JPH0443523A - Thermally moving element - Google Patents

Thermally moving element

Info

Publication number
JPH0443523A
JPH0443523A JP14730890A JP14730890A JPH0443523A JP H0443523 A JPH0443523 A JP H0443523A JP 14730890 A JP14730890 A JP 14730890A JP 14730890 A JP14730890 A JP 14730890A JP H0443523 A JPH0443523 A JP H0443523A
Authority
JP
Japan
Prior art keywords
heater wire
welding
terminal
plane
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14730890A
Other languages
Japanese (ja)
Inventor
Suketsugu Sako
佐古 祐嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14730890A priority Critical patent/JPH0443523A/en
Publication of JPH0443523A publication Critical patent/JPH0443523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermally Actuated Switches (AREA)

Abstract

PURPOSE:To stabilize the weld strength when the welding is carried out continuously, and to make the replacement of the weld electrode unnecessary when the rating of a thermodynamic element is changed, by providing a plane part at the opposite side of the weld position at the periphery of the end of a heater wire. CONSTITUTION:In the end periphery of a heater wire 3, the surface 3c opposite to a plane 4a of the power source side of a power feeding terminal 4 is made in the original circular form, and the opposite side of the contact point 20, that is, the part opposite to the welded part of the end periphery of the heater wire 3, is formed in a plane. Since the side of the heater wire 3 opposite to the lower electrode 11 is made in a plane, there is no round groove of the lower electrode as in the conventional example. Therefore, between the lower electrode 11 and the heater wire 3 when the welding current flows, the electric resistance is reduced, because the surface of the plane 3d of the heater wire 3 is plain, and the welding space is wider, even though the lower electrode 11 is also in a plane form. Consequently, a heat concentration is generated only at the contact point 20, and a stable welding can be carried out.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明はモードルの焼損保護のために使用される熱動
式過電流継電器に使用される熱動素子に関し、特にヒー
タ線の溶接部の改良に関するものである。
Detailed Description of the Invention [Industrial Field of Application] This invention relates to a thermal element used in a thermal overcurrent relay used to protect a mold from burnout, and in particular to an improvement in a welded part of a heater wire. It is related to.

[従来の技術] 第6図は熱動式過電流継電器等に使用される従来の熱動
素子を示す側面図、第7図は同じく正面図である。図に
おいて、(1)はたんざく形状のバイメタルで、絶縁物
(2)により被覆されている。
[Prior Art] FIG. 6 is a side view showing a conventional thermal element used in a thermal overcurrent relay, and FIG. 7 is a front view thereof. In the figure, (1) is a tanzaku-shaped bimetal coated with an insulator (2).

この図では絶縁物(2)はスリーブ状となっていてバイ
メタル(1)に挿通されているが、テープ状の絶縁物を
巻回して被覆されることもある。(3)はヒータ線で、
バイメタル(1)に絶縁物(2)を介在して、巻回され
ている。(4)は電源側給電端子で、その1端(4a)
は平板状に形成されていて、この平板部にはヒータ線(
3)の電源側端末(3a)が溶接接合されている。また
、ヒータ線(3)の負荷側端末(3b)はバイメタル(
1)の下端(1a)に溶接接合されている。バイメタル
(1)の上端(1b)は負荷側給電端子(5)に溶接等
の方法で固定接続されている。
In this figure, the insulator (2) is sleeve-shaped and inserted through the bimetal (1), but it may also be covered by winding a tape-shaped insulator. (3) is a heater wire,
It is wound around a bimetal (1) with an insulator (2) interposed therebetween. (4) is the power supply side power supply terminal, one end (4a)
is formed into a flat plate shape, and a heater wire (
The power supply side terminal (3a) of 3) is welded and joined. In addition, the load side terminal (3b) of the heater wire (3) is a bimetallic (
It is welded to the lower end (1a) of 1). The upper end (1b) of the bimetal (1) is fixedly connected to the load side power supply terminal (5) by a method such as welding.

上記の様に構成された熱動素子は電流が電源側給電端子
(4)→ヒータ線(3)−バイメタル(1)→負荷側給
電端子(5)の経路を流れることによるヒータ線(3)
及びバイメタル(1)での発熱によりバイメタル(1)
が第6図に破線で示す様にわん曲する。このわん曲を利
用して、熱動式過電流継電器の場合は、過電流を検出す
る動作を行う。ところで、第6図及び第7図に示すヒー
タ線(3)は、ニクロム線あるいは銅ニツケル合金線等
の抵抗体用材料の線材が使用される。またその線材形状
は、線材の製造の至便さ、巻線作業の簡易性等から、断
面が円形の線材が使用されることが多い。
In the thermal element configured as above, current flows through the path of power supply side power supply terminal (4) -> heater wire (3) - bimetal (1) -> load side power supply terminal (5).
And bimetal (1) due to heat generation in bimetal (1)
is curved as shown by the broken line in Figure 6. This curve is used to detect overcurrent in the case of a thermal overcurrent relay. By the way, as the heater wire (3) shown in FIGS. 6 and 7, a wire made of a resistor material such as a nichrome wire or a copper-nickel alloy wire is used. Further, as for the shape of the wire, a wire with a circular cross section is often used because of the ease of manufacturing the wire and the simplicity of the winding work.

そこで従来装置において、これら円形断面線材のヒータ
線(3)と電源側給電端子の1端(4a)あるいはバイ
メタルの下端(1a)との溶接接合は第8図に示す様な
抵抗溶接により行なわれていた。
Therefore, in the conventional device, the welding between the heater wire (3) of the circular cross-section wire and the one end (4a) of the power supply side feed terminal or the lower end (1a) of the bimetal is performed by resistance welding as shown in Fig. 8. was.

すなわち、第8図において(10)は抵抗溶接のための
上部電極、(11)は下部電極である。(3)はヒータ
線、(4)は電源側給電端子である(電源側給電端子(
4)をバイメタル(1)の下端(1a)におき換えても
同様である)。下部電極にはヒータ線(3)の円形断面
の曲率に合せた丸溝(lla)が形成されている。
That is, in FIG. 8, (10) is an upper electrode for resistance welding, and (11) is a lower electrode. (3) is the heater wire, (4) is the power supply side power supply terminal (power supply side power supply terminal (
The same effect can be obtained by replacing 4) with the lower end (1a) of the bimetal (1). A round groove (lla) matching the curvature of the circular cross section of the heater wire (3) is formed in the lower electrode.

この図において、溶接電流が上部電極(lO)から下部
電極(11)に向って流れると、ヒータ線(3)と電源
側給電端子(4)との当接点(20) (実際には一点
でなく線状であるが当接点ということにする)で最も大
きな電流集中が起り、この点の電気抵抗が大となるため
この点の発熱が大となって当接点(20)からヒータ線
(3)及び端子(4)の溶融が開始し、溶接接合に到る
ことになる。つまり下部電極(11)とヒータ線(3)
との間は、丸溝(lla)を形成することで接触面積を
拡げ、電気抵抗を下げることにより当接点(20)にの
み発熱を集中させることにより、安定で強固な溶接を得
ることに成功している。
In this figure, when the welding current flows from the upper electrode (lO) to the lower electrode (11), the contact point (20) between the heater wire (3) and the power supply side power supply terminal (4) (actually at one point) The largest current concentration occurs at the contact point (although it is a straight line), and the electric resistance at this point is large, so the heat generation at this point is large, and the heater wire (3) is connected from the contact point (20) to ) and the terminal (4) begin to melt, resulting in a welded joint. In other words, the lower electrode (11) and the heater wire (3)
By forming a round groove (lla) between the two and expanding the contact area, and by lowering the electrical resistance and concentrating heat only on the contact point (20), we succeeded in obtaining stable and strong welding. are doing.

しかしながら、第9図の様にヒータ線(3)が下部電極
の丸溝(lla)から外れた場合は、発熱点が(20)
と(21)の2点となり、発熱が分散されて、同一条件
で接合しても第9図で接合した強度は第8図の場合より
劣る結果となる。
However, if the heater wire (3) comes off the round groove (lla) of the lower electrode as shown in Fig. 9, the heating point (20)
and (21), the heat generation is dispersed, and even if bonded under the same conditions, the strength of the bond in FIG. 9 is inferior to that in FIG. 8.

[発明が解決しようとする課題] 上記のような従来の熱動素子では、ヒータ線の接合にお
いて、ヒータ線が下部電極の丸溝から外れた場合溶接不
良が発生するという不具合があった。このことはヒータ
線の接合を多数個行ったときに、下部電極の丸溝(IL
a)が摩耗して丸溝(lla)の曲率が変化した場合も
、同様の溶接不良を発生する危険性がある。また熱動素
子の通電定格が異なるとヒータ線(3〉の直径が変わる
ため、これらに曲率を合わせた丸溝を持つ下部電極を複
数個用意しておきこれらを交換しながら溶接を行なわね
ばならない等の不便さがあった。以上の様な問題点はヒ
ータ線の接合を無人自動化しようとする場合に特にクロ
ーズアップされる事項であり、多種の定格を自動溶接す
るときの段取り替え、即ち下部電極の交換、ヒータ線の
位置決め、即ち丸溝へのヒータ線の合わせ、連続溶接時
の下部電極丸溝の摩耗状態の監視等無人化自動化を阻害
する要因となっていた。
[Problems to be Solved by the Invention] In the conventional thermal element as described above, there is a problem in that a welding failure occurs when the heater wire comes off from the round groove of the lower electrode when joining the heater wire. This means that when a large number of heater wires are joined, the round groove (IL) of the lower electrode
There is also a risk that similar welding defects will occur if the curvature of the round groove (lla) changes due to wear of a). Also, if the current carrying rating of the thermal element differs, the diameter of the heater wire (3) will change, so it is necessary to prepare multiple lower electrodes with round grooves that match the curvature of these and replace them while welding. The above-mentioned problems are particularly highlighted when trying to automate the joining of heater wires without any personnel, and the setup changes when automatically welding various ratings, i.e., the lower Exchange of electrodes, positioning of heater wires, that is, alignment of heater wires with round grooves, and monitoring of wear conditions of lower electrode round grooves during continuous welding have become factors that impede unmanned automation.

この発明は、かかる問題点を解決するためになされたも
ので、連続溶接を行ったときの溶接強度の安定性、熱動
素子の定格が変わったときに溶接電極の交換を要しない
熱動素子の構造を得るために成されたもので、以上によ
り溶接の無人化自動化を達成して安価な熱動素子を得る
ことを目的とする。
This invention was made to solve these problems, and it provides stability in welding strength during continuous welding, and a thermal element that does not require replacing the welding electrode when the rating of the thermal element changes. The purpose of this method is to achieve unmanned automation of welding and obtain an inexpensive thermal element.

[課題を解決するための手段] この発明の第1発明に係る熱動素子は、円形断面のヒー
タ線からなる発熱部と、少なくともこの発熱部により加
熱されて変形するバイメタルと、ヒータ線に接合された
端子とを有し、端子とヒータ線との接合は、ヒータ線の
端部と端子に設けられた平板部との抵抗溶接によるもの
において、ヒ−夕線の端部外周の溶接位置とは反対側と
なる部分に平面部が設けられているものである。
[Means for Solving the Problems] A thermal element according to a first aspect of the present invention includes a heat generating portion made of a heater wire with a circular cross section, a bimetal that is deformed by being heated by at least the heat generating portion, and a bimetal bonded to the heater wire. The terminal and the heater wire are joined by resistance welding between the end of the heater wire and a flat plate provided on the terminal, and the welding position on the outer periphery of the end of the heater wire is The flat part is provided on the opposite side.

また、この発明の第2発明に係る熱動素子は、円形断面
のヒータ線からなる発熱部と、少なくともこの発熱部に
より加熱されて変形するバイメタルと、ヒータ線に接合
された端子とを有し、端子とヒータ線との接合は、ヒー
タ線の端部と端子に設けられた平板部との抵抗溶接によ
るものにおいて、ヒータ線の端部外周の溶接位置とは反
対側となる部分に平面部が設けられており、かつ、ヒー
タ線と端子との溶接箇所はヒータ線に複数の山形の凹凸
が形成されて溶接されているものである。
Further, a thermal element according to a second aspect of the present invention includes a heat generating part made of a heater wire with a circular cross section, a bimetal that is heated and deformed by at least the heat generating part, and a terminal joined to the heater wire. , the terminal and the heater wire are joined by resistance welding between the end of the heater wire and the flat plate part provided on the terminal, and the flat part is attached to the outer periphery of the heater wire on the opposite side from the welding position. A plurality of chevron-shaped irregularities are formed on the heater wire at the welding location between the heater wire and the terminal.

[作 用] この発明の第1発明においては、ヒータ線の端部外周の
溶接位置とは反対側となる部分に平面部を設けたから、
溶接電極にヒータ線用の丸溝を形成する必要がなくなる
ため、連続溶接を行ったときの溶接強度が安定し、また
、丸溝がないためヒータ線の線径が異なる場合の電極交
換を必要としない。
[Function] In the first aspect of the present invention, since the flat portion is provided on the outer periphery of the end of the heater wire on the side opposite to the welding position,
Since there is no need to form a round groove for the heater wire on the welding electrode, the welding strength is stable during continuous welding, and since there is no round groove, it is necessary to replace the electrode when the diameter of the heater wire is different. I don't.

また、この発明の第2発明においては、ヒータ線の端部
外周の溶接位置とは反対側となる部分に平面部を設け、
かつ、ヒータ線と端子との溶接箇所はヒータ線に複数の
山形の凹凸を形成して溶接したから、溶接電極にヒータ
線用の丸溝を形成する必要がなくなるため、連続溶接を
行ったときの溶接強度が安定し、また、丸溝がないため
ヒータ線の線径が異なる場合の電極交換を必要としない
Further, in the second aspect of the present invention, a flat portion is provided on the outer periphery of the end of the heater wire on the opposite side to the welding position,
In addition, since the welding point between the heater wire and the terminal is formed by forming multiple chevron-shaped irregularities on the heater wire, there is no need to form a round groove for the heater wire on the welding electrode, so when continuous welding is performed. The welding strength is stable, and since there is no round groove, there is no need to replace the electrode when the heater wire diameter is different.

さらに、複数の山形の凹凸の部分で発熱集中が一層助長
される。
Furthermore, the concentration of heat generation is further promoted in the plurality of mountain-shaped uneven portions.

[実施例] 以下、この発明の第1実施例を図について説明する。熱
動素子全体の形状構成は従来例の第6図及び第7図と同
一であるので省略する。接合部分のヒータ線(3)の形
状を第1図により説明する。
[Example] Hereinafter, a first example of the present invention will be described with reference to the drawings. The overall shape and configuration of the thermal element is the same as that of the conventional example shown in FIGS. 6 and 7, and will therefore be omitted. The shape of the heater wire (3) at the joint portion will be explained with reference to FIG.

第1図はヒータ線(3)と電源側給電端子(4)との溶
接部の説明図で、溶接接合前の状態を示している。第2
図は溶接の原理図を示し、(10)は上部電極、(11
)は下部電極を示す。
FIG. 1 is an explanatory view of the welded portion between the heater wire (3) and the power supply side power supply terminal (4), and shows the state before welding and joining. Second
The figure shows the principle diagram of welding, where (10) is the upper electrode, (11
) indicates the lower electrode.

第1図において、ヒータ線(3)の端部外周は、電源側
給電端子(4)の平板部(4a)に対向する面(3c)
は元の円形形状で、当接点(20)の反対側、即ち、ヒ
ータ線(3)の端部外周の溶接位置とは反対側となる部
分は、図示の通り平面形状に形成されている。この平面
形状に形成された平面部(3d)は、溶接の前工程でプ
レスあるいは研削により形成される。このヒータ線(3
)の端部(3a)と電源側給電端子(4)に設けられた
平板部(4a)との溶接接合部の斜視図を第3図に示す
In FIG. 1, the outer periphery of the end of the heater wire (3) is a surface (3c) facing the flat plate portion (4a) of the power supply side power supply terminal (4).
has the original circular shape, and the portion opposite to the contact point (20), that is, the portion opposite to the welding position on the outer periphery of the end of the heater wire (3), is formed into a planar shape as shown. The plane portion (3d) formed into this planar shape is formed by pressing or grinding in a process prior to welding. This heater wire (3
FIG. 3 shows a perspective view of a welded joint between the end portion (3a) of ) and the flat plate portion (4a) provided on the power supply side power supply terminal (4).

第2図は溶接の原理を示すが、ヒータ線(3)が下部電
極(11)に対向する側は前述の通り平面状となってい
るので、従来例にあった下部電極の丸溝がなくなってい
る。
Figure 2 shows the principle of welding.As mentioned above, the side where the heater wire (3) faces the lower electrode (11) is flat, so the round groove in the lower electrode that was in the conventional example is eliminated. ing.

即ち、溶接電流が流れる際の下部電極(11)とヒータ
線(3)との間は、ヒータ線(3)の平面部(3d)表
面が平面形状であるため、下部電極(11)も平面状と
しても、溶接面が広くなるので電気抵抗が小さくなり、
当接点(20)のみで発熱集中が起り、安定した溶接が
得られることになる。つまり、ヒータ線の位置ずれが発
生しても同じ条件で溶接が完遂される。
That is, between the lower electrode (11) and the heater wire (3) when welding current flows, since the surface of the flat part (3d) of the heater wire (3) is flat, the lower electrode (11) is also flat. Even if the welding surface is wider, the electrical resistance will be lower.
Heat generation is concentrated only at the contact point (20), resulting in stable welding. In other words, even if the heater wire is misaligned, welding can be completed under the same conditions.

次に、第2実施例について説明する。Next, a second example will be described.

第4図は第2実施例におけるヒータ諜と電源側給電端子
との溶接部の説明図であるが、ヒータ線(3)が端子(
4)に当接する部分も、より接触抵抗が高くなる様に山
形の凹凸(3e)が形成されている。
FIG. 4 is an explanatory diagram of the welding part between the heater wire and the power supply side power supply terminal in the second embodiment, and the heater wire (3) is connected to the terminal (
4) is also formed with chevron-shaped unevenness (3e) so as to further increase the contact resistance.

この山形の凹凸(3e)で発熱集中をさらに助長して、
安定した溶接を得んとするものである。
This mountain-shaped unevenness (3e) further promotes heat generation concentration,
The purpose is to obtain stable welding.

第5図は第4図に示すヒータ線の接合部分の斜視図であ
る。
FIG. 5 is a perspective view of the joint portion of the heater wire shown in FIG. 4.

第3図あるいは第5図の斜視図に示す様な平面部(3d
)及び山形の凹凸(3e)の形成は手作業の場合(無人
化自動化を行われない場合)には1工程の形成作業が増
えることになるが、自動化を行うに当たっては自動化ラ
インの溶接の前にこの作業を組み入れることによる作業
時間の損失は少く、かつこれを行うことにより自動化が
達成されることによる作業スピードの迅速化は上記を補
填して余りあるものである。
A plane part (3d
) and chevron-shaped unevenness (3e) if done manually (unless automated), one more step of forming work will be required, but when automation is performed, it is necessary to The loss of working time due to incorporating this work into the process is small, and the increase in work speed due to the automation achieved by doing this more than compensates for the above.

なお、上記実施例は、バイメタル(1)にヒータ線(3
)を巻回したものについて述べたが、ヒータ線(3)は
発熱部としての機能を有していればよく、この発熱部に
より加熱されてバイメタル(1)が変形して、例えば1
電流を検出するものであればよ(、その構造は実施例の
ものに限定するものではない。
In addition, in the above embodiment, the heater wire (3) is attached to the bimetal (1).
), but the heater wire (3) only needs to have a function as a heat generating part, and the bimetal (1) is deformed by being heated by this heat generating part, for example, 1
It may be used as long as it detects current (the structure is not limited to that of the embodiment).

また、実施例はヒータ線(3)とバイメタル(1)とが
直列に接続されており、バイメタル(1)自身も発熱す
るようになっているが、ヒータ線(3)のみによってバ
イメタルが加熱されるものであってもよい。
In addition, in the embodiment, the heater wire (3) and the bimetal (1) are connected in series, and the bimetal (1) itself generates heat, but the bimetal is heated only by the heater wire (3). It may be something that

また、ヒータ線(3)の一方の端部(3b)は、たんざ
く形状のバイメタル(1)の下端(1b)に接合されて
いるが、この場合はバイメタル(1)の下端(1b)が
端子の役割をはたしており、かつ、下端(1b)は端子
(4)の平板部(4a)に相当する機能を持っており、
また下端(1b)、つまり平板部のみによって端子が構
成されていると見ることができる。そこで、この明細書
で「端子」というときは、端子として独立したもののほ
かに、バイメタル(1)の下端(lb)のように端子の
役割をはたす部分も含めて端子というものとする。
Also, one end (3b) of the heater wire (3) is joined to the lower end (1b) of the tanzaku-shaped bimetal (1); in this case, the lower end (1b) of the bimetal (1) It plays the role of a terminal, and the lower end (1b) has a function equivalent to the flat plate part (4a) of the terminal (4),
Further, it can be seen that the terminal is constituted only by the lower end (1b), that is, the flat plate portion. Therefore, in this specification, the term "terminal" includes not only independent terminals but also parts that function as terminals, such as the lower end (lb) of bimetal (1).

[発明の効果コ この発明の第1発明は以上説明したとおり、ヒータ線の
端部外周の溶接位置とは反対側となる部分に平面部を設
けたので、溶接用電極にヒータ線用の丸溝が不要となる
ため、ヒータ線のずれによる溶接不良、丸溝の摩耗によ
る溶接不良等がなくなり安定した溶接が得られると共に
、ヒータ線の線径が変化したときの電極の交換も不要と
なる。
[Effects of the Invention] As explained above, in the first aspect of the present invention, a flat part is provided on the outer periphery of the end of the heater wire on the side opposite to the welding position, so that the welding electrode has a circular shape for the heater wire. Since grooves are not required, welding defects due to misalignment of the heater wire and welding defects due to round groove wear are eliminated, resulting in stable welding, and there is no need to replace the electrode when the diameter of the heater wire changes. .

従って、ヒータ線溶接の自動化、無人化が達成されて、
安価な装置を供給出来るという効果がある。
Therefore, automation and unmanned heater wire welding have been achieved,
This has the effect of being able to supply inexpensive equipment.

また、この発明の第2発明は以上説明したとおり、ヒー
タ線の端部外周の溶接位置とは反対側となる部分に平面
部を設け、かつヒータ線と端子との溶接箇所はヒータ線
に複数の山形の凹凸を形成して溶接したから、第1発明
の効果に加え、複数の山形の凹凸の部分で発熱集中が一
層助長され、より一層安定した溶接接合が得られる効果
がある。
Further, as explained above, the second aspect of the present invention is to provide a flat portion on the side opposite to the welding position on the outer periphery of the end of the heater wire, and to provide a plurality of welding points between the heater wire and the terminal on the heater wire. Since welding is performed by forming the mountain-shaped unevenness, in addition to the effect of the first invention, the concentration of heat generation is further promoted in the plurality of mountain-shaped uneven parts, and there is an effect that a more stable welded joint can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例を示しヒータ線と電源側
給電端子との溶接部の説明図、第2図は同じくヒータ線
と電源側給電端子との溶接の原理を説明する説明図、第
3図はヒータ線の溶接部の斜視図、第4図はこの発明の
第2実施例を示しヒータ線と電源側給電端子との溶接部
の説明図、第5図は第2実施例におけるヒータ線の溶接
部の斜視図、第6図は熱動素子の側面図、第7図は熱動
素子の正面図、第8図は従来の熱動素子のヒータ線と端
子との溶接の原理を説明する説明図、第9図は従来の熱
動素子と端子との溶接の不具合を説明する説明図である
。 図において、(1)はバイメタル、(3)はヒータ線(
発熱部) 、(3d)は平面部、(3e)は山形の凹凸
、(4)は電源側給電端子、(4a)は平板部、(20
)は当接点である。 なお、図中同一符号は同−又は相当部分を示す。 第 図 代理人 弁理士 佐々木 宗 治 第2図 第 図 e 1:バイメタル 3:し−y繞G1鱈#) 第 図 第 図
FIG. 1 shows a first embodiment of the present invention, and is an explanatory diagram of the welding part between the heater wire and the power supply terminal, and FIG. 2 is an explanatory diagram illustrating the principle of welding the heater wire and the power supply terminal. , FIG. 3 is a perspective view of the welded part of the heater wire, FIG. 4 shows a second embodiment of the invention, and is an explanatory diagram of the welded part between the heater wire and the power supply side power supply terminal, and FIG. 5 shows the second embodiment. Fig. 6 is a side view of the thermal element, Fig. 7 is a front view of the thermal element, and Fig. 8 is a welding of the heater wire and terminal of a conventional thermal element. FIG. 9 is an explanatory diagram for explaining the principle, and FIG. 9 is an explanatory diagram for explaining a problem in conventional welding between a thermal element and a terminal. In the figure, (1) is a bimetal, (3) is a heater wire (
(20
) is the contact point. Note that the same reference numerals in the figures indicate the same or equivalent parts. Figure Agent Patent Attorney Muneharu Sasaki Figure 2 Figure e 1: Bimetal 3: Shi-y 繞G1 Cod #) Figure Figure

Claims (2)

【特許請求の範囲】[Claims] (1)円形断面のヒータ線からなる発熱部と、少なくと
もこの発熱部により加熱されて変形するバイメタルと、
前記ヒータ線に接合された端子とを有し、前記端子と前
記ヒータ線との接合は、前記ヒータ線の端部と前記端子
に設けられた平板部との抵抗溶接による接合である熱動
素子であって、前記ヒータ線の端部外周の溶接位置とは
反対側に平面部が設けられていることを特徴とした熱動
素子。
(1) A heat generating part made of a heater wire with a circular cross section, and at least a bimetal that is heated and deformed by the heat generating part;
and a terminal joined to the heater wire, wherein the terminal and the heater wire are joined by resistance welding between an end of the heater wire and a flat plate portion provided on the terminal. A thermal element characterized in that a flat portion is provided on the outer periphery of the end portion of the heater wire on the side opposite to the welding position.
(2)円形断面のヒータ線からなる発熱部と、少なくと
もこの発熱部により加熱されて変形するバイメタルと、
前記ヒータ線に接合された端子とを有し、前記端子と前
記ヒータ線との接合は、前記ヒータ線の端部と前記端子
に設けられた平板部との抵抗溶接による接合である熱動
素子であって、前記ヒータ線の端部外周の溶接位置とは
反対側に平面部が設けられており、 かつ、前記ヒータ線と前記端子との溶接箇所は前記ヒー
タ線に複数の山形の凹凸が形成されて溶接されているこ
とを特徴とした熱動素子。
(2) a heat generating part made of a heater wire with a circular cross section, and a bimetal that is heated and deformed by at least the heat generating part;
and a terminal joined to the heater wire, wherein the terminal and the heater wire are joined by resistance welding between an end of the heater wire and a flat plate portion provided on the terminal. A flat part is provided on the opposite side of the outer periphery of the end of the heater wire from the welding position, and the welding location between the heater wire and the terminal is such that the heater wire has a plurality of chevron-shaped irregularities. A thermal element characterized in that it is formed and welded.
JP14730890A 1990-06-07 1990-06-07 Thermally moving element Pending JPH0443523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14730890A JPH0443523A (en) 1990-06-07 1990-06-07 Thermally moving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14730890A JPH0443523A (en) 1990-06-07 1990-06-07 Thermally moving element

Publications (1)

Publication Number Publication Date
JPH0443523A true JPH0443523A (en) 1992-02-13

Family

ID=15427260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14730890A Pending JPH0443523A (en) 1990-06-07 1990-06-07 Thermally moving element

Country Status (1)

Country Link
JP (1) JPH0443523A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402431B1 (en) * 1994-06-13 2004-02-25 칼소닉 칸세이 가부시끼가이샤 Terminal connection structure
JP2008132813A (en) * 2006-11-27 2008-06-12 Kubota Corp Walking type working machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402431B1 (en) * 1994-06-13 2004-02-25 칼소닉 칸세이 가부시끼가이샤 Terminal connection structure
JP2008132813A (en) * 2006-11-27 2008-06-12 Kubota Corp Walking type working machine

Similar Documents

Publication Publication Date Title
US5739496A (en) Method of connecting a wire to a terminal and an apparatus therefor
US4536644A (en) Arrangement for welding together thermoplastic molded members
JPS63235081A (en) Spot welding machine
JP3454055B2 (en) Connection structure and connection method of insulated wire
JPH0443523A (en) Thermally moving element
JP4224050B2 (en) Heater chip thermocouple mounting structure and thermocouple mounting method
JPS6240041A (en) Manufacture of field coils
WO2021047307A1 (en) Spot welding method for multi-layer conductor of motor winding
JP2524859B2 (en) Resistance / temperature fuse and manufacturing method thereof
US6011233A (en) Welding method of a connection terminal piece for a deflection yoke coil and the structure thereof
US3941971A (en) Resistance brazing of solid copper parts to stranded copper parts with phos-silver
JPH01221873A (en) Conductor rail with contact pin
JP2000190068A (en) Electronic parts jointing method
JP2011232232A (en) Manufacturing method of thermocouple and thermocouple
JP2002063980A (en) Welding method and equipment of electric wire having insulation cover
JP2926974B2 (en) Method and apparatus for manufacturing ERW pipe
KR100548015B1 (en) Electrode for electric resistance welding
JP4234818B2 (en) Resistance thermal fuse and manufacturing method thereof
JPH0334873Y2 (en)
JP3176838B2 (en) Equipment for manufacturing welded H-section steel
JPS5941156A (en) Brazing method by plating
JPS59218266A (en) Joining method of two members
JPH0970672A (en) Method for welding different metal plate body
JPH03138818A (en) Manufacture of flexible electric conductor
JPH0817324A (en) Bimetal device and its manufacture