JPH044265B2 - - Google Patents

Info

Publication number
JPH044265B2
JPH044265B2 JP61077549A JP7754986A JPH044265B2 JP H044265 B2 JPH044265 B2 JP H044265B2 JP 61077549 A JP61077549 A JP 61077549A JP 7754986 A JP7754986 A JP 7754986A JP H044265 B2 JPH044265 B2 JP H044265B2
Authority
JP
Japan
Prior art keywords
less
engine
thermal expansion
ceramic
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61077549A
Other languages
Japanese (ja)
Other versions
JPS6252174A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61077549A priority Critical patent/JPS6252174A/en
Publication of JPS6252174A publication Critical patent/JPS6252174A/en
Publication of JPH044265B2 publication Critical patent/JPH044265B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は優れた断熱性と機械的強度をもつセラ
ミツク材料を用いたエンジン部品に関するもので
ある。 近年、省エネルギーの見地からデイーゼルエン
ジン、ガソリンエンジン等の内燃機関の作動温度
を高くすることにより、熱効率を改良する研究開
発が盛んに行なわれている。そしてこの場合、エ
ンジンの作動温度を高くするためには、エンジン
部品は耐熱性の材料で形成する必要があるが、従
来の耐熱金属のみから成る部品では、金属材料の
耐熱温度に限界があるため、高いエンジンの動作
温度を得ることは困難であり、従つて例えば特開
昭55−49553号公報に記載されるように、耐熱性
に優れた酸化物系、窒化物系あるいは炭化物系等
のセラミツク材料をエンジン部品に用いることが
提案されている。しかしながらセラミツク材料の
多くは非常に脆く、機械的強度、特に衝撃に対し
て弱いので、セラミツク材料のみでエンジン部品
を形成することは難しく、従つて一般的には金属
との複合体の形として用いるこが知られている。 しかしながら前記のようなセラミツク材料は、
一般に機械的強度も小さく、また、金属との熱膨
脹差も大きいので、熱衝撃のためにセラミツク材
料が破壊してしまつたり、また金属との間に隙間
を生じた結果的には使いものにならなくなるほど
従来のセラミツク材料を用いたエンジン部品には
多くの欠点や問題点があり、実用化にはほど遠い
ものであつた。 本発明は従来の前記エンジン部品の欠点や問題
点を解決するためになされたものであり、金属部
品との複合体として充分使用できる優れた断熱性
と機械的強度を有するエンジン部品であり、結晶
子径が1000Å以下、又は無定形の微細な酸化ジル
コニウム粉末に1〜8モル%のY2O3又は1〜15
モル%のY2O3とCaOの混合物を添加した混合粉
末を作成し、その混合粉末を所定の形状に予備成
形した後加工し、1000〜1550℃で焼成して主とし
て正方晶又は正方晶と立方晶の混合相から成り、
単斜晶の含有量が10%以下であり、4点曲げ強度
が50Kg/mm2以上で、昇温時と降温時の熱膨脹曲線
の同一温度における熱膨脹率の最大差が0.4%以
下で、かつ平均結晶粒子径が2μ以下でその熱膨
脹係数が、10×10-6/℃以上である部分安定化ジ
ルコニアを作り、これを加工して所定のエンジン
部品の形状とし、これを熱膨脹係数の差が3×
10-6/℃以下である金属部品に接合することによ
りセラミツクス金属複合体より成るエンジン部品
を得ることを特徴とするエンジン部品の製造法で
ある。 本発明のエンジン部品の製造法は、結晶子径が
1000Å以下、又は無定形の微細な酸化ジルコニウ
ム粉末に1〜8モル%のY2O3又は1〜15モル%
のY2O3とCaOの混合物を添加した混合粉末の作
成し、その混合粉末を所定の形状に予備成形した
後加工し、1000〜1550℃で焼成して主として正方
晶又は正方晶と立方晶の混合相から成り、単斜晶
の含有量が10%以下であり、4点曲げ強度が50
Kg/mm2以上で、昇温時と降温時の熱望脹曲線の同
一温度における熱膨脹率の最大差が0.4%以下で、
かつ平均結晶粒子径が2μ以下の部分安定化ジル
コニアを作り、これを加工して所定のエンジン部
品の形状とし、金属部品に接合することによりセ
ラミツクス金属複合体より成る部品を得るエンジ
ン部品の製造法にある。 本発明はエンジン部品の構成材料として昇温時
と降温時の熱膨脹曲線の同一温度における熱膨脹
率の最大差が0.4%以下である高温強度部分安定
化ジルコニアを用いたエンジン部品であり、好ま
しくは高強度部分安定化ジルコニアの熱膨脹係数
が10×10-6/℃以上および該ジルコニアと金属部
品との熱膨脹係数の差が3×10-6/℃以下である
エンジン部品を提供するものである。 本発明のエンジン部品の製造法としては、研磨
面は表面粗さが10μ以下とすることが好ましく、
特に1μ以下が好適である。そしてセラミツク部
品を金属部品と焼バメ法、中間層を介しての接合
法またはこれら両者の組合せにより接合するので
ある。 なお、本発明でいうエンジン部品とは、デイー
ゼルエンジン、ガソリンエンジン等、内燃機関の
シリンダー、シリンダーライナー、シリンダーヘ
ツド、ピストン、ピストンキヤツプ、バルブシー
ト、排気ポートライナー、タペツト等エンジンの
高温気体発生部あるいは流路等に用いられる部品
及び耐熱性、耐摩耗性を要求される所に用いる部
品をいう。また本発明でいう熱膨脹率とは線熱膨
脹率のことである。 本発明をさらに詳しく説明すれば、高温で作動
するエンジン部品として要求される特性は耐熱
性、機械的強度、耐熱衝撃性等に優れていること
が必要であるが、このほかにセラミツク材料と金
属材料との適合性が極めて重要である。本発明は
エンジン部品を構成するセラミツク材料として、
高強度部分安定化ジルコニアを用いるものである
が、特にその部分安定化ジルコニアの中でも昇温
時と降温時の熱膨脹曲線の同一温度における熱膨
脹率の最大差が1000℃までの全温度範囲において
0.4%以下であるとともに、熱膨脹係数が10×
10-6/℃以上、4点曲げ強度が50Kg/mm2以上、熱
伝導度が0.01cal/cm・sec・℃以下の部分安定化
ジルコニアを用いるものである。 特に、昇温時と降温時の熱膨脹曲線の同一温度
における熱膨脹率の差は、一般的にはヒステリシ
ス現象として知られているが、高温度で作動する
エンジン部品として用いるためには、この熱膨脹
のヒステリシスが小さいことが極めて大切であ
り、同一温度における熱膨脹率の最大差が0.4%
以下であることが最も重要である。換言すれば内
燃機関のエンジン部品のように、1000℃程度の高
温度で繰返し使用されるものについては、熱膨脹
ヒステリシスが大きいと時間の経過とともに寸法
変化を起し、部分安定化がジルコニアに過大な応
力がかかつたり、または接合部に隙間が生じて結
果的には脱落したり破壊するに至るものである。 従つて前述のとおり昇温時と降温時との同一温
度における熱膨脹率の最大差が0.4%以下、好ま
しくは0.3%以下であることが必要である。 また、それと同時に部分安定化ジルコニアの熱
膨脹係数、曲げ強度および熱伝導度等も極めて重
要であり、前記数値を満足することが好ましいも
のである。特に本発明においてはセラミツクを高
温側にくるように配置するとともに、高強度部分
安定化ジルコニアの熱膨脹係数が10×10-6/℃以
上であり、さらに通常金属部品として用いられる
鋳鉄、ステンレス、スチールなどの熱膨脹係数と
の差が小さいことが大切であり、好ましくは高強
度部分安定化ジルコニアと金属部品との熱膨脹係
数の差が3×10-6/℃以下、特に好ましくは2×
10-6/℃以下であることがよい。 次に本発明のエンジン部品は、例えば次の方法
により製造することができる。すなわち、好まし
くは結晶子径が1000Å以下、又は無定形の微細な
酸ジルコニウム粉末に1〜8モル%のY2O3又は
1〜15モル%のY2O3のCaOと混合物を添加した
混合粉末を作成し、その混合粉末を静水加圧法、
押し出し成形法、泥漿鋳込法等により所定の形状
に予備成形した後加工し、1000〜1550℃で焼成し
て主として正方晶または正方晶と立方晶の混合相
から成り、単斜晶の含有量が10%以下であり、か
つ平均結晶粒子径が2μ以下でその部分安定化が
ジルコニアを作り、これを旋盤又はダイヤモンド
ホイール等により、最終加工し、所定のエンジン
部品の形状に研削、研磨する。この場合研磨面は
表面粗さが10μ以下とすることが好ましく、特に
1μ以下が適当である。さらにセラミツク部品を
焼バメ法、中間層を介しての接合法またはこれら
両者の組合せにより金属部品に接合することによ
り、本発明のエンジン部品が得られる。なお、焼
バメ法により接合する場合には、金属部品の内径
をセラミツク部品の外径よりも小さくなるように
調節し、150〜400℃に加熱し膨脹した金属部品の
中に、室温のセラミツク部品を嵌入させることに
より、セラミツク部品に圧縮応力、金属部品に引
張応力が加わるように形成することが好ましい。
また、中間層を介しての接合により金属とセラミ
ツクを接合する方法としては、例えばセラミツク
部品の接合面に金属を容射するなどしてメタライ
ズ層を形成し、次いでメタライズ層と金属部品と
を接触させた状態で加熱することにより接合する
ことができる。 なお本発明のエンジン部品は、高強度部分安定
化ジルコニア単体のみでも部品を構成することが
できるが、より耐久性、信頼性を高めるためには
金属との複合体がよいものである。 次に本発明を実施例について説明する。 実施例 1 Y2O3を5モル%含有する結晶相が主として正
方晶よりなり平均結晶粒子径が2μの高強度部分
安定化ジルコニウムを用い、第1図に示すような
ねずみ鋳鉄製の金属スリーブ2の内側に、セラミ
ツクライナー11を焼バメ法により嵌合してデイ
ーゼルエンジン用のイシリンダーライナをつくつ
た。なお比較のために、アルミナおよび焼結窒化
珪素を用いて同様のシリンダーライナをつくつ
た。これら3種のセラミツク材料の物理学特性を
第1表に示す。
TECHNICAL FIELD The present invention relates to engine parts using ceramic materials having excellent heat insulation properties and mechanical strength. In recent years, from the standpoint of energy conservation, research and development efforts have been actively conducted to improve the thermal efficiency of internal combustion engines, such as diesel engines and gasoline engines, by increasing their operating temperatures. In this case, in order to raise the operating temperature of the engine, engine parts need to be made of heat-resistant materials, but conventional parts made only of heat-resistant metals have a limit to the heat-resistant temperature of the metal materials. However, it is difficult to obtain a high engine operating temperature, and therefore, as described in JP-A-55-49553, ceramics such as oxide-based, nitride-based, or carbide-based ceramics with excellent heat resistance are used. It has been proposed to use the material in engine parts. However, many ceramic materials are very brittle and have poor mechanical strength, especially impact, making it difficult to form engine parts from ceramic materials alone, and therefore they are generally used in the form of composites with metals. This is known. However, ceramic materials such as those mentioned above,
In general, the mechanical strength is low, and the difference in thermal expansion with metal is large, so the ceramic material may break due to thermal shock or become unusable as a result of creating a gap between the ceramic material and the metal. Conventional engine parts using ceramic materials have many drawbacks and problems, and are far from being put into practical use. The present invention was made in order to solve the drawbacks and problems of the conventional engine parts, and is an engine part that has excellent heat insulation properties and mechanical strength that can be used as a composite with metal parts, and is made of crystalline engine parts. 1 to 8 mol% Y 2 O 3 or 1 to 15 to amorphous fine zirconium oxide powder with a particle diameter of 1000 Å or less
A mixed powder is prepared by adding a mixture of Y 2 O 3 and CaO in mol%, and the mixed powder is preformed into a predetermined shape, processed, and fired at 1000 to 1550°C to form mainly tetragonal or tetragonal crystals. Consists of a cubic mixed phase,
The monoclinic content is 10% or less, the 4-point bending strength is 50Kg/mm2 or more, the maximum difference in the coefficient of thermal expansion at the same temperature in the thermal expansion curve during heating and cooling is 0.4% or less, and Partially stabilized zirconia with an average crystal grain size of 2 μ or less and a thermal expansion coefficient of 10 × 10 -6 /°C or more is produced, and this is processed into the shape of a specified engine part. 3×
This is a method for producing engine parts, characterized in that an engine part made of a ceramic-metal composite is obtained by bonding it to a metal part whose temperature is 10 -6 /°C or less. The method for manufacturing engine parts of the present invention is characterized in that the crystallite diameter is
1-8 mol% Y2O3 or 1-15 mol% in fine zirconium oxide powder of 1000 Å or less or amorphous
A mixed powder is prepared by adding a mixture of Y 2 O 3 and CaO, and the mixed powder is preformed into a predetermined shape, processed, and fired at 1000 to 1550℃ to produce mainly tetragonal or tetragonal and cubic crystals. The monoclinic content is 10% or less, and the 4-point bending strength is 50%.
Kg/mm 2 or more, the maximum difference in the coefficient of thermal expansion at the same temperature of the aspiration curve during heating and cooling is 0.4% or less,
A method for manufacturing engine parts in which a partially stabilized zirconia with an average crystal grain size of 2μ or less is produced, processed into a predetermined shape of an engine part, and bonded to a metal part to obtain a part made of a ceramic-metal composite. It is in. The present invention is an engine part using high-temperature strength partially stabilized zirconia, which has a maximum difference in coefficient of thermal expansion at the same temperature of 0.4% or less in the thermal expansion curve when the temperature rises and when the temperature falls, as a constituent material of the engine part. The present invention provides an engine component in which the thermal expansion coefficient of the partially stabilized zirconia is 10×10 -6 /°C or more, and the difference in the thermal expansion coefficient between the zirconia and the metal part is 3×10 -6 /°C or less. In the method for manufacturing engine parts of the present invention, it is preferable that the polished surface has a surface roughness of 10μ or less,
In particular, 1μ or less is preferable. The ceramic parts are then joined to the metal parts by a shrink fit method, a joining method via an intermediate layer, or a combination of both. Note that engine parts in the present invention refer to high-temperature gas generating parts or flow-through parts of engines such as cylinders, cylinder liners, cylinder heads, pistons, piston caps, valve seats, exhaust port liners, and tappets of internal combustion engines such as diesel engines and gasoline engines. Refers to parts used in roads, etc., and parts used where heat resistance and wear resistance are required. Further, the coefficient of thermal expansion in the present invention refers to the coefficient of linear thermal expansion. To explain the present invention in more detail, the properties required for engine parts that operate at high temperatures include excellent heat resistance, mechanical strength, and thermal shock resistance. Compatibility with materials is extremely important. The present invention is a ceramic material constituting engine parts.
High-strength partially stabilized zirconia is used, and in particular, among partially stabilized zirconia, the maximum difference in thermal expansion coefficient at the same temperature in the thermal expansion curve during heating and cooling is over the entire temperature range up to 1000℃.
0.4% or less, and the coefficient of thermal expansion is 10×
Partially stabilized zirconia is used, which has a temperature of 10 -6 /°C or more, a four-point bending strength of 50 Kg/mm 2 or more, and a thermal conductivity of 0.01 cal/cm·sec·°C or less. In particular, the difference in the coefficient of thermal expansion at the same temperature between the thermal expansion curves when the temperature rises and when the temperature falls is generally known as the hysteresis phenomenon. It is extremely important that the hysteresis is small; the maximum difference in thermal expansion coefficient at the same temperature is 0.4%.
It is most important that: In other words, for parts such as internal combustion engine parts that are used repeatedly at high temperatures of around 1000°C, large thermal expansion hysteresis will cause dimensional changes over time, and partial stabilization may cause zirconia to undergo excessive thermal expansion hysteresis. Stress is applied or gaps are created in the joints, resulting in them falling off or breaking. Therefore, as mentioned above, it is necessary that the maximum difference in the coefficient of thermal expansion at the same temperature between heating up and cooling down is 0.4% or less, preferably 0.3% or less. At the same time, the coefficient of thermal expansion, bending strength, thermal conductivity, etc. of partially stabilized zirconia are also extremely important, and it is preferable that the above-mentioned values are satisfied. In particular, in the present invention, the ceramic is placed on the high-temperature side, and the high-strength partially stabilized zirconia has a thermal expansion coefficient of 10 x 10 -6 /°C or more, and is made of cast iron, stainless steel, and steel that are commonly used as metal parts. It is important that the difference in thermal expansion coefficient between high-strength partially stabilized zirconia and metal parts is small, preferably 3×10 -6 /℃ or less, particularly preferably 2×
The temperature should preferably be 10 -6 /℃ or less. Next, the engine component of the present invention can be manufactured, for example, by the following method. That is, a mixture in which CaO and a mixture of 1 to 8 mol% Y 2 O 3 or 1 to 15 mol % Y 2 O 3 are added to a fine acid zirconium powder that preferably has a crystallite diameter of 1000 Å or less or is amorphous. Create a powder and apply the mixed powder to the hydrostatic pressing method.
It is preformed into a predetermined shape by extrusion molding method, slurry casting method, etc., and then processed and fired at 1000 to 1550°C to form a product that is mainly composed of tetragonal or a mixed phase of tetragonal and cubic crystals, and has a monoclinic content. is less than 10%, and the average crystal grain size is less than 2μ, and its partial stabilization produces zirconia, which is then final processed using a lathe or diamond wheel, etc., and ground and polished into the shape of the specified engine part. In this case, it is preferable that the polished surface has a surface roughness of 10μ or less, especially
A value of 1μ or less is appropriate. Furthermore, the engine part of the present invention can be obtained by joining the ceramic part to the metal part by a shrink fitting method, a joining method through an intermediate layer, or a combination of both. When joining by the shrink fit method, the inner diameter of the metal parts is adjusted to be smaller than the outer diameter of the ceramic parts, and the ceramic parts at room temperature are placed inside the expanded metal parts heated to 150 to 400°C. It is preferable to form the ceramic part so that compressive stress is applied to the ceramic part and tensile stress is applied to the metal part by fitting the part.
In addition, as a method of joining metal and ceramic by joining through an intermediate layer, for example, a metallized layer is formed by projecting metal onto the joining surface of the ceramic part, and then the metallized layer and the metal part are brought into contact. Bonding can be achieved by heating in a heated state. Although the engine parts of the present invention can be made of high-strength partially stabilized zirconia alone, a composite with metal is preferable in order to further improve durability and reliability. Next, the present invention will be explained with reference to examples. Example 1 High-strength partially stabilized zirconium containing 5 mol% of Y 2 O 3 with a mainly tetragonal crystal phase and an average crystal grain size of 2 μm was used to produce a metal sleeve made of gray cast iron as shown in Fig. 1. A ceramic liner 11 was fitted onto the inside of the cylinder 2 by a shrink fit method to create an cylinder liner for a diesel engine. For comparison, a similar cylinder liner was made using alumina and sintered silicon nitride. The physical properties of these three ceramic materials are shown in Table 1.

【表】 次いでこれら3種のシリンダー・ライナーを用
いて簡単エンジンテストを行つた結果、アルミナ
を用いたシリンダーはテスト開始後、5分でアル
ミナにクラツクが発生し、一部が欠落してブロー
バイ現象が見られた。また結晶窒化珪素を用いた
ものはテスト開始後、10分で金属スリーブとの間
に隙間が生じ15分で破壊してブローバイ現象が見
られた。これに対し本発明の高強度部分安定化ジ
ルコニアを用いたものは、100時間のテスト後も、
何らの異常もなく、正常に作動していた。また、
アルミナおよび焼結窒化珪素を用いたものは、高
強度部分安定化ジルコニアを用いたものに比べて
金属スリーブが100℃以上も高温になり熱損失の
大きいことが認められた。 実施例 2 第2表に示すジルコニア磁器を用いて第2図に
示すピストンキヤツプ23を作成し、鋳鉄製ピス
トン22の上部に焼バメ法により嵌合してセラミ
ツク・金属複合体よりなるピストン21を得た。
次いでこのピストンをデイーゼルエンジンのピス
トンとして組込み、ガス温度を850℃まで上昇さ
せて30分間エンジンテストを行つた。エンジンテ
スト後、ピストンキヤツプを調べた結果、本発明
によるものは何ら異常は認められなかつたが、比
較例によるものはいずれもピストンキヤツプにク
ラツクが発生し、一部が欠落していた。
[Table] Next, we conducted a simple engine test using these three types of cylinder liners, and found that in the cylinder using alumina, cracks occurred in the alumina within 5 minutes after the test started, and a part of the cylinder was missing, causing a blow-by phenomenon. It was observed. In addition, the one using crystalline silicon nitride developed a gap with the metal sleeve within 10 minutes after starting the test, and broke within 15 minutes, resulting in a blow-by phenomenon. On the other hand, the product using the high-strength partially stabilized zirconia of the present invention, even after 100 hours of testing,
There were no abnormalities and it was working normally. Also,
It was found that the metal sleeve using alumina and sintered silicon nitride had a higher temperature than the one using high-strength partially stabilized zirconia, with the metal sleeve reaching a high temperature of 100°C or more, resulting in greater heat loss. Example 2 The piston cap 23 shown in FIG. 2 was made using the zirconia porcelain shown in Table 2, and was fitted onto the upper part of the cast iron piston 22 by the shrink fit method to form the piston 21 made of a ceramic-metal composite. Obtained.
This piston was then installed as a piston in a diesel engine, and an engine test was conducted for 30 minutes with the gas temperature raised to 850°C. After the engine test, the piston caps were examined, and no abnormality was found in the piston caps according to the present invention, but cracks occurred in the piston caps in all piston caps according to the comparative examples, and a portion was missing.

【表】 実施例 3 Y2O3を4モル%含む結晶相が主として正方晶
および立方晶の混合相よりなる高強度部分安定化
ジルコニアを用いて第3図に示すシリンダーヘツ
ド31を作成した。なお比較のために、ホツトプ
レス窒化珪素を用いて同様のシリンダーヘツドを
つくつた。これらのシリンダーヘツドをデイーゼ
ルエンジンに組込みエンジンテストを行つた結
果、本発明の高強度部分安定化ジルコニアは、何
らの異常も認められなかつたが、比較例のホツト
プレス窒化珪素を用いた場合は、金属との熱膨脹
差が大きいため両者の間に隙間が生じ機械的振動
により破壊した。 以上の説明から明らかなように、本発明のエン
ジンの各部品の構成材料として結晶相が主として
正方晶又は正方晶を立方晶との混合相から成り、
単斜晶の含有量が10%以下、4点曲げ強度が50
Kg/mm2以上であつて、昇温時と降温時の熱膨脹曲
線の同一温度における熱膨脹率の最大差が0.4%
以下、換言すれば熱膨脹ヒステリシスの少ない高
強度部分安定化ジルコニいを用いたエンジン部品
はその高強度部分安定化ジルコニアのもつ耐熱
性、断熱性のためにエンジンが高温で作動可能で
あるとともに、しかも熱損失が少ないためエンジ
ン効率が高くなり、さらにすぐれた機械的強度を
有するため、エンジンが高温で作動中も機械的衝
撃、熱的衝撃によつて破壊することもなく、しか
もセラミツク金属との熱膨脹差が極めて小さいた
め、両者の嵌合が極めて密接であるとともに、高
温で長時間、作動した場合にも両者の接合部に隙
間が生ずることがなく、セラミツク内筒が脱落し
たり破壊することがない。従つてエンジン部品と
して耐久性、信頼性に優れているもので、デイー
ゼルエンジン、ガソリンエンジン等、内燃機関の
シリンダー、シリンダーライナー、シリンダーヘ
ツド、ピストン、ピストンキヤツプ、バルブシー
ト、排気ポートライナー、タペツト等のエンジン
部品として充分使用できるものであり省エネルギ
ー面よりも極めて有用のエンジン部品である。
[Table] Example 3 A cylinder head 31 shown in FIG. 3 was prepared using high-strength partially stabilized zirconia containing 4 mol % of Y 2 O 3 and whose crystal phase was mainly a mixed phase of tetragonal and cubic crystals. For comparison, a similar cylinder head was made using hot-pressed silicon nitride. When these cylinder heads were installed in a diesel engine and an engine test was conducted, no abnormalities were observed with the high-strength partially stabilized zirconia of the present invention, but when the hot-pressed silicon nitride of the comparative example was used, metal Due to the large difference in thermal expansion between the two, a gap was created between the two, which caused damage due to mechanical vibration. As is clear from the above description, the crystalline phase of the constituent materials of each component of the engine of the present invention is mainly tetragonal or a mixed phase of tetragonal and cubic crystals,
Monoclinic content is less than 10%, 4-point bending strength is 50
Kg/mm 2 or more, and the maximum difference in the coefficient of thermal expansion at the same temperature between the thermal expansion curves during heating and cooling is 0.4%
In other words, engine parts using high-strength partially stabilized zirconia with low thermal expansion hysteresis allow the engine to operate at high temperatures due to the heat resistance and heat insulation properties of high-strength partially stabilized zirconia. Engine efficiency is high due to low heat loss, and it also has excellent mechanical strength, so it will not be destroyed by mechanical or thermal shock even when the engine is operating at high temperatures. Because the difference is extremely small, the fit between the two is extremely tight, and even when operated at high temperatures for long periods of time, there will be no gap between the two, and the ceramic inner cylinder will not fall off or break. do not have. Therefore, it is highly durable and reliable as an engine part, and is used in diesel engines, gasoline engines, and other internal combustion engine cylinders, cylinder liners, cylinder heads, pistons, piston caps, valve seats, exhaust port liners, tappets, etc. It can be fully used as a part and is an extremely useful engine part in terms of energy saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るセラミツク・
金属重合体より成るデイーゼルエンジン用シリン
ダーライナーの断面図、第2図は本発明の一実施
例に係るセラミツク・金属複合体より成るデイー
ゼルエンジン用ピストンの断面図、第3図は本発
明の一実施例に係るセラミツク製シリンダーヘツ
ドの断面図である。 11……セラミツクシリンダーライナー、12
……金属スリーブ、21……セラミツク・金属複
合体ピストン、22……金属ピストン、23……
セラミツクピストンキヤツプ、24……セラミツ
ク・金属接合面、31……シリンダーヘツド。
FIG. 1 shows a ceramic material according to an embodiment of the present invention.
FIG. 2 is a sectional view of a diesel engine cylinder liner made of a metal polymer; FIG. 2 is a sectional view of a diesel engine piston made of a ceramic-metal composite according to an embodiment of the present invention; FIG. 3 is an embodiment of the present invention. FIG. 3 is a sectional view of a ceramic cylinder head according to an example. 11... Ceramic cylinder liner, 12
...metal sleeve, 21...ceramic/metal composite piston, 22...metal piston, 23...
Ceramic piston cap, 24... Ceramic/metal joint surface, 31... Cylinder head.

Claims (1)

【特許請求の範囲】 1 結晶子径が1000Å以下、又は無定形の微細な
酸化ジルコニウム粉末に1〜8モル%のY2O3
は1〜15モル%のY2O3とCaOの混合物を添加し
た混合粉末を作成し、その混合粉末を所定の形状
に予備成形した後加工し、1000〜1550℃で焼成し
て主として正方晶又は正方晶と立方晶の混合相か
ら成り、単斜晶の含有量が10%以下であり、4点
曲げ強度が50Kg/mm2以上で、昇温時と降温時の熱
膨脹曲線の同一温度における熱膨脹率の最大差が
0.4%以下で、かつ平均結晶粒子径が2μ以下でそ
の熱膨脹係数が、10×10-6/℃以上である部分安
定化がジルコニアを作り、これを加工して所定の
エンジン部品の形状とし、これを熱膨脹係数の差
が3×10-6/℃以下である金属部品に接合するこ
とによりセラミツクス金属複合体より成るエンジ
ン部品を得ることを特徴とするエンジン部品の製
造法。 2 セラミツクス部品と金属部品とを焼バメ法に
より接合することを特徴とする特許請求の範囲第
1項記載のエンジン部品の製造法。 3 セラミツクス部品と金属部品とを中間層を介
して接合することを特徴とする特許請求の範囲第
1項記載のエンジン部品の製造法。 4 セラミツクス部品と金属部品とを焼バメ法及
び中間層を介しての接合の両者を組合せて接合す
ることを特徴とする特許請求の範囲第1項記載の
エンジン部品の製造法。
[Claims] 1. 1 to 8 mol% Y 2 O 3 or a mixture of 1 to 15 mol % Y 2 O 3 and CaO is added to fine zirconium oxide powder with a crystallite size of 1000 Å or less or amorphous. A mixed powder containing the additives is prepared, and the mixed powder is preformed into a predetermined shape, processed, and fired at 1000 to 1550°C to form a mixture of mainly tetragonal or tetragonal and cubic phases, and a monoclinic crystal. The content is 10% or less, the 4-point bending strength is 50Kg/mm2 or more, and the maximum difference in the coefficient of thermal expansion at the same temperature in the thermal expansion curve when heating and cooling is
Partially stabilized zirconia with a content of 0.4% or less, an average crystal grain size of 2μ or less, and a coefficient of thermal expansion of 10×10 -6 /℃ or more is produced, which is processed into the shape of a predetermined engine part, A method for producing engine parts, characterized in that an engine part made of a ceramic-metal composite is obtained by bonding this to a metal part having a difference in coefficient of thermal expansion of 3×10 -6 /°C or less. 2. The method for manufacturing engine parts according to claim 1, characterized in that the ceramic parts and the metal parts are joined by a shrink fit method. 3. The method for manufacturing engine parts according to claim 1, characterized in that a ceramic part and a metal part are bonded via an intermediate layer. 4. The method for manufacturing engine parts according to claim 1, characterized in that the ceramic parts and the metal parts are joined by a combination of a shrink fit method and joining via an intermediate layer.
JP61077549A 1986-04-05 1986-04-05 Engine part Granted JPS6252174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61077549A JPS6252174A (en) 1986-04-05 1986-04-05 Engine part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61077549A JPS6252174A (en) 1986-04-05 1986-04-05 Engine part

Publications (2)

Publication Number Publication Date
JPS6252174A JPS6252174A (en) 1987-03-06
JPH044265B2 true JPH044265B2 (en) 1992-01-27

Family

ID=13637093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61077549A Granted JPS6252174A (en) 1986-04-05 1986-04-05 Engine part

Country Status (1)

Country Link
JP (1) JPS6252174A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63268963A (en) * 1987-04-27 1988-11-07 Ngk Insulators Ltd Ceramic port liner
JPH01124056U (en) * 1988-02-15 1989-08-23

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018621A (en) * 1983-07-11 1985-01-30 Ishikawajima Harima Heavy Ind Co Ltd Flexible shaft coupling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018621A (en) * 1983-07-11 1985-01-30 Ishikawajima Harima Heavy Ind Co Ltd Flexible shaft coupling device

Also Published As

Publication number Publication date
JPS6252174A (en) 1987-03-06

Similar Documents

Publication Publication Date Title
JPS6018621B2 (en) engine parts
US4921734A (en) Cylinder liners
US4359022A (en) Valve for an internal combustion engine
CN1019294B (en) Two layered refractory plate
US4728078A (en) Ceramic valve seats
JPS59162344A (en) Cylinder head of piston engine
EP0154462B1 (en) Ceramic insert cast piston
US5260116A (en) Ceramicm port liners
JPH0375744B2 (en)
JPH044265B2 (en)
JPS61101463A (en) High strength zirconia base ceramic engine part
JPH0427379B2 (en)
JPS6343348B2 (en)
JPS6259202B2 (en)
JPH01172536A (en) Heat insulating and heat-resistant ceramic porous body conjugate metallic material
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS58145667A (en) Composite structure for mechanical parts
JP3216332B2 (en) Fiber-reinforced aluminum titanate sintered body and method for producing the same
JPS60135652A (en) Ceramics-incorporating piston
JPS60113021A (en) Nozzle part for auxiliary chamber of internal-combustion engine
JP2000143345A (en) Ceramic structure having fibrous layer
Suzuki et al. Realization of ceramics adiabatic engine and engine components having many functions
JP3033324B2 (en) Insulated piston
JP2588254B2 (en) Wear-resistant sliding member
JPS6179071A (en) Piston and manufacture thereof