JPH0443603Y2 - - Google Patents

Info

Publication number
JPH0443603Y2
JPH0443603Y2 JP1986160108U JP16010886U JPH0443603Y2 JP H0443603 Y2 JPH0443603 Y2 JP H0443603Y2 JP 1986160108 U JP1986160108 U JP 1986160108U JP 16010886 U JP16010886 U JP 16010886U JP H0443603 Y2 JPH0443603 Y2 JP H0443603Y2
Authority
JP
Japan
Prior art keywords
spool
valve
electromagnetic switching
control pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986160108U
Other languages
Japanese (ja)
Other versions
JPS6366678U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986160108U priority Critical patent/JPH0443603Y2/ja
Publication of JPS6366678U publication Critical patent/JPS6366678U/ja
Application granted granted Critical
Publication of JPH0443603Y2 publication Critical patent/JPH0443603Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Magnetically Actuated Valves (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は電気油圧サーボ弁、デイジタル制御
弁、高速電磁弁、比例電磁制御弁等が使用される
個所に用いられる流体制御弁に関する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a fluid control valve used where electrohydraulic servo valves, digital control valves, high-speed solenoid valves, proportional solenoid control valves, etc. are used.

(従来の技術) 近年、油圧機械装置の電気的制御、電子制御に
よる自動化、省エネルギ化、操作の容易化を実現
するため、電気油圧サーボ弁が既に実用され、ま
た、コンピユータと整合性を図るためにパルスモ
ータ型や高速電磁弁型のデイジタルサーボ弁が出
現した。
(Prior art) In recent years, electro-hydraulic servo valves have already been put into practical use to achieve electrical control of hydraulic machinery, automation through electronic control, energy saving, and ease of operation. Therefore, pulse motor type and high speed solenoid valve type digital servo valves have appeared.

(考案が解決しようとする問題点) これら電気油圧サ−ボ弁やデイジタルサーボ弁
はそれぞれの特徴に応じて種々の分野に活用され
ているが、いずれもスプールの背圧を連続かつ略
比較的に無段階に変化させているため、これを建
築、土木、農業機械等が使用される悪環境下で用
いると次の如く種々の問題があつた。
(Problem to be solved by the invention) These electro-hydraulic servo valves and digital servo valves are used in various fields depending on their characteristics, but they all control the back pressure of the spool continuously and almost comparatively. Since this process changes steplessly, various problems arise when used in harsh environments such as construction, civil engineering, agricultural machinery, etc., as described below.

構造が複雑で部品点数が多く、しかも、高精度
が要求されるため、価格が高いとともに信頼性に
欠ける。
It has a complex structure, has a large number of parts, and requires high precision, making it expensive and lacking in reliability.

悪環境下では耐コンタミ性としてNASIO級以
下を確保するのが難しく、フイルター等で対処す
れば、コストが嵩む。
In adverse environments, it is difficult to ensure contamination resistance of NASIO grade or lower, and if you use filters, etc., the cost will increase.

悪環境下ではこれを常に清浄に保持するための
保持、取扱性に難点がある。
Under adverse environments, it is difficult to maintain and handle the product to keep it clean at all times.

(問題点を解決するための手段) 本考案は上記に鑑み、スプールの背圧を断続的
に、段階的に変化させることにより制御に不具合
のない範囲で実用性が高く、かつ、安価な流体制
御弁を提供しようとするものであつて、その要旨
とするところは、弁本体の腔所内に左右方向に液
密摺動自在に嵌装されたスプールを中立ばねによ
り中央の中立位置に向かって付勢するとともに上
記スプールの左右両端にそれぞれパイロツト流体
が流出入する制御圧力室を限界し、上記各制御圧
力室内のパイロツト流体の圧力及び流出入速度を
変えて上記スプールの変位並びにその方向及び速
度を変化させることにより作動流体の流れ方向及
び流量を切換制御する流体制御弁において、上記
各制御圧力室のパイロツト流体流入路又は流出路
に電気入力信号によつて開閉二位置動作する電磁
切換弁を介装し、この電磁切換弁の上流側又は下
流側に互いに異なる流れ抵抗を有し電気入力信号
によつて順次又は同時に開閉二位置動作する複数
の電磁開閉弁を互いに並列に介装したことを特徴
とする流体制御弁にある。
(Means for Solving the Problems) In view of the above, the present invention aims to provide a highly practical and inexpensive fluid by changing the back pressure of the spool intermittently and stepwise. The purpose of the present invention is to provide a control valve, the gist of which is to move a spool, which is fitted in a cavity of a valve body so that it can slide in a liquid-tight manner in the left and right directions, toward a central neutral position by means of a neutral spring. At the same time, the control pressure chambers through which the pilot fluid flows in and out of the left and right ends of the spool are limited, and the pressure and inflow and outflow speed of the pilot fluid in each control pressure chamber are changed to change the displacement of the spool and its direction and speed. In the fluid control valve that switches and controls the flow direction and flow rate of the working fluid by changing the flow rate, an electromagnetic switching valve that operates in two positions to open and close in response to an electric input signal is provided in the pilot fluid inlet or outlet passage of each control pressure chamber. A plurality of electromagnetic switching valves are installed in parallel with each other and have different flow resistances on the upstream or downstream side of the electromagnetic switching valve and operate in two positions, sequentially or simultaneously in response to an electrical input signal. The feature lies in the fluid control valve.

(作用) 本考案においては、上記構成を具えているた
め、電気入力信号によつて各電磁切換弁を開閉す
るとともに複数の電磁開閉弁を順次又は同時に開
閉して制御圧力室内のパイロツト流体の圧力及び
流出入速度を断続的、段階的に変化させることに
よりスプールの変位並びにその方向及び速度を制
御して作動流体の流れ方向及び流量を切換制御す
る。
(Function) Since the present invention has the above configuration, each electromagnetic switching valve is opened and closed in response to an electrical input signal, and a plurality of electromagnetic switching valves are sequentially or simultaneously opened and closed to control the pressure of the pilot fluid in the control pressure chamber. The displacement, direction and speed of the spool are controlled by changing the inflow and outflow speed intermittently and stepwise, thereby switching and controlling the flow direction and flow rate of the working fluid.

(実施例) 以下、本考案を図示の実施例を参照しながら具
体的に説明する。
(Example) Hereinafter, the present invention will be specifically described with reference to illustrated embodiments.

第1図及び第2図において、1は弁本体、2は
弁本体1の腔所1a内に左右方向に液密摺動自在
に嵌装されたスプールで、その中央及び両端にそ
れぞれランド3,4,5を具えている。ランド4
の右端面は腔所1aの内壁面と協仂して右制御圧
力S1を限界し、同様にランド5の左端面は腔所1
aの内壁面と協仂して左制御圧力室S2を限界して
いる。右制御圧力室S1内には中立ばね6が嵌装さ
れ、左制御圧力室S2内には中立ばね7が嵌装さ
れ、これら中立ばね6,7によつてスプール2は
中央の中立位置に向かつて付勢されている。
In FIGS. 1 and 2, 1 is a valve main body, 2 is a spool fitted in a cavity 1a of the valve main body 1 so as to be slidable in a liquid-tight manner in the left and right direction, and lands 3 are provided at the center and both ends of the spool, respectively. It has 4 and 5. land 4
The right end surface of the land 5 cooperates with the inner wall surface of the cavity 1a to limit the right control pressure S1 , and similarly, the left end surface of the land 5 cooperates with the inner wall surface of the cavity 1a.
It cooperates with the inner wall surface of a to limit the left control pressure chamber S2 . A neutral spring 6 is fitted in the right control pressure chamber S1 , and a neutral spring 7 is fitted in the left control pressure chamber S2 , and these neutral springs 6 and 7 move the spool 2 to the central neutral position. is being energized towards.

そして、図示の中立位置においては、主ポンプ
8から吐出された作動流体、即ち、圧油はポンプ
ポートP1から弁本体1内に入るが、圧油流路は
スプール2の中央のランド3によつてブロツクさ
れる。スプール2が図において右方に移動せしめ
られると、ポンプポートP1から弁本体1内に入
つた圧油はポートC1よりアクチユエータ9のヘ
ツド側室9aに供給され、ロツド側室9b内の油
はポートC2より弁本体1内に入り、タンクポー
トT1を経てタンク10に戻る。逆に、スプール
2が左方に移動せしめるられると、圧油はポート
C2よりアクチユエータ9のロツド側室9bに供
給され、ヘツド側室9a内の油はポートC1より
タンクポートT1を経てタンク10に戻る。
In the illustrated neutral position, the working fluid, that is, pressure oil, discharged from the main pump 8 enters the valve body 1 from the pump port P1 , but the pressure oil flow path is connected to the land 3 in the center of the spool 2. Then it gets blocked. When the spool 2 is moved to the right in the figure, the pressure oil that entered the valve body 1 from the pump port P1 is supplied to the head side chamber 9a of the actuator 9 from the port C1 , and the oil in the rod side chamber 9b is It enters the valve body 1 from C2 and returns to the tank 10 via tank port T1. Conversely, when spool 2 is moved to the left, pressure oil flows to the port.
The oil in the rod side chamber 9b of the actuator 9 is supplied from C2 , and the oil in the head side chamber 9a returns to the tank 10 from port C1 via tank port T1.

一方、パイロツト用ポンプ11から吐出された
パイロツト油はポンプポートP2から弁本体1内
に入り、その一部は固定絞り12が介装されたパ
イロツト供給通路13を経て右制御圧力室S1内に
供給され、残部は固定絞り14が介装されたパイ
ロツト供給通路15を経て左制御圧力室S2内に供
給される。
On the other hand, the pilot oil discharged from the pilot pump 11 enters the valve body 1 from the pump port P2 , and a part of it passes through the pilot supply passage 13 in which the fixed throttle 12 is interposed, and enters the right control pressure chamber S1. The remainder is supplied into the left control pressure chamber S2 through a pilot supply passage 15 in which a fixed throttle 14 is interposed.

そして、右制御圧力室S1から流出するパイロツ
ト油はパイロツト流出通路16に介装された電磁
切換弁Xを経て、その下流に並列に接続された3
つの電磁開閉弁A,B,Cを経てタンクポート
T2からタンク17に戻る。左側制御圧力S2から
放出するパイロツト油はパイロツト流出通路18
に介装された電磁切換弁Yを経て、その下流に並
列に接続された上述の3つの電磁開閉弁A,B,
Cを経てタンクポートT2からタンク17に戻る。
The pilot oil flowing out from the right control pressure chamber S1 passes through the electromagnetic switching valve X installed in the pilot outflow passage 16, and then passes through the solenoid switching valve
Tank port via four solenoid valves A, B, and C.
Return to tank 17 from T 2 . The pilot oil released from the left side control pressure S2 flows through the pilot outflow passage 18.
The three electromagnetic switching valves A, B, and
C and returns to tank 17 from tank port T2 .

電磁切換弁X,Y及び電磁開閉弁A,B,Cは
それぞれボルト19により弁本体1に締結され、
それぞれ同じ構造を具えていて、開閉二位置動作
する。電磁開閉弁A,B,Cは互いに異なる流れ
抵抗ζA,ζB,ζCを有し、各流れ抵抗の大きさはζA
>ζB>ζCとされている。
The electromagnetic switching valves X, Y and the electromagnetic switching valves A, B, C are each fastened to the valve body 1 with bolts 19,
Each has the same structure and operates in two positions: open and close. The electromagnetic on-off valves A, B, and C have flow resistances ζ A , ζ B , and ζ C that are different from each other, and the magnitude of each flow resistance is ζ A
>ζ B >ζ C.

電磁切換弁Xが代表的に断面として示され、コ
イル21に通電されるとその磁力により可動片2
2が復帰ばね23の弾発力に抗して左方に移動
し、その先端に固定されたプツシユロツド24に
よつて球形弁25を押さえばね26に抗して左方
に移動させてこれを弁座より離座させ、この電磁
切換弁Xは開となる。コイル21への通電を停止
すると、球形弁25は押さえばね26に押推され
て弁座に着座し、電磁切換弁Xは閉となる。
The electromagnetic switching valve
2 moves to the left against the elastic force of the return spring 23, and the push rod 24 fixed to its tip moves the spherical valve 25 to the left against the spring 26 to open the valve. When the user leaves the seat, this electromagnetic switching valve X is opened. When the energization to the coil 21 is stopped, the spherical valve 25 is pushed by the presser spring 26 and seats on the valve seat, and the electromagnetic switching valve X is closed.

パイロツト油の略示的回路図が第2図に示され
ている。
A schematic circuit diagram of the pilot oil is shown in FIG.

電磁切換弁X,Y及び電磁開閉弁A,B,Cの
全てが全閉のとき、右制御圧力室S1及び左制御圧
力室S2内の制御圧力Pc1及びPc2はパイロツト用ポ
ンプ11の吐出圧Poに等しく一定となるが、こ
れら電磁切換弁X,Y及び電磁開閉弁A,B,C
を選択的に順次又は同時に開閉することにより
Pc1とPc2との差圧、即ち、制御圧力差|Pc1−Pc2
|は第3図に示すように15通りとなる。
When all of the electromagnetic switching valves X, Y and electromagnetic switching valves A, B, and C are fully closed, the control pressures P c1 and P c2 in the right control pressure chamber S 1 and left control pressure chamber S 2 are controlled by the pilot pump 11. The discharge pressure Po of these electromagnetic switching valves X, Y and electromagnetic switching valves A, B, C
by selectively opening and closing sequentially or simultaneously.
Differential pressure between P c1 and P c2 , that is, control pressure difference | P c1 − P c2
There are 15 ways of | as shown in Figure 3.

即ち、電磁切換弁Xを開、Yを閉、電磁開閉弁
Aを開とすると、室S2内の制御圧力はPoとなる
が、室S1内のパイロツト油は電磁切換弁X、電磁
開閉弁Aを経て流出するので、この流れ抵抗に相
当する分だけ室S1内の圧力が低下し、室S1の制御
圧力はPc11となる。従つて、スプール2はPoと
Pc11との差圧、即ち、制御圧力差|Po−Pc11|に
スプール2の受圧面積を乗じた力が中立ばね6及
び7の反力と平衡する位置に移動して停止する。
他の電磁切換弁や電磁開閉弁を開閉したときも同
様である。
That is , when the solenoid switching valve Since it flows out through valve A, the pressure in chamber S1 decreases by an amount corresponding to this flow resistance, and the control pressure in chamber S1 becomes Pc11 . Therefore, spool 2 is connected to Po.
It moves to a position where the force obtained by multiplying the differential pressure with P c11 , that is, the control pressure difference |Po−P c11 | by the pressure receiving area of the spool 2, is balanced with the reaction force of the neutral springs 6 and 7, and stops.
The same applies when other electromagnetic switching valves or electromagnetic shut-off valves are opened or closed.

今、第4図に示すように、回転発信器例えば回
転ポテンシヨメータ30の操作レバー31を矢印
方向に角θだけ揺動すると、コントローラ32は
この角θに対応する電圧を流体制御弁1に出力す
る。
Now, as shown in FIG. 4, when the operating lever 31 of the rotation transmitter, for example, the rotation potentiometer 30, is swung by an angle θ in the direction of the arrow, the controller 32 applies a voltage corresponding to this angle θ to the fluid control valve 1. Output.

コントローラ32から出力される電圧が正のと
き、第5図に示すように、XがONとなるが、Y
はOFFとなる。そして、電圧が約+1/7VでAが
ON、B,CはOFFとなり、+2/7VでBがON、
A,CはOFFなり、+3/7VでCがON、A,Bは
OFFとなり、+4/7VでA,BはON、CはOFFと
なり、+5/7VでA,CがON、BはOFFとなり、
+6/7VでB,CがON、AはOFFとなり、+7/7
VでA,B,Cが全てONとなる。
When the voltage output from the controller 32 is positive, as shown in FIG. 5, X is ON, but Y
becomes OFF. Then, when the voltage is about +1/7V, A is
ON, B and C are OFF, B is ON at +2/7V,
A and C are OFF, C is ON at +3/7V, and A and B are
At +4/7V, A and B are ON and C is OFF. At +5/7V, A and C are ON and B is OFF.
At +6/7V, B and C are ON, A is OFF, and +7/7
At V, A, B, and C are all turned on.

コントローラ32から出力される電圧の負のと
きYがON、XがOFFとなり、その電圧が約−1/
7VでAがON、B,CはOFFとなり、以下、電
圧が正のときと同様、電圧の大きさに応じてA,
B,CがON、OFFされる。
When the voltage output from the controller 32 is negative, Y is ON and X is OFF, and the voltage is approximately -1/
At 7V, A is ON and B and C are OFF, and from then on, A, B and C are turned OFF depending on the voltage, as when the voltage is positive.
B and C are turned on and off.

そして、電磁切換弁X,Y及び電磁開閉弁A,
B,Cが上記のようにON、OFFされると、スプ
ール2に仂く力、即ち、制御圧力室S1とS2に作用
する制御圧力差は第6図に示すように段階的に変
化し、また、スプール2の変位速度は第7図に示
すように変化する。即ち、電磁切換弁X、電磁開
閉弁AがONのとき、スプール2の変位速度はV1
で勾配θ1を画き、X、BがONのと変位速度はV2
で勾配θ2を画く。以下、同様に勾配θ3,θ4,θ5
θ6,θ7を画く。
Then, the electromagnetic switching valves X, Y and the electromagnetic switching valve A,
When B and C are turned on and off as described above, the force acting on spool 2, that is, the control pressure difference acting on control pressure chambers S1 and S2 , changes stepwise as shown in Figure 6. Furthermore, the displacement speed of the spool 2 changes as shown in FIG. That is, when the solenoid switching valve X and the solenoid switching valve A are ON, the displacement speed of the spool 2 is V 1
If a gradient θ 1 is drawn, and X and B are ON, the displacement speed is V 2
Draw a slope θ 2 . Similarly, the gradients θ 3 , θ 4 , θ 5 ,
Draw θ 6 and θ 7 .

しかして、スプール2の変位に伴うポート面積
の変化を第8図に示すように種々選定できるか
ら、上述のようにスプール2の変位速度を適宜選
択すれば、簡単な開閉二位位置動作の複数個の電
磁開閉弁A,B,Cを予め定められた順序で順次
又は同時に開閉することによりこの流体制御弁1
の応答性を実用に支障のない程度にまで向上しう
る。
Since the change in port area due to the displacement of the spool 2 can be selected in various ways as shown in FIG. By sequentially or simultaneously opening and closing the electromagnetic on-off valves A, B, and C in a predetermined order, this fluid control valve 1
The responsiveness of the system can be improved to a level that does not pose a problem for practical use.

なお、上記実施例においては、制御圧力室S1
S2のパイロツト流出通路16,18に電磁切換弁
X,Y及びこの下流に電磁開閉弁A,B,Cを二
段に介装したが、制御圧力室S1,S2のパイロツト
供給通路13,15にこれらを介装することがで
き、また、並列に接続される電磁開閉弁を3個以
上とすることができる。
In addition, in the above embodiment, the control pressure chambers S 1 ,
Although the pilot outflow passages 16 and 18 of S 2 are equipped with electromagnetic switching valves X and Y, and the electromagnetic switching valves A, B and C are installed downstream thereof in two stages, the pilot supply passages 13 of control pressure chambers S 1 and S 2 , 15, and three or more electromagnetic on-off valves can be connected in parallel.

(考案の効果) 本考案においては、各制御圧力室のパイロツト
流体流入路又は流出路に電気入力信号によつて開
閉二位置動作を電磁切換弁を介装し、この電磁切
換弁の上流側又は下流側に互いに異なる流れ抵抗
を有し電気入力信号によつて順次又は同時に開閉
二位置動作する複数の電磁開閉弁を互いに並列に
介装したため、電気入力信号によつて電磁切換弁
を開閉するとともに複数の電磁開閉弁を順次又は
同時に開閉することによつて制御圧力室内のパイ
ロツト流体の圧力及び流出入速度を断続的、段階
的に変化させることによりスプールの変位並びに
その方向及び速度を制御して作動流体の流れ方向
及び流量を制御に不具合のない範囲で切換制御し
うる。そして、電磁切換弁及び電磁開閉弁はそれ
ぞれ開閉二位置動作するもので足りるので、構造
が簡単でコストが安く、しかも、悪環境下でも操
作性、取り扱いが簡単で、かつ、信頼性に富み、
寿命が長い流体制御弁を得ることができる。
(Effects of the invention) In the present invention, an electromagnetic switching valve is installed in the pilot fluid inflow path or outflow path of each control pressure chamber, and the electromagnetic switching valve can be operated in two positions by an electric input signal. A plurality of electromagnetic switching valves are installed in parallel on the downstream side, which have different flow resistances and operate in two positions sequentially or simultaneously depending on the electrical input signal. The displacement of the spool as well as its direction and speed are controlled by changing the pressure and inflow/outflow speed of the pilot fluid in the control pressure chamber intermittently and stepwise by sequentially or simultaneously opening and closing a plurality of electromagnetic on-off valves. The flow direction and flow rate of the working fluid can be switched and controlled within a range that does not cause any control problems. Since the electromagnetic switching valve and the electromagnetic on-off valve only need to operate in two positions: open and close, they have a simple structure and low cost, and are easy to operate and handle even in adverse environments, and are highly reliable.
A fluid control valve with a long life can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の1実施例を示し、第1図は部分
的に断面として示す系統図、第2図はパイロツト
流体の略示的回路図、第3図は電磁切換弁及び電
磁開閉弁の開閉と制御圧力との関係を示す線図、
第4図は制御システム図、第5図は電気入力と電
磁切換弁及び電磁開閉弁の動作点との関係を示す
線図、第6図は電磁切換弁及び電磁開閉弁の開閉
と制御圧力差との関係を示す線図、第7図はスプ
ールの速度変化を示す線図、第8図はスプールの
変位とポート面積との関係を示す線図である。ス
プール……2、制御圧力室……S1,S2、電磁切換
弁……X,Y、電磁開閉弁……A,B,C、パイ
ロツト供給通路……13,15、パイロツト流出
通路……16,18。
The drawings show one embodiment of the present invention, in which Fig. 1 is a system diagram partially shown in cross section, Fig. 2 is a schematic circuit diagram of the pilot fluid, and Fig. 3 shows the opening and closing of the electromagnetic switching valve and the electromagnetic shut-off valve. A diagram showing the relationship between and control pressure,
Figure 4 is a control system diagram, Figure 5 is a diagram showing the relationship between electrical input and operating points of the electromagnetic switching valve and electromagnetic switching valve, and Figure 6 is the opening/closing of the electromagnetic switching valve and electromagnetic switching valve and the control pressure difference. FIG. 7 is a diagram showing the change in spool speed, and FIG. 8 is a diagram showing the relationship between spool displacement and port area. Spool...2, Control pressure chamber... S1 , S2 , Solenoid switching valve...X, Y, Solenoid on/off valve...A, B, C, Pilot supply passage...13, 15, Pilot outflow passage... 16,18.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 弁本体の腔所内に左右方向に液密摺動自在に嵌
装されたスプールを中立ばねにより中央の中立位
置に向かつて付勢するとともに上記スプールの左
右両端にそれぞれパイロツト流体が流出入する制
御圧力室を限界し、上記各制御圧力室内のパイロ
ツト流体の圧力及び流出入速度を変えて上記スプ
ールの変位並びにその方向及び速度を変化させる
ことにより作動流体の流れ方向及び流量を切換制
御する流体制御弁において、上記各制御圧力室の
パイロツト流体流入路又は流出路に電気入力信号
によつて開閉二位置動作する電磁切換弁を介装
し、この電磁切換弁の上流側又は下流側に互いに
異なる流れ抵抗を有し電気入力信号によつて順次
又は同時に開閉二位置動作する複数の電磁開閉弁
を互いに並列に介装したことを特徴とする流体制
御弁。
Control pressure that forces a spool, which is slidably slidably liquid-tight in the left and right directions in the cavity of the valve body, toward the central neutral position by a neutral spring, and that pilot fluid flows in and out of the left and right ends of the spool, respectively. A fluid control valve that limits a chamber and switches and controls the flow direction and flow rate of the working fluid by changing the pressure and inflow/outflow speed of the pilot fluid in each of the control pressure chambers to change the displacement of the spool and its direction and speed. In this method, an electromagnetic switching valve that operates in two positions, open and close, according to an electric input signal is installed in the pilot fluid inflow path or outflow path of each of the control pressure chambers, and different flow resistances are installed on the upstream side or downstream side of the electromagnetic switching valve. 1. A fluid control valve characterized in that a plurality of electromagnetic on-off valves are disposed in parallel with each other and are operated in two positions sequentially or simultaneously in response to an electric input signal.
JP1986160108U 1986-10-21 1986-10-21 Expired JPH0443603Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986160108U JPH0443603Y2 (en) 1986-10-21 1986-10-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986160108U JPH0443603Y2 (en) 1986-10-21 1986-10-21

Publications (2)

Publication Number Publication Date
JPS6366678U JPS6366678U (en) 1988-05-06
JPH0443603Y2 true JPH0443603Y2 (en) 1992-10-15

Family

ID=31085178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986160108U Expired JPH0443603Y2 (en) 1986-10-21 1986-10-21

Country Status (1)

Country Link
JP (1) JPH0443603Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914385A (en) * 1982-07-14 1984-01-25 Fanuc Ltd Drive system for ac motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169804U (en) * 1981-04-21 1982-10-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5914385A (en) * 1982-07-14 1984-01-25 Fanuc Ltd Drive system for ac motor

Also Published As

Publication number Publication date
JPS6366678U (en) 1988-05-06

Similar Documents

Publication Publication Date Title
EP1186784B1 (en) Bidirectional pilot operated control valve
CN110725994B (en) Fluid valve
US3028880A (en) Fluid flow control valve
JPH0443603Y2 (en)
CA1156908A (en) Power transmission
JPH0775861B2 (en) Hydraulic controller for injection molding machine
JPS58217880A (en) Control valve
JPS5943679B2 (en) saatsukanchiben
CN207750316U (en) Control valve group for the output of quantitative system flow proportional
JPH0442563Y2 (en)
JPH0341182Y2 (en)
JPH0423125B2 (en)
JPH0426722Y2 (en)
US4736672A (en) Metered lockout valve
JPS6319601Y2 (en)
JPH01283408A (en) Control valve device for active suspension
JPH0325483Y2 (en)
JPH0341135Y2 (en)
JPH0342486Y2 (en)
JPH10205503A (en) Valve and operating device therefor
JPH0137266Y2 (en)
JPS6134927Y2 (en)
JPH0254907U (en)
JPS6246003Y2 (en)
JPH0489934A (en) Hydraulic drive device of civil engineering/construction machine