means for setting a steam correction amount based on the detected mixed fuel temperature and fuel composition. F, characteristic correction amount setting means G for setting the characteristic correction amount of the fuel supply means A based on the fuel retention characteristics of the fuel supply means A, and A correction means H for correcting the fuel supply amount is provided.

〈作用〉 このようにして、混合燃料の組成を燃料温度とに基づい
て燃料供給量を補正することにより、ベーパ発生量に拘
わらず燃料供給量を最適に設定し始動性及び運転性を向
上させるようにした。 また、燃料供給手段の燃料滞留
特性に基づいて燃料供給量を補正することにより、燃料
供給手段の種類に拘わらず最適な燃料供給量を確保し、
これによっても始動性及び運転性を向上させるようにし
た。
<Operation> In this way, by correcting the fuel supply amount based on the composition of the mixed fuel and the fuel temperature, the fuel supply amount is optimally set regardless of the amount of vapor generated, improving startability and drivability. I did it like that. In addition, by correcting the fuel supply amount based on the fuel retention characteristics of the fuel supply means, an optimal fuel supply amount can be ensured regardless of the type of fuel supply means,
This also improves startability and drivability.

〈実施例〉 以下に、本発明の一実施例を第2図〜第14♂に基づい
て説明する。
<Example> An example of the present invention will be described below based on FIGS. 2 to 14.

第2図において、マイクロコンピュータ1には、エアフ
ローメータ2からの吸入空気流量信号と、クランク角セ
ンサ3からのレファレンス信号(機関回転速度に対応す
る)及びポジョション信号と、排気中の酸素濃度がら空
燃比を検出する酸素センサ4からの酸素濃度信号と、燃
料供給通路(図示せず)に介装される燃料組成検出手段
としてのアルコール濃度センサ5からのアルコール濃度
信号と、水温センサ6からの冷却水温度信号と、燃料温
度検出手段としての燃料温度センサ7からの燃料温度信
号とか、入力されている。
In FIG. 2, the microcomputer 1 receives an intake air flow rate signal from an air flow meter 2, a reference signal (corresponding to the engine rotation speed) and a position signal from a crank angle sensor 3, and an air flow signal based on the oxygen concentration in the exhaust gas. An oxygen concentration signal from an oxygen sensor 4 that detects the fuel ratio, an alcohol concentration signal from an alcohol concentration sensor 5 as a fuel composition detection means installed in a fuel supply passage (not shown), and a cooling signal from a water temperature sensor 6. A water temperature signal and a fuel temperature signal from a fuel temperature sensor 7 serving as fuel temperature detection means are input.

前記マイクロコンピュータ1は、l10IAとCPUI
Bと、ROMICと、RAMI Dと、を備えて構成さ
れ、前記各種センサからの信号に基づいて燃料噴射量を
演算し、機関の吸気系に介装された燃料供給手段として
の燃料噴射弁8に噴射パルス信号を出力する。
The microcomputer 1 has an l10IA and a CPUI.
A fuel injection valve 8 is configured to include a fuel injection valve B, a ROMIC, and a RAMI D, and calculates a fuel injection amount based on signals from the various sensors, and serves as a fuel supply means installed in the intake system of the engine. Outputs an injection pulse signal to.

ここでは、マイクロコンピュータ1が燃料供給量設定手
段と駆動制御手段と蒸気補正量設定手段と特性補正量設
定手段と補正手段とを構成する。
Here, the microcomputer 1 constitutes a fuel supply amount setting means, a drive control means, a steam correction amount setting means, a characteristic correction amount setting means, and a correction means.

次に作用を第3図のフローチャートに従って説明する。Next, the operation will be explained according to the flowchart shown in FIG.

Slては、エアフローメータ2、クランク角センサ3等
の各種信号を読込む。
Sl reads various signals from the air flow meter 2, crank angle sensor 3, etc.

S2では、検出された吸入空気流量Qと、機関回転速度
Nとから基本噴射量T、(=KQ/; Kは定数)を演
算する。
In S2, a basic injection amount T, (=KQ/; K is a constant) is calculated from the detected intake air flow rate Q and engine rotational speed N.

S3では、アルコール濃度センサ5により検出されたア
ルコール濃度に基ついて、アルコール補正係数ALCを
マツプから検索する。このアルコール補正係数ALCは
、第4図に示すように、アルコール濃度か高くなるに従
って略直線的に大きくなるように設定されている。
In S3, the alcohol correction coefficient ALC is searched from the map based on the alcohol concentration detected by the alcohol concentration sensor 5. As shown in FIG. 4, this alcohol correction coefficient ALC is set to increase approximately linearly as the alcohol concentration increases.

S4では、水温センサ6により検出された冷却水温度に
基ついて、弁特性補正係数KINJをマツプから検索す
る。弁特性補正係数KINJは、第5図に示すように、
後述のトップフィード型の燃料噴射弁においては所定値
(約80°C)以下の冷却水温度域にて冷却水温度に拘
わらす略一定値に維持され所定値を超える冷却水温度域
にて冷却水温度の上昇に従って大きくなるように設定さ
れる。
In S4, the valve characteristic correction coefficient KINJ is searched from the map based on the cooling water temperature detected by the water temperature sensor 6. The valve characteristic correction coefficient KINJ is, as shown in Fig. 5,
In the top-feed type fuel injection valve described below, it is maintained at a substantially constant value regardless of the cooling water temperature in the cooling water temperature range below a predetermined value (approximately 80°C), and is cooled in the cooling water temperature range exceeding the predetermined value. It is set to increase as the water temperature rises.

また、弁特性補正係数KINJは、第5図に示すように
、後述のボトムフィード型の燃料噴射弁においては冷却
水温度に拘わらず略一定値に維持される。ここで、エン
ジン仕様によってトップフィード型とボトムフィード型
とが決定されるので、いずれかの弁特性補正係数をマツ
プに記憶させればよい。尚、燃料温度に対応させて弁特
性補正係数を設定させてもよい。
Further, as shown in FIG. 5, the valve characteristic correction coefficient KINJ is maintained at a substantially constant value in a bottom feed type fuel injection valve, which will be described later, regardless of the cooling water temperature. Here, since the top-feed type and bottom-feed type are determined depending on the engine specifications, either one of the valve characteristic correction coefficients may be stored in the map. Note that the valve characteristic correction coefficient may be set in accordance with the fuel temperature.

S5では、検出されたアルコール濃度と燃料濃度とに基
づいて、蒸気圧補正係数KRVPをマツプから検索する
。蒸気圧補正係数KRVPは、第6図に示すように、低
アルコール濃度域ではアルコール濃度が高くなるに従っ
て大きくなり、それ以上のアルコール濃度域ではアルコ
ール濃度が高くなるに従って小さくなるように設定され
ている。
In S5, the vapor pressure correction coefficient KRVP is searched from the map based on the detected alcohol concentration and fuel concentration. As shown in Figure 6, the vapor pressure correction coefficient KRVP is set to increase as the alcohol concentration increases in the low alcohol concentration range, and decrease as the alcohol concentration increases in the higher alcohol concentration range. .

また、蒸気圧補正係数KRVPは、第6図に示すように
、所定値(約M80)以下のアルコール濃度域では燃料
温度か高くなるに従って大きくなり前記所定値を超′え
るアルコール濃度域では燃料温度が高くなるに従って小
さくなるように設定されている。尚、アルコール濃度に
基づいて蒸気圧・補正係数を求めた後その係数を燃料温
度に基づいて゛補正するようにしてもよく、また逆に補
正するようにしてもよい。
Further, as shown in FIG. 6, the vapor pressure correction coefficient KRVP increases as the fuel temperature increases in the alcohol concentration range below a predetermined value (approximately M80), and increases as the fuel temperature increases in the alcohol concentration range exceeding the predetermined value. It is set to decrease as the value increases. Note that after determining the vapor pressure/correction coefficient based on the alcohol concentration, the coefficient may be corrected based on the fuel temperature, or vice versa.

S6では、始動時(クランキング等)か否かを判定し、
YESのときにはS7に進みNoのときにはS14に進
む。
In S6, it is determined whether or not it is starting (cranking, etc.),
When the answer is YES, the process advances to S7, and when the answer is No, the process advances to S14.

S7では、検出された冷却水温度に基づいて、始動時基
本噴射量TC3Tをマツプから検索する。
In S7, the starting basic injection amount TC3T is searched from the map based on the detected cooling water temperature.

始動時基本噴射量TCSTは、第7図に示すように、冷
却水温度が高くなるに従って小さくなるように設定され
ている。
As shown in FIG. 7, the starting basic injection amount TCST is set to decrease as the cooling water temperature increases.

S8では、検出された機関回転速度に基づいて、回転補
正係数TC3Nは、第8図に示すように、クランキング
中の機関回転速度が所定値未満のときに1に設定され所
定値以上のときに機関回転速度の上昇に従って減少する
ように設定されている。
In S8, based on the detected engine rotation speed, the rotation correction coefficient TC3N is set to 1 when the engine rotation speed during cranking is less than a predetermined value, and is set to 1 when the engine rotation speed during cranking is above a predetermined value, as shown in FIG. is set to decrease as the engine rotation speed increases.

S9では、始動時噴射量TTSTを次式により演算する
In S9, the starting injection amount TTST is calculated using the following equation.

TTST=TC3TXTC3NXALCXTKC3xK
INJxKRVP TKC3は、時間補正係数であって、クランキング中(
スタータモータ作動中)若しくはクランキング開始から
所定時間経過するまでは一定値に保持され、その後経過
時間に伴って徐々に零になるように減少させて設定され
ている。
TTST=TC3TXTC3NXALCXTKC3xK
INJxKRVP TKC3 is a time correction coefficient during cranking (
It is maintained at a constant value until a predetermined period of time has elapsed since the start of cranking (while the starter motor is in operation) or after the start of cranking, and then it is set to gradually decrease to zero as time elapses.

SIOでは、始動時噴射量TSTを次式により演算する
In SIO, the starting injection amount TST is calculated using the following equation.

T S T = T p X COE F X A L
 CX a X 1.3 +T。
T S T = T p X COE F X A L
CX a X 1.3 +T.

C0EFは、各種補正係数であって、(l十水温増量補
正係数+空燃比補正係数+始動及び始動後増量補正係数
+アイドル後増量補正係数+加速減量補正係数+高水温
増量補正係数)で表される。
C0EF is various correction coefficients, expressed as (10 water temperature increase correction coefficient + air-fuel ratio correction coefficient + starting and post-start increase correction coefficient + post-idling increase correction coefficient + acceleration reduction correction coefficient + high water temperature increase correction coefficient) be done.

αは酸素センサ4の検出信号に基づく空燃比フィードバ
ック補正係数、T、はバッテリ電圧による電圧補正分で
ある。
α is an air-fuel ratio feedback correction coefficient based on the detection signal of the oxygen sensor 4, and T is a voltage correction amount based on the battery voltage.

Sllでは、始動時噴射量TTSTとTSTとを比較し
、TTST≧TSTのときには−312に進みTTST
<TSTのときにはS13に進む。
Sll compares the starting injection amount TTST and TST, and when TTST≧TST, proceeds to -312 and sets TTST.
<TST, the process advances to S13.

S12では、始動時噴射量TTSTを選択する。In S12, the starting injection amount TTST is selected.

S13では、始動時噴射量TSTを選択する。In S13, the starting injection amount TST is selected.

314では、検出された冷却水温度に基づいて、始動お
よび始動後基本増量補正係数KASBをマツプから検索
する。このKASBは、第9図に示すように、冷却水温
度が高くなるに従って、小さくなるように設定されてい
る。
At step 314, a starting and post-starting basic increase correction coefficient KASB is searched from the map based on the detected cooling water temperature. As shown in FIG. 9, KASB is set to decrease as the cooling water temperature increases.

S15ては、始動および始動後増量補正係数KASを次
式により演算する。
In S15, a starting and post-starting increase correction coefficient KAS is calculated using the following equation.

KAS=KASBXKANJXKRVP前記KASは、
クランキング終了時点から所定時間或いは所定回転毎に
徐々に零になるように減少補正される。
KAS=KASBXKANJXKRVPThe above KAS is
From the end of cranking, it is corrected to gradually decrease to zero at predetermined times or every predetermined rotation.

S16ては、燃料噴射量T1を次式により演算する。In S16, the fuel injection amount T1 is calculated using the following equation.

T、=T、×C0EFxALC×α+T。T,=T,×C0EFxALC×α+T.

KASは各種補正係数C0FFに含まれる。KAS is included in various correction coefficients C0FF.

このようにして、選択された始動時噴射量若しくは燃料
噴射量T、に対応する噴射パルス信号を燃料噴射弁8に
出力し、燃料を機関に供給する。
In this way, an injection pulse signal corresponding to the selected startup injection amount or fuel injection amount T is output to the fuel injection valve 8, and fuel is supplied to the engine.

以上説明したように、アルコール濃度と燃料濃度とから
求められた蒸気圧補正係数KRVPに基づいて始動時噴
射量及び始動後の燃料噴射量を算出するようにしたので
、アルコール濃度及び燃料温度に応じてベーパ発生量が
変化してもこの発生量に拘わらず始動時噴射量及び燃料
噴射量を最適に設定できるため、始動性及び運転性を向
上でき、特に高温時の再始動性を大幅に向上できる。
As explained above, since the starting injection amount and the post-starting fuel injection amount are calculated based on the vapor pressure correction coefficient KRVP obtained from the alcohol concentration and fuel concentration, the injection amount depends on the alcohol concentration and fuel temperature. Even if the amount of vapor generated changes due to changes in the amount of vapor generated, the starting injection amount and fuel injection amount can be set optimally regardless of the amount of vapor generated, which improves startability and drivability, and significantly improves restartability especially at high temperatures. can.

また、始動時噴射量及び燃料噴射量を燃料噴射弁への燃
料フィードタイプに基づいて補正するようにしたのてフ
ィードタイプに拘わらず最適な始動時噴射量及び燃料噴
射量を確保できるため、これによっても始動性及び運転
性を向上でき特に高温再始動性を大幅に向上できる。
In addition, since the starting injection amount and fuel injection amount are corrected based on the fuel feed type to the fuel injection valve, the optimum starting injection amount and fuel injection amount can be secured regardless of the feed type. This also improves startability and driveability, and in particular, greatly improves high-temperature restartability.

これを第10図〜第14図に基づいて詳細に説明すると
、トップフィード型燃料噴射弁10は、第10図に示す
ように、噴射弁本体上端部の燃料供給口10Aに燃料供
給通路10Bから燃料を供給して下端部の噴孔10Cか
ら燃料を噴射するものである。また、ボトムフィード堅
燃料噴射弁11は、第11図に示すように、噴射弁体側
部の燃料供給口11Aに燃料供給通路11Bから燃料を
供給して噴孔lICから燃料を噴射すると共に余剰燃料
を上端部からリターン通路11Dに戻すものである。
This will be explained in detail based on FIGS. 10 to 14. As shown in FIG. Fuel is supplied and injected from the nozzle hole 10C at the lower end. Further, as shown in FIG. 11, the bottom-feed solid fuel injection valve 11 supplies fuel from a fuel supply passage 11B to a fuel supply port 11A on the side of the injection valve body, injects fuel from a nozzle hole IC, and injects surplus fuel. is returned to the return passage 11D from the upper end.

また、新ボトムフィード型燃料噴射弁12は、第12図
に示すように、噴射弁本体を燃料供給通路12Aに介装
し側部の燃料供給口12Bから燃料を導入して下端部の
噴孔12Cから噴射するものである。
In addition, as shown in FIG. 12, the new bottom-feed type fuel injection valve 12 has an injection valve main body interposed in a fuel supply passage 12A, and fuel is introduced from a fuel supply port 12B on the side and a nozzle hole at the lower end. It is injected from 12C.

さらに、新ボトムフィード改良型燃料噴射弁13は、第
13図に示すように、新ボトムフィード型のものに加え
て下部の燃料供給口13Aからも燃料を導入して噴孔1
3Bから噴射するものである。
Furthermore, as shown in FIG. 13, the new bottom-feed improved fuel injection valve 13 introduces fuel from the lower fuel supply port 13A in addition to the new bottom-feed type, and
It is injected from 3B.

このようなフィード型のものでは、トップフィード型の
ものか噴射弁本体内に燃料か滞留する時間か一番長(な
り、ボトムフィード型、新ボrムフィード型、新ボトム
フィード改良型の順に燃料の滞留時間か短くなる。そし
て、燃料の滞留時間か長(なるほど噴射弁本体内にてベ
ーパか発生しやす(なり、再始動時間は滞留時間に対応
して第14図に示すようにトップフィード型のもの程長
くなる。
Among these feed types, the top feed type has the longest time for fuel to stay in the injector body (the bottom feed type, the new cylinder feed type, and the new bottom feed improved type have the longest fuel retention time). The residence time of the fuel is shortened.Then, the residence time of the fuel is long (indeed, vapor is likely to be generated within the injector body), and the restart time corresponds to the residence time of the top-feed type as shown in Figure 14. The longer it is, the longer it is.

従って、フィード型に応した始動時噴射量及び燃料噴射
量を補正するようにしているため始動性及び運転性を向
上できる。
Therefore, since the starting injection amount and fuel injection amount are corrected according to the feed type, starting performance and drivability can be improved.

尚、燃料温度センサを設けて蒸気補正係数を求めるよう
にしたか、燃料温度に関連する冷却水温度から蒸気補正
係数を求めるようにしても′よい。
It should be noted that a fuel temperature sensor may be provided to determine the steam correction coefficient, or the steam correction coefficient may be determined from the cooling water temperature related to the fuel temperature.

〈発明の効果〉 本発明は、以上説明したように、燃料供給量を燃料組成
と燃料温度と燃料供給手段の燃料滞留特性に基ついて補
正するようにしたので、燃料供給手段の種類に拘わらず
最適な燃料供給量を確保てきるため、始動性、特に高温
再始動性と運転性とを向上できる。
<Effects of the Invention> As explained above, the present invention corrects the fuel supply amount based on the fuel composition, fuel temperature, and fuel retention characteristics of the fuel supply means, regardless of the type of fuel supply means. Since an optimum fuel supply amount can be secured, startability, especially high temperature restartability and drivability, can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のクレーム対応図、第2図は本発明の一
実施例を示す構成図、第3図は同上のフローチャート、
第4図〜第9図は同上の作用を説明するための図、第1
0図〜第13図は燃料噴射弁の種類を夫々説明するため
の図、第14図は同上の特性図である。 1・・・マイクロコンピュータ  2・・・エアフロー
メータ  3・・・クランク角センサ  5・・・アル
コール濃度センサ  6・・・水温センサ  7・・・
燃料温度センサ  8・・・燃料温度センサ特許出願人
 日産自動車株式会社 代理人 弁理士 笹 島  富二雄 第2図 Q 7図 ;〜即札二序 高 優 8最 ;々p本JL屓 市 第1o図 10C 第 11図 +1c
Fig. 1 is a claim correspondence diagram of the present invention, Fig. 2 is a configuration diagram showing an embodiment of the present invention, Fig. 3 is a flowchart of the same as above,
Figures 4 to 9 are diagrams for explaining the same effect as above;
0 to 13 are diagrams for explaining the types of fuel injection valves, and FIG. 14 is a characteristic diagram of the same. 1...Microcomputer 2...Air flow meter 3...Crank angle sensor 5...Alcohol concentration sensor 6...Water temperature sensor 7...
Fuel temperature sensor 8... Fuel temperature sensor patent applicant Nissan Motor Co., Ltd. agent Patent attorney Fujio Sasashima Figure 2 Q Figure 7; 10C Figure 11 +1c

Claims (1)

【特許請求の範囲】[Claims] 複数種類の燃料を混合させた混合燃料を機関に供給する
ものであって、前記混合燃料の組成を検出する燃料組成
検出手段と、検出された燃料組成に基づいて燃料供給量
を設定する燃料供給量設定手段と、設定された燃料供給
量に基づいて燃料供給手段を駆動制御する駆動制御手段
と、を備える内燃機関の燃料供給装置において、前記混
合燃料の温度若しくはこれに関連する温度を検出する燃
料温度検出手段と、検出された混合燃料温度と燃料組成
とに基づいて蒸気補正量を設定する蒸気補正量設定手段
と、該燃料供給手段の燃料滞留特性に基づいて前記燃料
供給手段の特性補正量を設定する特性補正量設定手段と
、設定された蒸気補正量と特性補正量とに基づいて前記
燃料供給量を補正する補正手段と、を備えたことを特徴
とする内燃機関の燃料供給装置。
A fuel composition detecting means for detecting the composition of the mixed fuel, and a fuel supply for setting a fuel supply amount based on the detected fuel composition, which supplies a mixed fuel made by mixing a plurality of types of fuel to the engine. In a fuel supply system for an internal combustion engine, the temperature of the mixed fuel or a temperature related thereto is detected in a fuel supply device for an internal combustion engine, comprising a quantity setting means and a drive control means for driving and controlling the fuel supply means based on the set fuel supply quantity. fuel temperature detection means, steam correction amount setting means for setting a steam correction amount based on the detected mixed fuel temperature and fuel composition, and characteristic correction of the fuel supply means based on the fuel retention characteristics of the fuel supply means. A fuel supply device for an internal combustion engine, comprising: a characteristic correction amount setting means for setting the amount; and a correction means for correcting the fuel supply amount based on the set steam correction amount and the characteristic correction amount. .
JP15149390A 1990-06-12 1990-06-12 Fuel supply device for internal combustion engine Pending JPH0443833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15149390A JPH0443833A (en) 1990-06-12 1990-06-12 Fuel supply device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15149390A JPH0443833A (en) 1990-06-12 1990-06-12 Fuel supply device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0443833A true JPH0443833A (en) 1992-02-13

Family

ID=15519704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15149390A Pending JPH0443833A (en) 1990-06-12 1990-06-12 Fuel supply device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0443833A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187066A (en) * 2006-01-12 2007-07-26 Toyota Motor Corp Exhaust reformer system control device for internal combustion engine
JP2010116805A (en) * 2008-11-11 2010-05-27 Toyota Motor Corp Control device for engine
WO2013121280A1 (en) * 2012-02-14 2013-08-22 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187066A (en) * 2006-01-12 2007-07-26 Toyota Motor Corp Exhaust reformer system control device for internal combustion engine
JP2010116805A (en) * 2008-11-11 2010-05-27 Toyota Motor Corp Control device for engine
WO2013121280A1 (en) * 2012-02-14 2013-08-22 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100308223B1 (en) Internal combustion engine control system
JP3483509B2 (en) Fuel injection system for internal combustion engine
US7983831B2 (en) Control apparatus and method for internal combustion engine and fuel property determining apparatus and method
US6314944B1 (en) Fuel property determination from accumulated intake air amount and accumulated fuel supply amount
JPS59208141A (en) Method of controlling lean air-fuel ratio in electronic control engine
WO2006129198A1 (en) Fuel injection quantity control apparatus for an internal combustion engine
JP2887056B2 (en) Fuel property determination device for internal combustion engine
JP3005818B2 (en) Engine start fuel supply control device
JPH1136937A (en) Fuel supply volume control device for internal combustion engine
US8161954B2 (en) Fuel supply control apparatus
JPH0443833A (en) Fuel supply device for internal combustion engine
JP3966202B2 (en) Control device for internal combustion engine
JPH0326841A (en) Fuel injector for engine
JP3061277B2 (en) Air-fuel ratio learning control method and device
JP5056640B2 (en) Engine fuel supply system
JP3006304B2 (en) Air-fuel ratio controller for multi-fuel engines
JPH02256848A (en) Air-fuel ratio control device for internal combustion engine
JP3003488B2 (en) Evaporative fuel processor for engine
JPH07324643A (en) Fuel injection control device for internal combustion engine
JPH07180580A (en) Air-fuel ratio control device for engine
JP3183068B2 (en) Fuel supply control device for internal combustion engine
JP2734076B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0612235Y2 (en) Air-fuel ratio controller for internal combustion engine
JP2778375B2 (en) Engine air-fuel ratio control device
JP2657670B2 (en) Electronically controlled fuel injection device for internal combustion engine