JPH0443782B2 - - Google Patents

Info

Publication number
JPH0443782B2
JPH0443782B2 JP58098073A JP9807383A JPH0443782B2 JP H0443782 B2 JPH0443782 B2 JP H0443782B2 JP 58098073 A JP58098073 A JP 58098073A JP 9807383 A JP9807383 A JP 9807383A JP H0443782 B2 JPH0443782 B2 JP H0443782B2
Authority
JP
Japan
Prior art keywords
inch
strength
creep
tarpaulin
eva
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58098073A
Other languages
Japanese (ja)
Other versions
JPS59224341A (en
Inventor
Ryosuke Kamei
Akira Nakamura
Eiichi Saito
Hiroitsu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP9807383A priority Critical patent/JPS59224341A/en
Publication of JPS59224341A publication Critical patent/JPS59224341A/en
Publication of JPH0443782B2 publication Critical patent/JPH0443782B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はターポリンの製造方法に関する。 従来、ターポリンは、ポリアミド系、ポリエス
テル系、ポリビニルアルコール系等の合成繊維よ
りなる織布すなわち所謂合繊織布を基材とし、そ
の表面にカレンダー法やドライラミネート法によ
りポリ塩化ビニル(PVC)やゴム等の被膜を被
着して製造していた。しかし、これ等ターポリン
の場合、引布工程での熱安定性や製品での熱安定
性、物性、柔軟性等を改良するため多量の可塑剤
が混入されており、このため、可塑剤のブリード
アウトがあり、内容物への衛生性の点で種々の問
題が見られた。 このため被膜材料をPVCやゴムからエチレン
酢酸ビニル共重合体(EVA)に変更し他は従来
通りポリアミド系やポリエステル(PET)系や
ポリビニルアルコール系等の合繊基布を使用し、
カレンダー法やドライラミネート法により製造し
たものが提案されている。この場合衛生性の問題
は改良されるが、EVAによりカレンダー法で成
形する場合、低温での成形にとどまるので単繊維
のアンカー効果が充分に発揮されず、又ドライラ
ミネートの場合、安価で簡単良好な処理剤がな
く、このためシール部溶着クリープ性、剥離強度
等の点で問題が発生し、かつ軽量性、価格という
点でも満足すべきものではなかつた。 又、従来PVCターポリンにおいて軽量化やコ
ストダウンのためポリプロピレン(PP)や高密
度ポリエチレン(HDPE)のポリオレフインフラ
ツトヤーンクロスを使用する事も考えられ検討さ
れたが、引布工程上の熱によるトラブルがあり、
又高周波シール時基布強度低下及び切断等のトラ
ブルがあり、使用されていなかつた。 本発明はこれ等諸問題を解決したものであり、
タクテイシテイ(沸騰n−ヘプタンによる抽出残
(wt%表示)であらわす。以下同じ)が96以上の
アイソタクチツクポリプロピレンよりなる単繊維
繊度が25デニール以下のマルチフイラメントを経
糸及び/又は緯糸に使用してなるメツシユ織物を
基材とし、該基材の少なくとも一面に、酢酸ビニ
ル含有量が10〜30%のエチレン酢酸ビニル共重合
体を220〜290℃の温度範囲内で溶融させ、ラミネ
ート(以下溶融ラミネートという)することを特
徴とするターポリンの製造方法に係るものであ
る。 本発明においてメツシユ織物基材(基布)に使
用するポリプロピレン樹脂はアイソタクチツクポ
リプロピレンであつて、そのタクテイシテイが96
%以上であることが不可欠である。これ未満では
本発明のターポリンにおいて、高周波シール後の
強度低下が大きいばかりでなく、溶着部クリー
プ、ターポリンクリープにも問題が発生し、ター
ポリン実用特性で問題が生じ、更に、被膜工程時
基布が熱収縮変化するという問題がある。 このポリプロピレンの分子量、分子量分布につ
いては、分子量の目安であるMFR(溶融指数)で
3〜15g/10min(以下同じ)、分子量分布の目安
であるMLMFR/MFR(10Kg荷重溶融指数/2.16
Kg荷重溶融指数、230℃測定)で13〜20であるこ
とが好ましい。MFR3以下では強度、クリープ性
という点では問題ないが、紡糸性、延伸性の点で
問題があり、MFR15以上では強度、クリープ性、
糸ゆれによる紡糸性の点で問題がある。又
MLMFR/MFR13以下ではPP樹脂製造上のトラ
ブル、糸ゆれによる紡糸性の点で問題があり、一
方MLMFR/MFR20以上では強度、延伸性の点
で問題がある。 本発明に使用するアイソタクチツクポリプロピ
レンマルチフイラメントは単繊維繊度が25デニー
ル以下であることが重要である。即ち、25デニー
ル以上のフイラメントの場合被膜EVAとの接触
面積が小さく、基布と被膜EVA膜との接着性に
問題があり、剥離強度、溶着クリープ等が極端に
悪くなる。当然の事であるが本発明において単繊
維のバラケ防止のため加撚するか集束剤を塗布す
るかするが、どんな方法で単繊維を集束し織原糸
としてもさしつかえない。 本発明においては上記ポリプロピレンマルチフ
イラメントを経糸、緯糸の一方もしくは両方に使
用してなるメツシユ織物を基材としてポリオレフ
インターポリンを製造する。この場合メツシユ織
物はその打込み本数を限定するものではないが、
平織の場合10本/inch〜30本/inchの打込みが好
ましい。即ち打込み本数10本/inch以下の場合、
目ずれし易いという問題がある。一方打込み本数
30本/inch以上の場合メツシユ目が狭くなり、
EVA被膜樹脂層のブリツジ効果がなくなり、剥
離性の点で問題となる。又タテ糸のカラミ織によ
るメツシユ織の場合ターポリンタテ方向の溶着ク
リープが非常に良くなり、基布の目ずれも発生し
ない等の利点がある。この場合打込み本数は製織
性とメツシユ目間隔の点より5〜15本/inchが好
ましい。 本発明において基布の少なくとも一面に被服す
るEVAはその酢酸ビニル含有量が10〜30%のも
のであることが必要であり、酢酸ビニル含有量が
10%未満のときには高周波シール性に問題が生
じ、30%を越えるとブロツキング、溶着クリープ
性等で問題が生じる。又EVAのMFRは特に制限
されないが、MFRは低い方が剥離強度等の物性
は良い。しかし、低すぎるとラミネート工程で問
題があり、この点から好ましくはMFR1〜20がよ
い。 本発明ターポリンにおいて、上記で得られたメ
ツシユ織物基布にEVAをラミネートする場合、
220〜290℃好ましくは240〜270℃の高温で溶融ラ
ミネートする事が不可欠である。即ち、溶融ラミ
ネートする事により加撚や集束剤で25デニール以
下の集束された織原糸にEVA樹脂が入り込み、
単繊維自身が所謂アンカー効果となり基布原糸と
EVA層の接着性を出し、更にメツシユ織による
ブリツジ効果により接着性をより一層増加する。 従来、EVAによるカレンダー法の場合120〜
150℃にしか成形出来ず単繊維のアンカー効果が
充分発揮されず、又ドライラミネートの場合PP
とEVAでは安価で簡単なかつ良好な処理剤がな
かつた。 上記溶融ラミネート温度は220℃以下では基布
とEVAの接着性が悪く、ターポリン剥離強度、
溶着クリープ等で問題があり、更にラミネート作
業性でも問題がある。一方溶融ラミネート温度が
290℃以上ではEVA樹脂が分解し、接着性、作業
性で問題となる。 次に、本発明を実施例及び比較例をもつて説明
する。尚例中に用いた各種試験項目の測定方法は
次の通りである。 (1) 溶着強さ(Kg/3cm) 精電舎製高周波ウエルダーKW2000を使用し
て、出力2KW、溶着圧力2.5Kg/cm2、12秒で各試
料を溶着させる。重なり部分の長さは50m/m、
その中、溶着巾は30m/mとする。又チヤツク間
を200m/mとし、引張速度を200mm/minとす
る。 (2) 溶着クリープ 第1図に示す方法で測定した。即ち基台1にウ
エルド部2を有する試験片3を吊下し、これに荷
重4をかけて溶着クリープを測定する。測定条件
は次の通り。 溶着巾 30m/m巾 長 さ 60m/mL 試料長 120m/mL 40Kg荷重、30℃48時間放置後、40℃24時間更に
放置し、残存強度を測定。尚以下の例中には、途
中接断強度も示してある。 (3) 糸引抜抵抗(Kg/2ヤーン) 試料に第2図に示す如くノツチ5を3箇所つ
け、この試料を図中矢標で示す如く左右に引張つ
て糸引抜抵抗を測定する。尚図中のその他の数字
は寸法を示し、その単位はmmである。又引張速度
は200mm/mとした。 (4) 剥離強度 第3図に示す如き態様で、ウエルダー部6を有
する試験片を左右から引張り、剥離強度を測定。
測定条件は次の通り。 ウエルダー巾 30mm 長 さ 30mm チヤツク間距離 200mm 引張速度 200mm/min (5) 引裂強度 JIS Z1651に準拠。シングルタング法による。 (6) 引張強さ JIS Z1651に準拠。 実施例 1 MFRが8.5、MLMFR/MFRが14、タクテイ
シテイが97.0%のアイソタクチツクポリプロピレ
ンを40m/mφ押出機、1.5m/mφ125穴ノズル
より、押出温度 C1 C2 C3 C4 ノズル 200 230 260 290 290℃、 紡糸速度200m/min、冷却風温度18℃で未延
伸糸を紡糸し、その後、該未延伸糸を熱ロール延
伸機を使用し、延伸温度130℃、延伸速度200m/
mで8.74倍に延伸し、65F1000デニール単糸繊度
15デニールのマルチフイラメントを得た。 紡糸、延伸ともトラブルなく、得られたマルチ
フイラメントの強度は8.84g/dであつた。 上記で得られたマルチフイラメントを経糸、緯
糸に使用し、トヨタスルザー製110インチ織機で
打込み本数17×17本/inchの平織基布に製織し、
該基布に、酢酸ビニル含有量18.3%、MI3.5g/
10分のエチレン酢酸ビニルを成形スピード10m/
minで両面貼着(片面300μ)し、厚さ0.85m/m
のターポリンを得た。 第1表に示すように、溶着クリープが良好で、
剥離強度、糸引抜き強度、溶着強度良好なターポ
リンを得た。 実施例 2 実施例1で使用したマルチフイラメントを2本
集束し、これを緯糸とし、経糸にはコンヨシ化工
社製PP/HDPE1500デニール偏平糸を使用し、
トヨタスルザー製カラミ装置付110インチ織機で
タテ糸10×2本/inch、ヨコ糸8本/inchのカラ
ミ織メツシユ基布となし、この基布に実施例1と
同様の条件でEVAをラミネートし、厚さ0.92
m/mのターポリンを得た。 第1表に示すようにタテ方向溶着クリープが特
に良好で他物性も非常に良好なターポリンを得
た。 比較例 1 実施例1と同一条件で但し30Fデニール単糸繊
度40デニールのマルチフイラメントを得た。得ら
れたマルチフイラメントの強度は8.2g/dであ
つた。 このマルチフイラメントを経糸、緯糸に使用
し、トヨタスルザー製110インチ織機で打込み本
数17×17本/inchの平織基布に製織し、該基布
に、酢酸ビニル含有量18.3%、MI3.5g/10分の
エチレン酢酸ビニル共重合体を三菱重工業(株)製
120m/mφ押出機ダイ巾1600m/mラミネータ
ーを使用し、樹脂温度260℃で成形スピード10
m/minで両面貼着(片面300μ)し、厚さ0.85
m/mのターポリンを得た。 第1表に示すように、引張強度では問題はない
が、溶着クリープが悪く、剥離性、糸引抜き性で
問題が見られた。 比較例 2 MFR8.7、MLMFR/MFR=20.5、タクテイ
シテイ93.1%のアイソタクチツクポリプロピレン
を実施例1と同一条件但し延伸倍率7.3倍で紡糸
した。 紡糸、延伸のトラブルはなかつた。強度は5.8
g/dであつた。 実施例1と同様にして厚さ0.82m/mのターポ
リンを得た。第1表に示すように、引張り強度、
溶着クリープの点で問題が見られる。 比較例 3 ラミネーターの際の樹脂温度を190℃とし、又
成形スピードを5m/minとした以外は実施例1
と同様にしてターポリンを得た。 第1表に示すように、実施例1と比べ溶着クリ
ープが悪く、剥離性、糸引抜き性に問題が見られ
た。 比較例 4 ポリエステル基布にEVAを貼着して成る市販
ターポリンについて各種物性を測定した。 第1表に示すように、溶着クリープの点で問題
が見られた。
The present invention relates to a method for manufacturing tarpaulin. Traditionally, tarpaulins have been made from woven fabrics made of synthetic fibers such as polyamide, polyester, and polyvinyl alcohol, that is, so-called synthetic woven fabrics, and the surface of which has been coated with polyvinyl chloride (PVC) or rubber by calendering or dry laminating. It was manufactured by applying a coating such as However, in the case of these tarpaulins, a large amount of plasticizer is mixed in to improve the thermal stability in the drawing process and the thermal stability, physical properties, flexibility, etc. of the product, and as a result, the plasticizer bleeds. Various problems were observed regarding the hygiene of the contents. For this reason, the coating material was changed from PVC and rubber to ethylene vinyl acetate copolymer (EVA), and other synthetic fiber base fabrics such as polyamide, polyester (PET), and polyvinyl alcohol were used as before.
Products manufactured by a calendar method or a dry lamination method have been proposed. In this case, the problem of hygiene is improved, but when molding with EVA by the calendar method, the anchoring effect of single fibers is not fully demonstrated because the molding is done at a low temperature, and in the case of dry lamination, it is cheap, easy, and good. For this reason, problems occurred in terms of seal welding creep properties, peel strength, etc., and the product was not satisfactory in terms of light weight and price. In addition, the use of polyolefin flat yarn cloth made of polypropylene (PP) or high-density polyethylene (HDPE) for conventional PVC tarpaulins to reduce weight and cost has been considered and considered, but problems caused by heat during the cloth-spreading process have been considered. There is,
In addition, there were problems such as a decrease in the strength of the base fabric and cutting during high-frequency sealing, so it was not used. The present invention solves these problems,
A multifilament made of isotactic polypropylene with a tacticity (expressed as extraction residue (wt%) with boiling n-heptane) of 96 or more and a single fiber fineness of 25 denier or less is used for the warp and/or weft. A mesh fabric is used as a base material, and an ethylene vinyl acetate copolymer having a vinyl acetate content of 10 to 30% is melted on at least one side of the base material within a temperature range of 220 to 290°C to form a lamination (hereinafter referred to as fused laminate). The present invention relates to a method for producing a tarpaulin characterized by: In the present invention, the polypropylene resin used for the mesh fabric base material (base fabric) is isotactic polypropylene, and its tactility is 96%.
% or more is essential. If it is less than this, in the tarpaulin of the present invention, not only will the strength decrease after high-frequency sealing be large, but also problems will occur in welded part creep and tarpaulin creep, problems will arise in the practical properties of the tarpaulin, and furthermore, the base fabric will deteriorate during the coating process. There is a problem of heat shrinkage change. Regarding the molecular weight and molecular weight distribution of this polypropylene, MFR (melting index), which is a guideline for molecular weight, is 3 to 15g/10min (the same applies hereinafter), and MLMFR/MFR (melting index under 10Kg load/2.16), which is a guideline for molecular weight distribution.
Kg load melting index (measured at 230°C) is preferably 13 to 20. At MFR3 or less, there is no problem in terms of strength and creep property, but there are problems in terms of spinnability and drawability, and at MFR15 or more, strength, creep property,
There is a problem with spinnability due to yarn wobbling. or
If the MLMFR/MFR is less than 13, there will be problems in the production of PP resin and in spinability due to yarn wobbling, while if the MLMFR/MFR is 20 or more, there will be problems in terms of strength and stretchability. It is important that the isotactic polypropylene multifilament used in the present invention has a single fiber fineness of 25 denier or less. That is, in the case of a filament of 25 denier or more, the contact area with the EVA coating is small, and there is a problem in the adhesion between the base fabric and the EVA coating, resulting in extremely poor peel strength, welding creep, etc. Naturally, in the present invention, the single fibers are twisted or coated with a sizing agent to prevent them from coming apart, but the single fibers may be bundled by any method and used as yarn. In the present invention, polyolef interpolin is produced using a mesh fabric as a base material, which is formed by using the polypropylene multifilament as one or both of the warp and weft. In this case, the number of mesh fabrics is not limited, but
In the case of plain weave, it is preferable to insert 10 threads/inch to 30 threads/inch. In other words, if the number of drives is 10 or less/inch,
There is a problem that the eyes are easily misaligned. On the other hand, the number of drives
If it is more than 30 lines/inch, the mesh will become narrower.
The bridging effect of the EVA coating resin layer disappears, causing problems in terms of removability. In addition, in the case of a mesh weave made of warp threads, welding creep in the tarpaulin warp direction is very good, and there are advantages such as no misalignment of the base fabric. In this case, the number of threads to be driven is preferably 5 to 15 threads/inch from the viewpoint of weavability and mesh spacing. In the present invention, the EVA coated on at least one side of the base fabric must have a vinyl acetate content of 10 to 30%;
If it is less than 10%, problems will occur with high frequency sealing properties, and if it exceeds 30%, problems will occur with blocking, welding creep, etc. Further, the MFR of EVA is not particularly limited, but the lower the MFR, the better the physical properties such as peel strength. However, if it is too low, there will be problems in the lamination process, so from this point of view, MFR of 1 to 20 is preferable. In the tarpaulin of the present invention, when EVA is laminated to the mesh fabric base fabric obtained above,
It is essential to melt-laminate at a high temperature of 220-290°C, preferably 240-270°C. In other words, by melt laminating, the EVA resin enters the woven fibers that are bundled with 25 denier or less using twisting and binding agents.
The single fiber itself has a so-called anchor effect and connects with the base fabric yarn.
The adhesiveness of the EVA layer is improved, and the bridge effect of the mesh weave further increases the adhesiveness. Conventionally, in the case of the calendar method using EVA, it is 120 ~
It can only be formed at 150℃, and the anchor effect of single fibers cannot be fully demonstrated, and in the case of dry lamination, PP
For EVA, there was no cheap, simple, and good processing agent. If the above melt lamination temperature is below 220℃, the adhesion between the base fabric and EVA will be poor, and the tarpaulin peel strength will decrease.
There are problems with welding creep, etc., and there are also problems with lamination workability. On the other hand, the melt lamination temperature is
At temperatures above 290°C, EVA resin decomposes, causing problems with adhesion and workability. Next, the present invention will be explained using Examples and Comparative Examples. The measurement methods for various test items used in the examples are as follows. (1) Welding strength (Kg/3cm) Using Seidensha's high-frequency welder KW2000, each sample was welded for 12 seconds at an output of 2KW and a welding pressure of 2.5Kg/cm 2 . The length of the overlapped part is 50m/m,
Among them, the welding width is 30m/m. Also, the distance between the chucks is 200m/m, and the pulling speed is 200mm/min. (2) Welding creep Measured by the method shown in Figure 1. That is, a test piece 3 having a weld portion 2 is suspended from a base 1, and a load 4 is applied to the test piece 3 to measure weld creep. The measurement conditions are as follows. Weld width 30m/m Width length 60m/mL Sample length 120m/mL 40Kg load, left at 30℃ for 48 hours, then left at 40℃ for 24 hours, and measured residual strength. In addition, in the following examples, the strength of cutting and breaking in the middle is also shown. (3) Thread withdrawal resistance (Kg/2 yarns) As shown in Figure 2, make three notches 5 on the sample, and measure the yarn pullout resistance by pulling the sample left and right as shown by the arrows in the figure. The other numbers in the figure indicate dimensions, and the unit is mm. Moreover, the tensile speed was 200 mm/m. (4) Peel strength The test piece having the welded portion 6 was pulled from the left and right sides in the manner shown in Figure 3, and the peel strength was measured.
The measurement conditions are as follows. Welder width 30mm Length 30mm Distance between chucks 200mm Tensile speed 200mm/min (5) Tear strength Compliant with JIS Z1651. By single tongue method. (6) Tensile strength Compliant with JIS Z1651. Example 1 Isotactic polypropylene with MFR of 8.5, MLMFR/MFR of 14, and tacticity of 97.0% was extruded using a 40 m/mφ extruder with a 1.5 m/mφ125 hole nozzle at a temperature of C 1 C 2 C 3 C 4 nozzles 200 230 260 290 The undrawn yarn was spun at 290°C, the spinning speed was 200 m/min, and the cooling air temperature was 18°C, and then the undrawn yarn was drawn using a hot roll drawing machine at a drawing temperature of 130°C and a drawing speed of 200 m/min.
Stretched 8.74 times in m, 65 F 1000 denier single yarn fineness
I got a 15 denier multifilament. There were no problems in spinning or drawing, and the strength of the obtained multifilament was 8.84 g/d. The multifilament obtained above was used for the warp and weft, and was woven into a plain weave base fabric with a number of threads of 17 x 17 threads/inch using a 110-inch loom manufactured by Toyota Sulzer.
The base fabric has a vinyl acetate content of 18.3% and an MI of 3.5g/
Molding speed of 10 minutes ethylene vinyl acetate 10m/
Adhesive on both sides (300μ on one side) at min. thickness 0.85m/m
obtained a tarpaulin. As shown in Table 1, welding creep is good,
A tarpaulin with good peel strength, thread pull-out strength, and welding strength was obtained. Example 2 Two multifilaments used in Example 1 were bundled and used as the weft, and PP/HDPE 1500 denier flat yarn manufactured by Konyoshi Kako Co., Ltd. was used as the warp.
A 110-inch loom with a karami device made by Toyota Sulzer was used to make a karami mesh base fabric with 10 x 2 warp threads/inch and 8 weft threads/inch, and EVA was laminated to this base fabric under the same conditions as in Example 1. , thickness 0.92
A tarpaulin of m/m was obtained. As shown in Table 1, a tarpaulin with particularly good longitudinal welding creep and other very good physical properties was obtained. Comparative Example 1 A multifilament of 30 F denier and 40 denier single yarn fineness was obtained under the same conditions as in Example 1. The strength of the obtained multifilament was 8.2 g/d. This multifilament was used for the warp and weft, and was woven on a plain weave base fabric with a number of threads of 17 x 17 threads/inch on a Toyota Sulzer 110-inch loom, and the base fabric had a vinyl acetate content of 18.3% and an MI of 3.5 g/inch. 10-minute ethylene vinyl acetate copolymer manufactured by Mitsubishi Heavy Industries, Ltd.
Using a 120m/mφ extruder die width 1600m/m laminator, molding speed 10 at resin temperature 260℃
Adhesive on both sides at m/min (300μ on one side), thickness 0.85
A tarpaulin of m/m was obtained. As shown in Table 1, although there was no problem with tensile strength, welding creep was poor, and problems were observed with peelability and thread pullability. Comparative Example 2 Isotactic polypropylene with MFR 8.7, MLMFR/MFR=20.5, and tacticity 93.1% was spun under the same conditions as in Example 1, but at a draw ratio of 7.3 times. There were no problems with spinning or drawing. Strength is 5.8
It was g/d. A tarpaulin with a thickness of 0.82 m/m was obtained in the same manner as in Example 1. As shown in Table 1, tensile strength,
Problems are seen in terms of weld creep. Comparative Example 3 Example 1 except that the resin temperature during laminator was 190°C and the molding speed was 5 m/min.
A tarpaulin was obtained in the same manner. As shown in Table 1, welding creep was worse than in Example 1, and problems were observed in peelability and thread pullability. Comparative Example 4 Various physical properties were measured for a commercially available tarpaulin made by adhering EVA to a polyester base fabric. As shown in Table 1, problems with weld creep were observed.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶着クリープテストの説明図、第2図
は糸引抜抵抗テストの説明図、第3図は剥離強度
テストの説明図である。 1…基台、2…ウエルド部、3…試験片、4…
荷重、5…ノツチ、6…ウエルダー部。
FIG. 1 is an explanatory diagram of a welding creep test, FIG. 2 is an explanatory diagram of a thread pull-out resistance test, and FIG. 3 is an explanatory diagram of a peel strength test. 1... Base, 2... Weld part, 3... Test piece, 4...
Load, 5...notch, 6...welder part.

Claims (1)

【特許請求の範囲】[Claims] 1 タクテイシテイが96wt%以上のアイソタク
チツクポリプロピレンよりなる単繊維繊度が25デ
ニール以下のマルチフイラメントを経糸及び/又
は緯糸に使用してなるその打込み本数が、平織の
場合10本/inch〜30本/inch、カラミ織の場合5
〜15本/inchのメツシユ織物を基材とし、該基材
の少なくとも一面に、酢酸ビニル含有量が10〜30
%のエチレン酢酸ビニル共重合体を220〜290℃の
温度範囲内で溶融させ、ラミネートすることを特
徴とするターポリンの製造方法。
1 Multifilament made of isotactic polypropylene with a tactility of 96 wt% or more and a single fiber fineness of 25 denier or less is used as the warp and/or weft, and the number of threads is 10/inch to 30/inch for plain weave. inch, 5 for Karami weave
~15 pieces/inch of mesh fabric is used as a base material, and at least one side of the base material has a vinyl acetate content of 10 to 30
% ethylene vinyl acetate copolymer within a temperature range of 220 to 290°C and laminated.
JP9807383A 1983-06-03 1983-06-03 Manufacture of tarpaulin Granted JPS59224341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9807383A JPS59224341A (en) 1983-06-03 1983-06-03 Manufacture of tarpaulin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9807383A JPS59224341A (en) 1983-06-03 1983-06-03 Manufacture of tarpaulin

Publications (2)

Publication Number Publication Date
JPS59224341A JPS59224341A (en) 1984-12-17
JPH0443782B2 true JPH0443782B2 (en) 1992-07-17

Family

ID=14210167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9807383A Granted JPS59224341A (en) 1983-06-03 1983-06-03 Manufacture of tarpaulin

Country Status (1)

Country Link
JP (1) JPS59224341A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH679761A5 (en) * 1989-10-02 1992-04-15 Sarna Patent & Lizenz Ag
JP2006248521A (en) * 2006-04-28 2006-09-21 Toyobo Co Ltd Uncoated airbag

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034377A (en) * 1973-07-30 1975-04-02
JPS523665A (en) * 1975-06-26 1977-01-12 Mitsubishi Chem Ind Manufacturing of mono dimensional elongation films

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5034377A (en) * 1973-07-30 1975-04-02
JPS523665A (en) * 1975-06-26 1977-01-12 Mitsubishi Chem Ind Manufacturing of mono dimensional elongation films

Also Published As

Publication number Publication date
JPS59224341A (en) 1984-12-17

Similar Documents

Publication Publication Date Title
US5693420A (en) Thermally fusible composite fiber and non-woven fabric made of the same
US4310594A (en) Composite sheet structure
JP3819440B2 (en) Thermal adhesive composite fiber and non-woven fabric using the same
TW211589B (en) Hotmelt-adhesive fiber sheet and process for producing the same
CA2024313C (en) Split fibers, integrated split fiber articles and method for preparing the same
KR870000442B1 (en) Multi-monofilament's producing method
JP2829147B2 (en) Nonwoven fabric manufacturing method
NO165252B (en) FIBER OR MULTI-FILAMENT WITH A LINEAR DENSITY OF LESS THAN 1.7 TEX.
JP2009005911A (en) Polyester filament for beverage extraction filter
US4906520A (en) Woven fabric from splittable ribbons
JP4599760B2 (en) Heat-fusible composite fiber and fiber molded body using the same
US3420731A (en) Heat sealable yarn and fabric
JPH0346303B2 (en)
JPH0443782B2 (en)
JP3790327B2 (en) Composite false twisted yarn for adhesive tape base fabric and method for producing the same
JP2018000436A (en) Fabric hook-and-loop fastener suitable for binding belt
EP0340992B1 (en) Woven fabric from splittable ribbons
JP2971919B2 (en) Thermal adhesive fiber
JPH11179862A (en) Polyolefin composite sheet and its preparation
JP2018150633A (en) Resin-reinforcing woven fabric and resin molding using the same
JPH043295B2 (en)
JP4665364B2 (en) Heat-fusible composite fiber, and fiber molded body and fiber product using the same
JP2866581B2 (en) Adhesive tape
EP0043390B1 (en) Composite sheet structure, process for its preparation and laminates comprising said structure
JP2023161911A (en) Repair method of mesh sheet for construction work