JPH0443019A - Manufacture of heat-resistant film - Google Patents

Manufacture of heat-resistant film

Info

Publication number
JPH0443019A
JPH0443019A JP15071690A JP15071690A JPH0443019A JP H0443019 A JPH0443019 A JP H0443019A JP 15071690 A JP15071690 A JP 15071690A JP 15071690 A JP15071690 A JP 15071690A JP H0443019 A JPH0443019 A JP H0443019A
Authority
JP
Japan
Prior art keywords
film
stretching
polyether copolymer
heat
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15071690A
Other languages
Japanese (ja)
Inventor
Toru Iga
徹 伊賀
Shigeru Matsuo
茂 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP15071690A priority Critical patent/JPH0443019A/en
Publication of JPH0443019A publication Critical patent/JPH0443019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a heat-resistant film having excellent surface smoothness, heat resistance, and dimensional stability at a high temperature by primarily orienting and secondarily orienting a film manufactured by thermoforming a polyether copolymer resin, which has a specific composition and melting viscosity of which has a specific value, under specific conditions and thermally fixing the film. CONSTITUTION:A film manufactured by thermoforming a polyether copolymer resin, which is composed of repeated units shown in formulae I, II and in which a composition ratio [a mol ratio: I/(I+II)] at the repeated unit shown in formula I is 0.15-0.40mol while melting viscosity at 400 deg.C is 3,000-100,000 poises, is primarily oriented under the conditions of a temperature of 170-250 deg.C, a draw ratio of (1.5-4) fold and the speed of orientation of 200-10,000%/min, and secondarily oriented in the direction orthogonal in the direction of orientation of primary orientation under the conditions of a temperature of 170-270 deg.C, a draw ratio of (1.5-4) fold and the speed of orientation of 200-10,000%/min, and thermally fixed.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、耐熱性フィルムの製造方法に関し、更に詳し
くいうと、エレクトロニクス分野、電気および熱絶縁分
野、およびその他一般の工業分野の各種用途に幅広く使
用することのてきる耐熱性フィルムの製造方法に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a heat-resistant film, and more specifically, to various applications in the electronics field, electrical and thermal insulation field, and other general industrial fields. This invention relates to a method for producing a heat-resistant film that can be used widely.

[従来の技術と発明か解決しようとする課題]近年、耐
熱性や、機械的強度に優れた各種の樹脂フィルムか開発
され、これらは電気・電子分野において、電気絶縁材料
、耐熱性フレキシブルプリント回路基板などのように、
機器や機械などの部品の素材として広汎な用途に供され
ている。
[Prior art and the problem to be solved by the invention] In recent years, various resin films with excellent heat resistance and mechanical strength have been developed, and these are used as electrical insulation materials and heat-resistant flexible printed circuits in the electrical and electronic fields. Like the board, etc.
It is used for a wide range of purposes as a material for parts of equipment and machinery.

そのため、樹脂フィルムの用途範囲が広がるにつれて、
従来よりもさらに優れた性質、即ち、耐熱性、難燃性、
機械的強度等の性質を具備する樹脂フィルムかますます
要求される。
Therefore, as the range of applications for resin films expands,
Even better properties than before, i.e. heat resistance, flame retardancy,
Resin films with properties such as mechanical strength are increasingly required.

現在用いられている樹脂フィルムとして、たととえば、
ポリイミド等のフィルムか挙げられるか、押出成形がて
きず、しかも価格が高い等の大きな欠点かある。そこて
、熱可塑性樹脂て耐熱性フィルムを作製する試みかなさ
れている。
Examples of currently used resin films include:
Films made of polyimide and the like have major disadvantages such as difficulty in extrusion molding and high prices. Therefore, attempts have been made to produce heat-resistant films using thermoplastic resins.

しかしなから、耐熱性、耐薬品性に最も優れているとい
われているポリエーテルエーテルケトンてさえ、延伸に
よる薄膜化により、形成したフィルムは表面平滑性に劣
るという欠点かある。
However, even polyetheretherketone, which is said to have the best heat resistance and chemical resistance, has the disadvantage that the formed film has poor surface smoothness due to thinning by stretching.

本発明は前記の事情に基いてなされたものである。The present invention has been made based on the above circumstances.

本発明の目的は、表面平滑性、耐熱性、高温ての寸法安
定性に優れた耐熱性フィルムを提供することにある。
An object of the present invention is to provide a heat-resistant film that has excellent surface smoothness, heat resistance, and dimensional stability at high temperatures.

[前記課題を解決するための手段] 前記課題を解決するための本発明の構成は、次式(I)
: て表わされる繰り返し単位および次式(II)菖 (II) て表される繰り返し単位からなり、前記式(I)て表さ
れる繰り返し単位の組成比[モル比。
[Means for solving the above problem] The configuration of the present invention for solving the above problem is expressed by the following formula (I)
: Consisting of a repeating unit represented by the following formula (II) and a repeating unit represented by the following formula (II), the composition ratio [molar ratio] of the repeating unit represented by the formula (I).

(I)/((I)+  (n))]か0.15〜0.4
0モルであるとともに、400°Cにおける溶融粘度か
:I、000〜100,000ボイズであるポリエーテ
ル系共重合体樹脂を熱成形したフィルムを 温度170〜250°C1延伸倍率1.5〜4倍、延伸
速度200〜10,000%/分の条件下に一次延伸を
して、次いて 伸方向に直交する方向に二次延伸した後、熱固定するこ
とを特徴とする耐熱性フィルムの製造方法である。
(I)/((I)+(n))] or 0.15 to 0.4
A film obtained by thermoforming a polyether copolymer resin having a melt viscosity of 0 mole and a melt viscosity of I at 400°C and a void of 000 to 100,000 is heated at a temperature of 170 to 250°C and a stretching ratio of 1.5 to 4. Production of a heat-resistant film characterized by first stretching at a stretching speed of 200 to 10,000%/min, then second stretching in a direction perpendicular to the stretching direction, and then heat setting. It's a method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

−ポリエーテル系共重合体− 本発明の耐熱性フィルムの原料となるポリエーテル系共
重合体において重要な点の一つは、前記ポリエーテル系
共重合体か、前記式(I)て表わされる繰り返し単位と
前記式(II)て表わされる繰り返し単位とからなると
ともに、前記式(I)て表わされる繰り返し単位の含有
割合[モル比、(I)/< (I)+ (II))]か
0.15〜0.40の範囲にあり、式(I1)て表わさ
れる繰り返し単位の組成比(モル比)か0.85〜0.
60であることである。
-Polyether copolymer- One of the important points about the polyether copolymer that is the raw material for the heat-resistant film of the present invention is that the polyether copolymer is It consists of a repeating unit and a repeating unit represented by the above formula (II), and the content ratio of the repeating unit represented by the above formula (I) [molar ratio, (I)/< (I) + (II))] The composition ratio (molar ratio) of the repeating unit represented by formula (I1) is in the range of 0.15 to 0.40, and the composition ratio (molar ratio) of the repeating unit represented by formula (I1) is in the range of 0.85 to 0.
It is 60 years old.

前記式(I)で表わされる繰り返し単位の組成比か0.
15未満であると、ポリエーテル系共重合体のガラス転
移温度か低くなって耐熱性か低下したつ、融点か高くな
って成形性の劣化を招いたりする。一方、0.40を超
えると、ポリエーテル系重合体の結晶性か失われて、耐
熱性、耐溶剤性か低下する。
The composition ratio of the repeating unit represented by the formula (I) is 0.
If it is less than 15, the glass transition temperature of the polyether copolymer will be low, resulting in a decrease in heat resistance, and the melting point will be high, leading to deterioration in moldability. On the other hand, if it exceeds 0.40, the crystallinity of the polyether polymer will be lost and the heat resistance and solvent resistance will decrease.

また、本発明に用いられるポリエーテル系共重合体にお
いては、温度400°Cにおける溶融粘度(ゼロ剪断粘
度)か3,000〜100,000ボイズであることか
重要である。
Further, in the polyether copolymer used in the present invention, it is important that the melt viscosity (zero shear viscosity) at a temperature of 400°C is 3,000 to 100,000 voids.

この溶融粘度か3,000ボイズ未満である低分子量の
ポリエーテル系共重合体ては、十分な耐熱性および機械
的強度を達成することかてきないからである。
This is because a low molecular weight polyether copolymer having a melt viscosity of less than 3,000 voids cannot achieve sufficient heat resistance and mechanical strength.

また、溶融粘度か100,000ボイズな超えるとフィ
ルム化など成形加工性か低下する。
In addition, when the melt viscosity exceeds 100,000 voids, the moldability such as forming into a film deteriorates.

本発明に用いられるポリエーテル系共重合体は、たとえ
ば結晶融点か330〜400℃程度てあって、高い結晶
性を有するとともに、十分に高分子量てあり、十分な耐
熱性を示すとともに、耐溶剤性、機械的強度に優れて、
たとえば電気・電子機器分野、機械分野等における新た
な素材として好適に用いることかてきる。
The polyether copolymer used in the present invention has, for example, a crystal melting point of about 330 to 400°C, has high crystallinity, has a sufficiently high molecular weight, exhibits sufficient heat resistance, and is resistant to solvents. Excellent properties and mechanical strength.
For example, it can be suitably used as a new material in the electrical/electronic equipment field, mechanical field, etc.

このようなポリエーテル系共重合体は、以下のようにし
て製造することがてきる。
Such a polyether copolymer can be produced as follows.

−ポリエーテル系共重合体の製造方法−ポリエーテル系
共重合体は、特定使用比率でジハロゲノベンゾニトリル
、および4.4′−ビフェノール、ならびにアルカリ金
属化合物を中性極性溶媒の存在下に反応させた後、反応
生成物と特定量の4,4゛−ジハロゲノベンゾフェノン
との共重合反応を行なうことにより、製造することかて
きる。
-Production method of polyether copolymer-Polyether copolymer is produced by reacting dihalogenobenzonitrile, 4,4'-biphenol, and an alkali metal compound in the presence of a neutral polar solvent in a specific usage ratio. After that, the reaction product can be produced by carrying out a copolymerization reaction with a specific amount of 4,4'-dihalogenobenzophenone.

使用に供される前記ジハロゲノベンゾニトリルの具体例
としては、たとえば、次式: (たたし、式中、Xはハロゲン原子である。)で表わさ
れる2、6−ジハロゲノベンゾニトリル、2.4−ジハ
ロゲノベンゾニトリルなどが挙げられる。
Specific examples of the dihalogenobenzonitrile that can be used include 2,6-dihalogenobenzonitrile represented by the following formula: (wherein, X is a halogen atom); .4-dihalogenobenzonitrile and the like.

これらの中ても、好ましいのは2.6−ジクロロベンゾ
ニトリル、2.6−ジフルオロベンゾニトリル、2,4
−ジクロロベンゾニトリル、2゜4−ジフルオロベンゾ
ニトリルてあり、特に好ましいのは2.6−ジクロロベ
ンゾニトリルである。
Among these, 2,6-dichlorobenzonitrile, 2,6-difluorobenzonitrile, 2,4
2.6-dichlorobenzonitrile is particularly preferred.

前記ジハロゲノベンゾニトリルと次式;て表わされる4
、4゛−ビフェノールとをアルカリ金属化合物および中
性極性溶媒の存在下て反応させる。
The dihalogenobenzonitrile and 4 represented by the following formula;
, 4'-biphenol in the presence of an alkali metal compound and a neutral polar solvent.

使用に供される前記アルカリ金属化合物は、前記4,4
゛−ビフェノールをアルカリ金属塩にすることのてきる
ものてあればよく、特に制限はないか、好ましいのはア
ルカリ金属炭酸塩、アルカリ金属炭酸水素塩である。
The alkali metal compound to be used is
- Any substance that can convert biphenol into an alkali metal salt may be used, and there are no particular limitations, but alkali metal carbonates and alkali metal hydrogen carbonates are preferred.

前記アルカリ金属炭酸塩としては、たとえば炭酸リチウ
ム、炭酸ナトリウム、炭酸カリウム炭酸ルビジウム、炭
酸セシウムなどが挙げられる。
Examples of the alkali metal carbonates include lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, and cesium carbonate.

これらの中ても、好ましいのは炭酸ナトリウム、炭酸カ
リウムである。
Among these, preferred are sodium carbonate and potassium carbonate.

前記アルカリ金属炭酸水素塩としては、たとえば炭酸水
素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、
炭酸水素ルビジウム、炭酸水素セシウムなどが挙げられ
る。
Examples of the alkali metal hydrogen carbonate include lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate,
Examples include rubidium hydrogen carbonate and cesium hydrogen carbonate.

これらの中ても、好ましいのは炭酸水素ナトリウム、炭
酸水素カリウムである。
Among these, preferred are sodium hydrogen carbonate and potassium hydrogen carbonate.

前記中性極性溶媒としては、たとえばN、N−ジメチル
ホルムアミド、N、N−ジエチルホルムアミド、N、N
−ジメチルアセトアミド、N。
Examples of the neutral polar solvent include N,N-dimethylformamide, N,N-diethylformamide, N,N
-dimethylacetamide, N.

N−ジエチルアセトアミド、N、N−シプロピルアセト
アミト、N、N−ジメチル安息、香酸アミド、N−メチ
ル−2−ピロリドン、N−エチル−2−ピロリドン、N
−イソプロピル−2−ピロリドン、N−インフチルー2
−ピロリドン、N−n−プロピル−2−ピロリドン、N
−n−フチルー2−ピロリドン、N−シクロへキシル−
2ピロリドン、N−メチル−3−メチル−2−ピロリド
ン、N−エチル−3−メチル−2−ピロリドン、N−メ
チル−3,4,5−トリメチル−2−ビロソトン、N−
メチル−2−ピペリトン、N−エチル−2−ピペリトン
、N−インプロピル−2−ピペリトン、N−メチル−6
−メチル−2−ピペリトン、N−メチル−3−エチルピ
ペリトン、ジメチルスルホキシド、ジエチルスルホキシ
ド、1−メチル−1−オキソスルホラン、l−エチル−
1−オキソスルホラン、l−フェニル−1−オキッスル
ホラン、N、N’−ジメチルイミダゾリジノン、ジフェ
ニルスルホンなどが挙げられる。
N-diethylacetamide, N,N-cypropylacetamide, N,N-dimethylbenzoic acid amide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N
-isopropyl-2-pyrrolidone, N-inphthyl-2
-pyrrolidone, N-n-propyl-2-pyrrolidone, N
-n-phthyl-2-pyrrolidone, N-cyclohexyl-
2-pyrrolidone, N-methyl-3-methyl-2-pyrrolidone, N-ethyl-3-methyl-2-pyrrolidone, N-methyl-3,4,5-trimethyl-2-birosotone, N-
Methyl-2-piperitone, N-ethyl-2-piperitone, N-impropyl-2-piperitone, N-methyl-6
-Methyl-2-piperitone, N-methyl-3-ethylpiperitone, dimethyl sulfoxide, diethyl sulfoxide, 1-methyl-1-oxosulfolane, l-ethyl-
Examples include 1-oxosulfolane, l-phenyl-1-oxosulfolane, N,N'-dimethylimidazolidinone, diphenylsulfone, and the like.

製造方法の一例としては、前記アルカリ金属化合物およ
び前記中性極性溶媒の存在下ての前記ジハロゲノベンゾ
ニトリルと前記4.4゛−ヒフエノールとの反応を行な
って得られる反応生成物と前記4,4′−ジハロゲノベ
ンゾフェノンとを反応させる。
An example of the production method includes a reaction product obtained by reacting the dihalogenobenzonitrile with the 4.4'-hyphenol in the presence of the alkali metal compound and the neutral polar solvent; React with 4'-dihalogenobenzophenone.

使用に供される前記4,4′−ジハロゲノベンゾフェノ
ンは、次式。
The 4,4'-dihalogenobenzophenone used has the following formula.

(たたし、Xは前記と同し意味である。)て表わされる
化合物てあり、本発明においては、4.4”−ジフルオ
ロベンゾフェノン、4.4゜ジクロロベンゾフェノンを
特に好適に使用することかてきる。
(X has the same meaning as above.) In the present invention, 4.4''-difluorobenzophenone and 4.4゜dichlorobenzophenone are particularly preferably used. I'll come.

ジハロゲノベンゾニトリルと4.4′−ジハロゲノベン
ゾフェノンとの合計量の、前記4,4゜−ビフェノール
の使用量に対するモル比か、通常、0.98〜1.02
、好ましくは、1.00〜1.Olである。アルカリ金
属化合物の4,4°−ビフェノールに対するモル比は、
通常、1.03〜2.50、好ましくは、1.05〜1
.25である。
The molar ratio of the total amount of dihalogenobenzonitrile and 4,4′-dihalogenobenzophenone to the amount of 4,4°-biphenol used is usually 0.98 to 1.02.
, preferably 1.00 to 1. It is Ol. The molar ratio of the alkali metal compound to 4,4°-biphenol is
Usually 1.03 to 2.50, preferably 1.05 to 1
.. It is 25.

前記中性極性溶媒の使用量については、特に制限はない
か、通常、前記ジハロゲノベンゾニトリルと、前記4,
4°−ビフェノールと、前記アルカリ金属化合物との合
計100重量部当り、200〜2.000重量部の範囲
て選ばれる。
Is there any particular restriction on the amount of the neutral polar solvent used? Usually, the amount of the dihalogenobenzonitrile and the 4.
The amount is selected from 200 to 2.000 parts by weight per 100 parts by weight of the 4°-biphenol and the alkali metal compound.

ポリニーデル系共重合体を得るには、たとえば、前記中
性極性溶媒中に、前記ジハロゲノベンゾニトリルと、前
記4.4°−ビフェノールと、前記アルカリ金属化合物
とを、同時に添加して、前記ジハロゲノベンゾニトリル
と前記4,4′ビフエノールとの反応を行なわせた後、
さらに前記4.4′−ジハロゲノベンゾフェノンを添加
し1通常は150〜380℃、好ましくは180〜33
0°Cの範囲の温度において一連の反応を行なわせる。
In order to obtain a polyneedle copolymer, for example, the dihalogenobenzonitrile, the 4.4°-biphenol, and the alkali metal compound are simultaneously added to the neutral polar solvent. After reacting the halogenobenzonitrile with the 4,4′ biphenol,
Furthermore, the above 4.4'-dihalogenobenzophenone is added.
A series of reactions are carried out at temperatures in the range of 0°C.

反応温度か150°C未満ては、反応速度か遅すぎて実
用的てはないし、 380℃を超えると、副反応を招く
ことかある。
If the reaction temperature is less than 150°C, the reaction rate is too slow to be practical, and if it exceeds 380°C, side reactions may occur.

また、この一連の反応の反応時間は、通常0.1〜10
時間てあつ、好ましくはo、5時間〜5時間である。
In addition, the reaction time of this series of reactions is usually 0.1 to 10
The time is preferably 5 to 5 hours.

反応の絆了後、得られるポリエーテル系共重合体を含有
する中性極性溶媒溶液から、公知の方法に従って、ポリ
エーテル系共重合体を分離、精製することにより、ポリ
エーテル系共重合体を得ることかてきる。
After the reaction is complete, the polyether copolymer is separated and purified from the resulting neutral polar solvent solution containing the polyether copolymer according to a known method. You can get it.

また 本発明に用いられるポリエーテル系共重合体は、
中性極性溶媒中にジハロゲノベンゾニトリルとビフェノ
ールとアルカリ金属塩とジハロゲノベンゾフェノンとを
同時に添加することにより得ることもてきる。
In addition, the polyether copolymer used in the present invention is
It can also be obtained by simultaneously adding dihalogenobenzonitrile, biphenol, alkali metal salt, and dihalogenobenzophenone to a neutral polar solvent.

本発明において用いるポリエーテル系共重合体は、 4
00°Cにおける溶融粘度か3,000〜100,00
0ボイズてあり、その結晶融点は330〜400℃であ
る。
The polyether copolymer used in the present invention is 4
Melt viscosity at 00°C: 3,000 to 100,00
It has 0 voids and its crystal melting point is 330-400°C.

本発明の耐熱性フィルムにおいては、フィルムの原料で
ある前記ポリエーテル系共重合体にっき、該ポリエーテ
ル系共重合体に含まれるアルカリ金属塩の含有量か50
ppm以下であることか望ましい。
In the heat-resistant film of the present invention, the content of the alkali metal salt contained in the polyether copolymer, which is the raw material of the film, is 50% or less.
It is desirable that it be less than ppm.

というのは、ボッエーテル系共重合体中に50ppmを
越えるアルカリ金属塩か含有されていると、このような
ポリエーテル系共重合体から形成された耐熱性フィルム
を、たとえば、磁気記録媒体に使用すると、長期間の使
用により磁気ヘットを腐食させたりすることかあるから
である。
This is because if a polyether copolymer contains more than 50 ppm of an alkali metal salt, if a heat-resistant film formed from such a polyether copolymer is used in a magnetic recording medium, for example, This is because the magnetic head may corrode due to long-term use.

重合絆了後のポリエーテル系共重合体中からアルカリ金
属塩を低減させるには、ポリエーテル系共重合体を、有
機酸もしくは無機酸含有の、PH3,5以下に調整され
た酸性水溶液て、洗浄するのかよい。
In order to reduce the alkali metal salts in the polyether copolymer after polymerization, the polyether copolymer is treated with an acidic aqueous solution containing an organic acid or an inorganic acid and whose pH is adjusted to 3.5 or less. Should I wash it?

前記有機酸としては、たとえば、ギ酸、酢酸モノクロル
酢酸、ジクロル酢酸、トリクロル酢酸、プロピオン酸等
のモノカルボン酸、シュウ酸、マロン酸等のジカルボン
酸を挙げることかてきる。これらの中てし好ましいのは
シュウ徴等のジカルボン酸てあり、特にシュウ酸か好ま
しい。なお、これらの有機酸はその一種を単独て使用す
ることもてきるし、またその二種以上を併用することも
てきる。
Examples of the organic acids include monocarboxylic acids such as formic acid, acetic acid monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, and propionic acid, and dicarboxylic acids such as oxalic acid and malonic acid. Among these, dicarboxylic acids such as oxalic acid are preferred, and oxalic acid is particularly preferred. Incidentally, these organic acids can be used singly or in combination of two or more.

前記無機酸としては、塩酸、硫酸、リン酸等を挙げるこ
とかてきる。これらの中でも好ましいのは塩酸である。
Examples of the inorganic acid include hydrochloric acid, sulfuric acid, phosphoric acid, and the like. Among these, hydrochloric acid is preferred.

これらの酸を含有する溶液は、p H3,5以下になる
ように濃度を調整し、あるいは酸の種類を決定するのか
よい。
For solutions containing these acids, the concentration may be adjusted so that the pH is 3.5 or less, or the type of acid may be determined.

酸性水溶液でポリエーテル系共重合体を洗浄する時間は
、ポリエーテル系共重合体中のアルカリ金属塩の含有量
か5i1pp−以下になるのに十分な時間である。なお
、洗浄による脱塩効果を促進するために、洗浄時に酸性
水溶液とポリエーテル系共重合体との混合物を加温また
は加圧下に加温してもよい。
The time for washing the polyether copolymer with the acidic aqueous solution is sufficient to reduce the content of alkali metal salt in the polyether copolymer to 5i1 pp- or less. In addition, in order to promote the desalination effect by washing, the mixture of the acidic aqueous solution and the polyether copolymer may be heated or heated under pressure during washing.

酸性水溶液て洗浄した後には、ポリエーテル系共重合体
から酸を除去するために、純水、イオン交換水、蒸留水
等て十分に洗浄することか推奨される。
After washing with an acidic aqueous solution, it is recommended to thoroughly wash with pure water, ion-exchanged water, distilled water, etc. in order to remove the acid from the polyether copolymer.

次に、本発明における耐熱性フィルムは、十分に脱塩し
た前記ポリエーテル系共重合体て形成することもてきる
し、また、脱塩した前記ポリエーテル系共重合体と無機
質充填剤との混合されたポリエーテル系共重合体樹脂組
成物から形成することもてきる。
Next, the heat-resistant film of the present invention can be formed from the polyether copolymer that has been sufficiently desalted, or it can be formed from the polyether copolymer that has been desalted and an inorganic filler. It can also be formed from a mixed polyether copolymer resin composition.

前記ポリエーテル系共重合体樹脂組成物は、前記ポリエ
ーテル系共重合体と無機質充填剤とを、ポリエーテル系
共重合体に対し、無機質充填剤をその含有割合を10重
量%未満、好ましくはo、oos〜5重量%とすること
により、フィルム表面の滑り性か改善され、またその含
有割合を10〜50重量%、好ましくは15〜40重量
%とすることにより熱膨張率の小さいフィルムを得るこ
とかてきる。
The polyether copolymer resin composition contains the polyether copolymer and the inorganic filler, and the content of the inorganic filler is less than 10% by weight, preferably less than 10% by weight, based on the polyether copolymer. By setting o, oos to 5% by weight, the slipperiness of the film surface is improved, and by setting the content to 10 to 50% by weight, preferably 15 to 40% by weight, a film with a small coefficient of thermal expansion can be obtained. You can get it.

前記無機質充填剤としては、たとえば、炭酸カルシウム
、炭酸マグネシウム、ドロマイト等の炭酸塩、硫酸カル
シウム、硫酸マグネシウム等の硫酸塩、亜硫酸カルシウ
ム等の亜硫##塩、タルク、クレー、アイ力、アスベス
ト、ガラスMtai、ガラスど−ズ、ケイ酸カルシウム
、モンモリロナイト、ベントナイト等のケイ酸塩、二酸
化ケイ素、アルミナ、鉄、亜鉛、アルミニウム等の金属
粉、炭化ケイ素、チッ化ケイ素等のセラミックおよびこ
れらのウィスカ、カーボンフラッフ、クラファイト、炭
素繊維などを挙げることかてきる。本発明において好ま
しいのは、たとえば、炭酸カルシウム、二酸化ケイ素、
アルミナ、粘土(カオリン、ベントナイト、白土等)、
タルク、金属酸化物(MgO、ZnO、Ti1t)等で
ある。
Examples of the inorganic filler include carbonates such as calcium carbonate, magnesium carbonate, and dolomite, sulfates such as calcium sulfate and magnesium sulfate, sulfite salts such as calcium sulfite, talc, clay, eyelid, asbestos, Glass powder, glass doze, silicates such as calcium silicate, montmorillonite, bentonite, silicon dioxide, alumina, metal powders such as iron, zinc, aluminum, ceramics such as silicon carbide, silicon nitride, and their whiskers, Examples include carbon fluff, graphite, and carbon fiber. Preferred in the present invention are, for example, calcium carbonate, silicon dioxide,
Alumina, clay (kaolin, bentonite, white clay, etc.),
These include talc, metal oxides (MgO, ZnO, Ti1t), etc.

前記無機質充填剤は、粒状、板状、繊維状のいずれの形
態てあってもよいか、この発明においては粒径が5pm
以下であればよく、好ましくはより細かいものを用いる
The inorganic filler may be in the form of particles, plates, or fibers; in this invention, the inorganic filler may have a particle size of 5 pm.
It is sufficient if it is less than that, and preferably a finer one is used.

これらの無機質充填剤は、一種単独で使用してもよいし
、あるいは二種以上を併用してもよい。
These inorganic fillers may be used alone or in combination of two or more.

ポリエーテル系共重合体樹脂組成物は、上述したポリエ
ーテル系共重合体の製造方法により得られたポリエーテ
ル系共重合体のバラタ−に適宜に選択した無機質充填剤
を50重量%以内の割合て混合し、フレンドした後、押
出機にて混練し、ベレット化することにより得ることか
てきる。
The polyether copolymer resin composition is prepared by adding an appropriately selected inorganic filler to the polyether copolymer balater obtained by the above-mentioned polyether copolymer manufacturing method in a proportion of up to 50% by weight. After mixing and friending, the mixture is kneaded in an extruder and made into pellets.

また、無機質充填剤の存在下にポリエーテル系共重合体
を製造する方法を採用して、ポリエーテル系共重合体組
成物を得ることもてきる。
Alternatively, a polyether copolymer composition can be obtained by employing a method of producing a polyether copolymer in the presence of an inorganic filler.

−ポリエーテル系共重合体のフィルム化の方法−本発明
の耐熱性フィルムは、上述のようにして得られた、前記
ポリエーテル系共重合体、好ましくは、ポリマー中のア
ルカリ金属塩の含有量か50ppm以下に低減された前
記ポリエーテル系共重合体、またはポリエーテル系共重
合体樹脂組成物好ましくは、ポリマー中のアルカリ金属
塩の含有量か50ppm以下に低減された前記ポリエー
テル系共重合体樹脂組成物をフィルム化することにより
得ることかてきる。
- Method of forming a polyether copolymer into a film - The heat-resistant film of the present invention is produced by preparing the polyether copolymer obtained as described above, preferably containing an alkali metal salt in the polymer. Preferably, the polyether copolymer or polyether copolymer resin composition has a content of alkali metal salt in the polymer reduced to 50 ppm or less. It can be obtained by forming a film from the combined resin composition.

フィルム化は、押出成形法等の通常の方法を用いて、結
晶融点より10〜100°C高い温度て、好ましくは、
結晶融点より30〜70°C高い温度て行い急冷するこ
とによって、透明性のよい非品性フィルムか得られる。
Film formation is performed using a conventional method such as extrusion molding at a temperature 10 to 100°C higher than the crystal melting point, preferably,
By performing rapid cooling at a temperature 30 to 70°C higher than the crystal melting point, a non-quality film with good transparency can be obtained.

たとえば、前記ボッエーテル系共重合体あるいは前記ポ
リエーテル系共重合体樹脂組成物を押出機に供給し、樹
脂温度を350〜450℃とし、溶融状態てスリット状
のタイから押出し、冷却・固化させることにより、前記
ポリエーテル系共重合体あるいはポリエーテル系共重合
体樹脂組成物の未延伸の非品性フィルムを作製すること
かてきる。
For example, the Botether copolymer or the polyether copolymer resin composition is supplied to an extruder, the resin temperature is set at 350 to 450°C, the molten state is extruded through a slit-shaped tie, and the mixture is cooled and solidified. Accordingly, an unstretched, non-quality film of the polyether copolymer or polyether copolymer resin composition can be produced.

−フィルムの延伸成形− ついで、これらの未延伸フィルムに、本発明の方法によ
り、−次・二次延伸を施して、すなわち逐次二輪延伸に
よる配向フィルムを製造する。
- Stretching and forming of film - Next, these unstretched films are subjected to secondary and secondary stretching according to the method of the present invention, that is, an oriented film is produced by sequential two-wheel stretching.

■二次延伸 一次延伸として、未延伸フィルムをたとえば縦延伸し、
−軸配向フィルムを作製する。
■Second Stretching As the first stretching, the unstretched film is stretched longitudinally, for example.
- Making an axially oriented film.

延伸温度は、ガラス転移温度から結晶融点の間の温度、
たとえば170〜250°Cて行う、特に175〜22
0°Cか好ましい。
The stretching temperature is a temperature between the glass transition temperature and the crystal melting point,
For example, at 170-250°C, especially at 175-22°C.
0°C is preferable.

延伸温度か170°C未満ては、均一に延伸をすること
かてきず、厚みの精度か低下する。また、250°C以
上の温度ては、延伸よりも早く結晶化か進むため、降伏
点応力か高くなり、さらに球晶の生成によるフィルムの
不透明化か起こる。
If the stretching temperature is less than 170°C, it will not be possible to stretch uniformly, and the accuracy of the thickness will decrease. Further, at a temperature of 250°C or higher, crystallization proceeds faster than stretching, resulting in a higher yield point stress and further opacity of the film due to the formation of spherulites.

延伸速度は、200〜10000%/分であるのか好ま
しく、特に500〜6000%/分であるのかよい。
The stretching speed is preferably 200 to 10,000%/min, particularly 500 to 6,000%/min.

200%/分未満の延伸速度では、配向か緩和されて、
良好な配向度か得られないことかある。
At stretching speeds below 200%/min, the orientation is relaxed and
A good degree of orientation may or may not be obtained.

延伸倍率は1.5〜4倍であるのか好ましい。The stretching ratio is preferably 1.5 to 4 times.

延伸倍率か、1.5倍未満では十分な延伸効果(引張強
度、引張弾性率等のフィルム物性の改良効果)か奏され
ないことかあり、続く横延伸後のフィルムの強度の増大
か望めない、また、4倍を超えて延伸すると、続く横延
伸の過程でフィルムか破断しやすく、安定した生産をす
ることかできない。
If the stretching ratio is less than 1.5 times, a sufficient stretching effect (improving effect on film properties such as tensile strength and tensile modulus) may not be achieved, and an increase in the strength of the film after subsequent transverse stretching cannot be expected. Furthermore, if the film is stretched more than 4 times, the film is likely to break during the subsequent transverse stretching process, making stable production impossible.

■二次延伸 上記−次延伸をした後、さらに−次延伸の延伸方向に直
交する方向に延伸を行ない、二軸配向フィルムを作製す
る。
(2) Secondary Stretching After the above-mentioned secondary stretching, stretching is further performed in a direction perpendicular to the stretching direction of the secondary stretching to produce a biaxially oriented film.

延伸温度としては、−次延伸時の温度を下限として、さ
らにそれより20℃高い温度を上限とする範囲内の温度
であることか好ましい。特に、−次延伸時と同し温度て
二次延伸をするのか好ましい 二次延伸を、−次延伸時の温度よりやや高い温度て延伸
するのは、−次延伸によりフィルム分子鎖か配向し、運
動しに〈〈なっているためである。
The stretching temperature is preferably within a range with the lower limit being the temperature at the second stretching and the upper limit being 20° C. higher. In particular, it is preferable to perform the second stretching at the same temperature as the second stretching, and to stretch the film at a temperature slightly higher than the temperature during the second stretching, since the molecular chains of the film are oriented by the second stretching. This is because they are motivated to exercise.

延伸速度は、−次延伸時の速度と同し範囲か好ましく、
特に、−次延伸時と同速か好ましい。
The stretching speed is preferably within the same range as the speed during the next stretching,
In particular, it is preferable that the stretching speed be the same as that for the second stretching.

延伸倍率についても、−次延伸と同様に1.5〜4倍か
好ましく、特に、−次延伸時の倍率と同しであるのか好
ましい。
The stretching ratio is preferably 1.5 to 4 times as in the second stretching, and particularly preferably the same as the stretching ratio during the second stretching.

上記のようにして、未延伸フィルムを逐次二軸延伸をす
ることにより、フィルムの表面平滑性に優れた良好な二
軸配向フィルムを得ることかてきる。
By sequentially biaxially stretching an unstretched film as described above, a good biaxially oriented film with excellent surface smoothness can be obtained.

さらに、上記の延伸により得られたフィルムを熱処理す
ることによって、耐熱性の著しく向上した熱処理フィル
ムを得ることかてきる。
Furthermore, by heat-treating the film obtained by the above stretching, it is possible to obtain a heat-treated film with significantly improved heat resistance.

熱処理フィルムは、その結晶化温度と結晶融点との間の
温度て熱処理することにより1行なわれ、その結果、結
晶化フィルムか得られる。
Heat treatment of the film is carried out by heat treatment at a temperature between its crystallization temperature and crystal melting point, resulting in a crystallized film.

熱処理は、緊張下て行い、結晶化温度すなわち、上記フ
ィルム化て非晶化したポリマーか、熱処理(昇温)て結
晶化する温度より高く、結晶融点より低い温度、たとえ
ば、 190〜370′Cて行う。
The heat treatment is performed under tension, and the temperature is set at a temperature higher than the crystallization temperature, that is, the temperature at which the above-mentioned film-formed and amorphous polymer is crystallized by heat treatment (temperature elevation), and lower than the crystal melting point, for example, 190 to 370'C. I will do it.

好適な一例としては、前記延伸フィルムを金属フレーム
等て固定し、緊張下て、 190〜370”Cに加熱し
なから、1〜600秒間、熱処理することか挙げられる
A preferred example is to fix the stretched film to a metal frame or the like, heat it under tension to 190 to 370''C, and then heat treat it for 1 to 600 seconds.

加熱の方法については特に制限なく、様々な手段を採用
することかてきる。
There are no particular restrictions on the heating method, and various means may be employed.

さらに、この熱処理により得られた熱処理フィルムを、
再度、熱処理温度付近て再熱処理を行うことによって再
熱処理フィルムを製造することかてきる。
Furthermore, the heat-treated film obtained by this heat treatment is
A reheat-treated film can be produced by performing reheat treatment again at around the heat treatment temperature.

この再熱処理は、必要に応じて緊張下または無緊張下て
行い、ポリエーテル系共重合体のガラス転移温度と前記
熱処理温度との間の温度て行うのがよい。
This reheat treatment is preferably carried out under tension or without tension as required, and at a temperature between the glass transition temperature of the polyether copolymer and the heat treatment temperature.

この再熱処理を行うことにより、熱処理フィルムの熱収
縮率か小さくなり、寸法安定性に優れたフィルムを得る
ことかてきる。
By performing this reheat treatment, the heat shrinkage rate of the heat-treated film is reduced, making it possible to obtain a film with excellent dimensional stability.

上記のようにして生成されたポリエーテル系共重合体の
熱固定二軸配向フィルムは、表面平滑性に優れ、しかも
、高温ての寸法安定性に優れた耐熱性フィルムである。
The heat-set biaxially oriented film of the polyether copolymer produced as described above is a heat-resistant film with excellent surface smoothness and excellent dimensional stability at high temperatures.

[実施例] 次いて、本発明の実施例および比較例を示し、この発明
についてさらに具体的に説明する。
[Example] Next, Examples and Comparative Examples of the present invention will be shown to further specifically explain the present invention.

(実施例1) 下記のようにして、ポリエーテル共重合体を製造し、そ
の後フィルム化して、耐熱性フィルムを作製した。
(Example 1) A polyether copolymer was produced as described below, and then formed into a film to produce a heat-resistant film.

−ポリエーテル共重合体の製造法− トルエンを満たしたディーンスタルクトラップ、攪拌装
置およびアルゴンガス吹込管を備えた内容積200交の
反応器に、2.6−シクロロペンゾニトリル1,548
g (9モル)、4.4’ −ビフェノール5,580
 g(30モル)、炭酸カリウム4.561 g(33
モル)およびN−メチルピロリドン50立を入れ、アル
ゴンガスを吹込みなから、1時間かけて室温より 19
5℃まて昇温した。
-Production method of polyether copolymer- 1,548 ml of 2,6-cyclopenzonitrile was added to a reactor with an internal volume of 200 mm, which was equipped with a Dean-Starck trap filled with toluene, a stirring device, and an argon gas blowing tube.
g (9 mol), 4,4'-biphenol 5,580
g (30 mol), potassium carbonate 4.561 g (33
mol) and 50 molar of N-methylpyrrolidone, and while blowing in argon gas, warmed to room temperature over 1 hour.
The temperature was raised to 5°C.

昇温後、少量のトルエンを加えて生成する水を共沸によ
り除去した。
After raising the temperature, a small amount of toluene was added and the produced water was removed by azeotropy.

次いて、温度195°Cにて30分間反応を行なった後
、4,4°−ジフルオロベンゾフェノン4.582 g
 (21モル)をN−メチルピロリドン70文に溶解し
た溶液を加えて、さらに1時間反応を行なった。
Then, after reacting for 30 minutes at a temperature of 195°C, 4.582 g of 4,4°-difluorobenzophenone
A solution of (21 mol) dissolved in 70 ml of N-methylpyrrolidone was added, and the reaction was further carried out for 1 hour.

反応終了後、生成物をブレンダ−(ワーニンク社製)て
粉砕し、水、メタノールの順に洗浄を行なってから、乾
燥させて、白色粉末10.0kg (収率98%)を得
た。
After the reaction was completed, the product was pulverized using a blender (manufactured by Warninck), washed with water and methanol in that order, and then dried to obtain 10.0 kg of white powder (yield: 98%).

この粉末状生成物の特性について測定したところ、温度
400°Cにおける溶融粘度(ゼロ剪断粘度)は13,
000ボイズてあり、ガラス転移温度185℃、結晶融
点379°C1結晶化温度250°C1熱分解開始温度
か562°C(空気中、5%重量減)てあった。
When the properties of this powdered product were measured, the melt viscosity (zero shear viscosity) at a temperature of 400°C was 13,
It had a glass transition temperature of 185°C, a crystal melting point of 379°C, a crystallization temperature of 250°C, and a thermal decomposition initiation temperature of 562°C (5% weight loss in air).

また、IRスペクトル分析によると、この粉末状生成物
は下記の繰り返し単位を有するポリエーテル系共重合体
てあった。
Further, according to IR spectrum analysis, this powdered product was found to be a polyether copolymer having the following repeating units.

N (I) 髄 (II) (I)/((I)+(II))=  0.3−ポリエー
テル系共重合体フィルム(非品性フィルム)の製造− 得られたポリエーテル系共重合体を、二軸押出機(他県
鉄工社製; PCM−:10)により、390℃におい
て押出成形した後、ベレット化した。
N (I) Core (II) (I) / ((I) + (II)) = 0.3 - Production of polyether copolymer film (non-quality film) - Obtained polyether copolymer The combined product was extruded at 390° C. using a twin-screw extruder (manufactured by Toshiken Tekko Co., Ltd.; PCM-:10), and then formed into pellets.

このベレットを用いて、■=タイにより輻25c■のフ
ィルムに成形した。
Using this pellet, a film having a diameter of 25 cm was formed using a tie.

−ポリエーテル系共重合体の二軸配向フィルムの製造− 上記のようにして得られた非品性フィルムを第1表に示
す延伸条件下に、逐次二軸延伸成形をした。
-Production of biaxially oriented film of polyether copolymer- The non-quality film obtained as described above was sequentially biaxially stretched under the stretching conditions shown in Table 1.

次いて、得られた延伸フィルムを、緊張下て300°C
13分間の熱処理した後、無緊張下て300°C13分
間の再熱処理をして熱固定することにより、熱固定二軸
配向フィルムを作製した。
Next, the obtained stretched film was heated at 300°C under tension.
After heat treatment for 13 minutes, heat treatment was performed again at 300° C. for 13 minutes under no tension to heat set, thereby producing a heat-set biaxially oriented film.

次に、得られた逐次二軸延伸フィルムの表面平滑性を調
べるために、非品性フィルムの表面粗さを測定した。
Next, in order to examine the surface smoothness of the obtained sequentially biaxially stretched film, the surface roughness of the non-quality film was measured.

前記表面粗さの測定は、JIS BO601の中心線平
均粗さの測定方法に準して行なった。
The surface roughness was measured according to the center line average roughness measurement method of JIS BO601.

東京精密社製の触針式表面粗さ計(SURF (:OM
:IB)を用いて、針の半径2ALm 、荷重0.07
gの条件下に1チヤート(フィルム表面粗さ曲線)を描
かせた。
Stylus type surface roughness meter (SURF (:OM) manufactured by Tokyo Seimitsu Co., Ltd.
:IB), needle radius 2ALm, load 0.07
A chart (film surface roughness curve) was drawn under the conditions of g.

フィルム表面粗さ曲線からその中心線の方向に測定長さ
しく基準長)の部分を抜き取り、この抜き取り部分の中
心線をX軸とし、縦倍率の方向をY軸として、粗さ曲線
をY = f (x)て表わしたとき、次式て与えられ
る値Ra (p■)をフィルム表面の平坦性として定義
した。
From the film surface roughness curve, extract a part (measured length to reference length) in the direction of its center line, take the center line of this extracted part as the X axis, take the direction of vertical magnification as the Y axis, and make the roughness curve Y = When expressed as f (x), the value Ra (p■) given by the following formula was defined as the flatness of the film surface.

Ra−(I/L) f’off(x)l dx本発明て
は、基準長を0.025mmとして10個測定し、Ra
値の大きいほうから3個除いた残り7個の平均値として
Raを表わした。
Ra-(I/L) f'off(x)l dxIn the present invention, 10 pieces are measured with a reference length of 0.025 mm, and Ra
Ra was expressed as the average value of the remaining 7 items after removing 3 items from the highest values.

その結果を、第1表に示す。The results are shown in Table 1.

(実施例2および3) 実施例1において、第1表のような延伸条件で逐次二軸
延伸をするほかは、実施例1と同様にして実施例2およ
び3を行なった。
(Examples 2 and 3) Examples 2 and 3 were conducted in the same manner as in Example 1, except that sequential biaxial stretching was carried out under the stretching conditions shown in Table 1.

その結果を、第1表に示す。The results are shown in Table 1.

(比較例1.2および3) 実施例1て得られた非品性フィルムを第1表中に示す条
件下において、同時二輪延伸を行なうほかは、実施例1
と同様に行なった。
(Comparative Examples 1.2 and 3) Example 1 except that the non-quality film obtained in Example 1 was subjected to simultaneous two-wheel stretching under the conditions shown in Table 1.
I did the same thing.

その結果を、第1表に示す。The results are shown in Table 1.

(本頁、以下余白) (i!価) 実施例1〜3および比較例1〜3において、本発明の逐
次二輪延伸により成形されたポリエーテル系共重合体の
フィルムは、フィルム表面の平坦性を示すRa値か小さ
く、本発明の方法により、表面平滑性に優れた耐熱性フ
ィルムを得ることかてきることを確認した。
(This page, the following margins) (i! value) In Examples 1 to 3 and Comparative Examples 1 to 3, the polyether copolymer films formed by the sequential two-wheel stretching of the present invention had a flatness of the film surface. It was confirmed that the method of the present invention can produce a heat-resistant film with excellent surface smoothness.

[発明の効果コ 本発明によると、耐熱性フィルムの原料であるポリエー
テル系共重合体を逐次二軸延伸をすることにより、ポリ
エーテル系共重合体の優れた耐熱性や機械的強度を損な
うことなく、表面平滑性の優れた二軸配向フィルムを得
ることがてき、工業的に有用な耐熱性フィルムを提供す
ることがてきる。
[Effects of the invention] According to the present invention, by sequentially biaxially stretching the polyether copolymer, which is a raw material for a heat-resistant film, the excellent heat resistance and mechanical strength of the polyether copolymer are impaired. Therefore, it is possible to obtain a biaxially oriented film with excellent surface smoothness, and it is possible to provide an industrially useful heat-resistant film.

Claims (1)

【特許請求の範囲】 次式( I ); ▲数式、化学式、表等があります▼( I ) で表わされる繰り返し単位および次式(II);▲数式、
化学式、表等があります▼(II) で表される繰り返し単位からなり、前記式( I )で表
される繰り返し単位の組成比[モル比:( I )/{(
I )+(II)}]が0.15〜0.40モルであると
ともに、400℃における溶融粘度が3,000〜10
0,000ポイズであるポリエーテル系共重合体樹脂を
熱成形したフィルムを、 温度170〜250℃、延伸倍率1.5〜4倍、延伸速
度200〜10,000%/分の条件下に一次延伸をし
、次いで、 温度170〜270℃、延伸倍率1.5〜4倍、延伸速
度200〜10,000%/分の条件下に、前記一次延
伸の延伸方向に直交する方向に二次延伸した後、熱固定
することを特徴とする耐熱性フィルムの製造方法。
[Claims] The following formula (I); ▲There are mathematical formulas, chemical formulas, tables, etc.▼The repeating unit represented by (I) and the following formula (II); ▲Mathematical formula,
There are chemical formulas, tables, etc. ▼ (II) It consists of repeating units represented by the formula (I), and the composition ratio of the repeating units represented by the above formula (I) [molar ratio: (I) / {(
I)+(II)}] is 0.15 to 0.40 mol, and the melt viscosity at 400°C is 3,000 to 10
A film thermoformed from a 0,000 poise polyether copolymer resin is subjected to a primary process at a temperature of 170 to 250°C, a stretching ratio of 1.5 to 4 times, and a stretching speed of 200 to 10,000%/min. Stretching, and then second stretching in a direction perpendicular to the stretching direction of the first stretching at a temperature of 170 to 270°C, a stretching ratio of 1.5 to 4 times, and a stretching speed of 200 to 10,000%/min. A method for producing a heat-resistant film, which comprises heat-setting the film.
JP15071690A 1990-06-08 1990-06-08 Manufacture of heat-resistant film Pending JPH0443019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15071690A JPH0443019A (en) 1990-06-08 1990-06-08 Manufacture of heat-resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15071690A JPH0443019A (en) 1990-06-08 1990-06-08 Manufacture of heat-resistant film

Publications (1)

Publication Number Publication Date
JPH0443019A true JPH0443019A (en) 1992-02-13

Family

ID=15502848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15071690A Pending JPH0443019A (en) 1990-06-08 1990-06-08 Manufacture of heat-resistant film

Country Status (1)

Country Link
JP (1) JPH0443019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241492A1 (en) * 2020-05-28 2021-12-02 東レ株式会社 Crystalline polyether nitrile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021241492A1 (en) * 2020-05-28 2021-12-02 東レ株式会社 Crystalline polyether nitrile

Similar Documents

Publication Publication Date Title
EP0189895B1 (en) Phenylene sulfide resin compositions
JPS61204267A (en) Production of easily crystallizable arylene sulfide resin composition
JPH0548786B2 (en)
JPS62242517A (en) Biaxially oriented poly-para-phenylene sulfide film
KR910003720B1 (en) Highly crystallized molded product of polyarylene thioether
JP2505454B2 (en) Polyary lentithioether composition
JPH0618900B2 (en) Polyparaphenylene Sulfide Biaxially Stretched Film
JPH0443019A (en) Manufacture of heat-resistant film
JPH0757819B2 (en) Heat-resistant film and manufacturing method thereof
JPH03255162A (en) Polyarylene thioether resin composition and its extrusion-molded article
KR100814752B1 (en) Polyimide nanocomposite and its preparation method
CN108117653B (en) Size-stable type oxazolyl polyimide film and preparation method thereof
JP3126214B2 (en) Aromatic polysulfone film
JP2913417B2 (en) Flexible printed circuit board
JPH041238A (en) Polyetherketone copolymer film
JPH0450315A (en) Porous hollow yarn of polyether-based copolymer
JP4196435B2 (en) Molded product for container in garbage disposal machine using polyarylene sulfide resin composition
JPS61148237A (en) Molded polyester article and production thereof
JPH0432105A (en) Electric insulating film
JPH0446939A (en) Carrier tape
JPH0420536A (en) Resin composition film
JP2844473B2 (en) Polybiphenylene ether ketone copolymer film
JPH0428725A (en) Film, stretched film, heat treated film and heat retreated film
JPH03217452A (en) Heat-resistant film and stretched heat-resistant film
JPS62240353A (en) Molding resin composition