JPH0441993B2 - - Google Patents

Info

Publication number
JPH0441993B2
JPH0441993B2 JP17372889A JP17372889A JPH0441993B2 JP H0441993 B2 JPH0441993 B2 JP H0441993B2 JP 17372889 A JP17372889 A JP 17372889A JP 17372889 A JP17372889 A JP 17372889A JP H0441993 B2 JPH0441993 B2 JP H0441993B2
Authority
JP
Japan
Prior art keywords
pseudomonas
lipase
strain
action
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17372889A
Other languages
Japanese (ja)
Other versions
JPH0339086A (en
Inventor
Taro Iiizumi
Koichi Nakamura
Tetsuo Fukase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17372889A priority Critical patent/JPH0339086A/en
Publication of JPH0339086A publication Critical patent/JPH0339086A/en
Publication of JPH0441993B2 publication Critical patent/JPH0441993B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はリパーゼを生産するシユードモナス属
の細菌に関するものである。 (従来技術) リパーゼはトリグリセリドを基質とし、脂肪酸
とグリセリンに加水分解する酸素である。また、
反応水中の水分含量を減少させると脂肪酸とアル
コールよりエステルを合成する反応も知られてい
る。 現在、リパーゼの工業的利用が盛んに試みられ
ており特に脂肪酸生産プロセスへのリパーゼの導
入が期待されている。 すなわち、工業的に油脂を分解し、脂肪酸を生
産させるプロセスは、現在、高温、高圧下での化
学的加水分解法によつて行われている。しかし、
酸素反応を導入する事により、常温、常圧下で反
応を進ませることができるため、化学的加水分解
法では分解されることが多かつた不飽和脂肪酸も
分解することなく得ることができるとともに大量
のエネルギー消費を節約できる。また、酸素反応
の基質特異性を利用し、エステル交換反応を用い
て、価格の安価な油脂を原料とし、付加価値の高
い油脂に改良することも可能である。 百しかし、脂肪酸生産の主な原料である牛脂、豚
脂は、主に長鎖の飽和脂肪酸より構成されてお
り、常温では固体である。このために油脂を融点
以上の温度で反応させるか、有機溶剤の添加によ
り液状化したのち反応させなければならない。よ
つて脂肪酸生産用に使用されるリパーゼは、耐熱
性を持ち、しかも高温下で最適反応性を持つもの
か、または、有機溶剤に対し耐性を持ち、その存
在下で反応を進められるものでなくてはならな
い。このようなリパーゼの検索は盛んに行われて
きたが、工業的レベルでその需要に適した酵素
は、現在まで得られていない。 耐熱性リパーゼという点においては、特にシユ
ードモナス属細菌がこれらのリパーゼを生産しう
ることが報告されている。 すなわち、シユードモナスKWI−56
(Pseudomonas sp KWI−56)が生産する、作用
最適温度70〜80℃、60℃24時間の熱処理において
もほとんど失活しないリパーゼ(特願昭62−
269985)シユードモナス・メフイテイカ・バリユ
タス・リポリテイカ(Pseudomonas mephitca
var.lipolytica)が生産する、作用最適温度70℃、
60℃14時間の熱処理においても失活をおこさない
リパーゼ(特公昭50−25553)、シユードモナス・
フラジー(Pseudomonas fragi)が生産する、
作用最適温度75〜80℃、70℃20分間の熱処理によ
つても95%以上の活性を保持するリパーゼ
(Agric.Biol chem.1977年41巻1353〜1358)、シ
ユードモナス、フルオレセンス、バイオタイプI
(Pseudomonas fluorescens)が生産する、作用
最適温度67℃、60℃20時間の熱処理によつても
86.9%の活性を保持するリパーゼ(特開昭57−
58885)などの報告が知られている。 また、作用最適PHの点については、多くのリパ
ーゼは中性付近に作用最適PHを有しており、アル
カリ性領域に作用最適PHを持つものとして、シュ
ードモナス・フラジー(Pseudomonas fragi:
Agric.Biol.Chem.1977年,41巻,1353〜1358)、
アクロモバクター(Achromobacter sp.:特開
昭48−68792),アルカリゲネス(Alcaligenes
sp.:特開昭52−21387)、フミコーラ・ラヌギノ
ーサ(Humicola lanuginosa:特開昭48−
62990)、ムコール・リボリティクス(Mucor
lipolyticus:Agric.Biol.Chem.1973年,37巻,
2791〜2796)などが知られている。酸性領域に作
用最適PHをもつものとしてカビの生産するリパー
ゼがいくつか知られているが、PH5以下のものは
知られていない。 (発明が解決しようとする問題点) 工業利用の面から見ると、リパーゼを利用する
反応のPHは必ずしも中性とは限らず、酸性または
アルカリ性領域に作用最適PHを持つリパーゼが求
められている。また、そのリパーゼが耐熱性をも
有していれば、更に有利であると言える。 (問題点を解決するための手段) 本発明者らは、耐熱性を持つリパーゼを生産す
る微生物を広く自然界より探索した結果、神奈川
県厚木市の土壌より分離したシユードモナス属に
属するKWI−4菌株がPH4およびPH8に作用最
適PHを有するリパーゼを生産すること、また、そ
れらが共に70〜80℃に作用最適温度を有する耐熱
性リパーゼであることを見い出した。 本発明の菌株の菌学的性質を以下に示す。この
菌学的性質の検討には、「微生物の分類と同定」
(長谷川武治著、学会出版センター)、「医学細菌
同定の手びき」(S.T.Cowan著、坂崎利一訳、近
代出版)、「新細菌培地学講座」(坂崎利一著、近
代出版)に記載された方法、培地組成を用いた。 (a) 形態 細胞の形及び大きさ:長さ2ミクロン、幅
1ミクロンの桿菌 細胞の双形性:単独または短連鎖 運動性:あり、1本の極鞭毛を持つ 胞子:なし グラム染色:陰性 抗酸性:なし (b) 成育状態 肉汁寒天平板培養:円形、とつ円状、表面
は滑らかで光沢がある。わずかに黄色を帯び
た褐色。 肉汁寒天斜面培養:糸状、成育は普通、表
面は滑らかで光沢がある。色素生成せず。わ
ずかに黄色を帯びた褐色。 肉汁液体培養:生育は普通、混濁、色素生
成せず。 肉汁ゼラチン穿刺培養:ゼラチンを液化せ
ず。 リトマスミルク:変化なし。 (c) 生理学的性質 硝酸塩の還元:陰性。 脱窒反応:陰性。 MRテスト:陰性。 VPテスト:陰性。 インドールの生成:陰性。 硫化水素の生成:陰性。 デンプンの加水分解:陰性。 クエン酸の利用:コーザーの培地;陰性。 クリステンセンの培地;陽性。 無機窒素源の利用;硝酸ナトリウムおよび
硫酸アンモニウムを利用する。 色素の生成:シユードモナスFアガー、シ
ユードモナスPアガー(デイフコ社製)、色
素の生成はみられない。 ウレアーゼ:陽性。 オキシダーゼ:陽性。 タカラーゼ:陽性。 生育の範囲 PH:4.5〜8.5で生育。 温度:37℃以下で生育。38℃で生育はみられ
ない。 酸素に対する態度:好気性。 O−Fテスト:好気的に酸を生成。 糖類からの酸およびガスの生成の有無。 Hugh−Leifson法による。 D−グルコース、D−マンノース、D−フ
ラクトース、D−ガラクトース、乳糖、グリ
セリンからガスは発生しないが酸を生成す
る。L−アラビノース、D−キシロース、麦
芽糖、シヨ糖、トレハロース、D−ソルビツ
ト、D−マンニツト、イノシツト、デンプン
からはガスも糖も生成しない。 ポリ−β−ヒドロキシ酪酸の蓄積:陰性。 ブロトカテキン酸の分解:オルト型。 グルコン酸の酸化:陽性。 21 アルギニンジヒドラーゼデスト:陰性。 22 リジン脱炭酸:陰性。 23 リパーゼの生産:陽性。 24 炭酸化合物の利用:Stanierらの方法によ
る。 グルコース、L−アルギニン、Lーアラニ
ン、D−アラニン、イヌリン、DL−β−ヒ
ドロキシ酪酸で生育するが、グリシン、イタ
コン酸、メタコン酸アラビノース、マルトー
ス、ソルビトース、L−スレオニンでは生育
せず。 以上の菌学的性質からバージイのマニユアル・
オブ・システマテイツク・バクテリオロジー
(Bergeys'g Manual of Systematic
Bacteriology)に基づき検索した結果、シユー
ドモナス・プチダ・バイオバーBにほぼ一致し
た。 しかし、従来のシユードモナス・プチダ・バイ
オバーBは、グリシン・イスリンDL−β−ハイ
ドロキシプチレートを資化できるのに対し、本菌
株はこれを資化できない。 また、従来のシユードモナス・ブチダ・バイオ
バーBはアルギニンジヒドラーゼエスト陽性であ
るのに対し本菌株は陰性である。 さらに、既知の耐熱性リパーゼを生産するシユ
ードモナス属細菌、すなわち前記のシユードモナ
ス・メフイテイカ・バリテタス・リポリテイカ・
シユードモナス・フランジー、シユードモナス・
フルオレセンス・バイオタイプIと比較しても、
少なくとも以下の菌学的性質に関して差異がみら
れる。
(Industrial Application Field) The present invention relates to bacteria of the genus Pseudomonas that produce lipase. (Prior Art) Lipase uses triglyceride as a substrate and hydrolyzes it into fatty acids and glycerin using oxygen. Also,
It is also known that esters are synthesized from fatty acids and alcohols by reducing the water content in the reaction water. At present, many attempts are being made to utilize lipases industrially, and in particular, the introduction of lipases into fatty acid production processes is expected. That is, the process of industrially decomposing fats and oils to produce fatty acids is currently carried out by a chemical hydrolysis method under high temperature and high pressure. but,
By introducing an oxygen reaction, the reaction can proceed at room temperature and pressure, so unsaturated fatty acids, which are often broken down by chemical hydrolysis methods, can be obtained without decomposition and in large quantities. energy consumption can be saved. In addition, it is also possible to utilize the substrate specificity of oxygen reactions and use inexpensive fats and oils as raw materials to improve them into high value-added fats and oils using transesterification. However, beef tallow and lard, which are the main raw materials for fatty acid production, are mainly composed of long-chain saturated fatty acids and are solid at room temperature. For this purpose, the oil or fat must be reacted at a temperature above its melting point, or it must be liquefied by adding an organic solvent and then reacted. Therefore, lipases used for fatty acid production are either thermostable and have optimal reactivity at high temperatures, or are resistant to organic solvents and cannot proceed in their presence. must not. Although the search for such a lipase has been actively conducted, an enzyme suitable for the demand at an industrial level has not been obtained to date. In terms of thermostable lipases, it has been reported that bacteria of the genus Pseudomonas can produce these lipases. That is, Pseudomonas KWI−56
(Pseudomonas sp KWI-56) is a lipase produced by Pseudomonas sp.
269985) Pseudomonas mephitica variutus lipolyteica
var.lipolytica), the optimum temperature for action is 70℃,
Lipase that does not deactivate even after heat treatment at 60℃ for 14 hours (Special Publication No. 50-25553), Pseudomonas
Produced by Pseudomonas fragi,
Lipase that retains 95% or more activity even after heat treatment at 75-80℃ for 20 minutes at 70℃ (Agric.Biol chem.1977, Vol. 41, 1353-1358), Pseudomonas, Fluorescens, Biotype I
(Pseudomonas fluorescens), the optimum temperature for action is 67℃, and even by heat treatment at 60℃ for 20 hours.
Lipase retaining 86.9% activity (Unexamined Japanese Patent Publication No. 1983-
58885) and other reports are known. In addition, regarding the optimum pH for action, many lipases have an optimum pH for action near neutrality, and Pseudomonas fragi has an optimum pH for action in the alkaline region.
Agric.Biol.Chem.1977, vol. 41, 1353-1358),
Achromobacter sp. (Japanese Unexamined Patent Publication No. 48-68792)
sp.: Japanese Patent Publication No. 52-21387), Humicola lanuginosa (Japanese Patent Publication No. 48-1989)
62990), Mucor Ribolytics (Mucor
lipolyticus: Agric.Biol.Chem.1973, 37 volumes,
2791-2796) are known. Some lipases produced by fungi are known to have an optimal pH for action in acidic regions, but none are known to have a pH below 5. (Problems to be solved by the invention) From the perspective of industrial use, the pH of reactions using lipases is not necessarily neutral, and there is a need for lipases that have an optimal pH for action in acidic or alkaline regions. . Furthermore, it would be more advantageous if the lipase also had heat resistance. (Means for solving the problem) As a result of a wide range of natural searches for microorganisms that produce heat-resistant lipase, the present inventors discovered the KWI-4 strain belonging to the genus Pseudomonas isolated from soil in Atsugi City, Kanagawa Prefecture. produced lipases with optimum operating pHs at PH4 and PH8, and that they were both thermostable lipases with optimum operating temperatures between 70 and 80°C. The mycological properties of the strain of the present invention are shown below. In order to study this mycological property, "classification and identification of microorganisms" is required.
(written by Takeharu Hasegawa, Gakkai Publishing Center), ``Guidelines for Medical Bacteria Identification'' (written by ST Cowan, translated by Toshikazu Sakazaki, published by Kindai Publishing), and ``Course on New Bacterial Culture Culture'' (written by Toshikazu Sakazaki, published by Kindai Publishing). A different method and medium composition were used. (a) Morphology Cell shape and size: Bacillus 2 microns long and 1 micron wide Cell dimorphism: Solitary or in short chains Motility: Yes, with one polar flagellum Spores: None Gram staining: Negative Anti-acidity: None (b) Growth condition Juicy agar plate culture: Round, round shape, smooth and glossy surface. Brown with a slight yellow tinge. Juice agar slant culture: filamentous, growth is normal, surface is smooth and shiny. No pigment formation. Brown with a slight yellow tinge. Broth liquid culture: Normal growth, turbidity, no pigment production. Meat juice gelatin puncture culture: gelatin is not liquefied. Litmus milk: No change. (c) Physiological properties Nitrate reduction: negative. Denitrification reaction: negative. MR test: negative. VP test: negative. Indole production: negative. Hydrogen sulfide formation: negative. Starch hydrolysis: negative. Utilization of citric acid: Coser's medium; negative. Christensen's medium; positive. Use of inorganic nitrogen sources; use sodium nitrate and ammonium sulfate. Production of pigment: Pseudomonas F agar, Pseudomonas P agar (manufactured by Difco), no production of pigment observed. Urease: Positive. Oxidase: positive. Tacalase: positive. Growth range PH: Grows at 4.5 to 8.5. Temperature: Grows below 37℃. No growth is observed at 38℃. Attitude towards oxygen: aerobic. O-F test: Acid production aerobically. Presence or absence of acid and gas production from sugars. Based on the Hugh-Leifson method. D-glucose, D-mannose, D-fructose, D-galactose, lactose, and glycerin do not generate gas but do generate acid. Neither gas nor sugar is produced from L-arabinose, D-xylose, maltose, sucrose, trehalose, D-sorbitol, D-mannite, inosites, and starch. Accumulation of poly-β-hydroxybutyric acid: negative. Decomposition of brotocatechinic acid: ortho form. Gluconic acid oxidation: positive. 21 Arginine dihydrase dest: negative. 22 Lysine decarboxylation: negative. 23 Lipase production: Positive. 24 Utilization of carbonate compounds: According to the method of Stanier et al. It grows on glucose, L-arginine, L-alanine, D-alanine, inulin, and DL-β-hydroxybutyric acid, but not on glycine, itaconic acid, arabinose metaconate, maltose, sorbitose, and L-threonine. Based on the above mycological properties, Virgie's manual
Bergeys'g Manual of Systematic Bacteriology
As a result of a search based on Pseudomonas putida Biovar B (Bacteriology), it almost matched Pseudomonas putida biovar B. However, while the conventional Pseudomonas putida biovar B can assimilate glycine and issurin DL-β-hydroxybutyrate, this strain cannot assimilate it. Furthermore, while the conventional Pseudomonas butida biovar B is positive for arginine dihydrase est, this strain is negative. Furthermore, the bacteria of the genus Pseudomonas that produce known thermostable lipases, namely the aforementioned Pseudomonas mehuiteica varietus lipolyteica
Pseudomonas frangii, Pseudomonas
Compared to Fluorescens biotype I,
Differences are observed at least in the following mycological properties.

【表】【table】

【表】 以上の知見より、本菌株はシユードモナス・プ
チダバイオバーBと極めて近い分類学的関係にあ
りながらも新菌株であると判断し、シユードモナ
ス・KWI−4株と命名した。本菌株は平成元年
6月16日に通商産業省工業技術院微生物工業技術
研究所に寄託した。微生物受託番号は、微工研菌
奇第10784号(FERM P−10784)である。 (作用及び効果) 本菌株を用いて耐熱性リパーゼを生産すること
ができる。培養条件は次のとおりである。 まず培地組成であるが、本菌株はオリーブ油等
の油脂が培地中に存在する時にのみ誘導的にリパ
ーゼを生産する。このため、炭素源としてはオリ
ーブ油などの油脂を用いるか、もしくはグリセリ
ン、各種糖類などの本菌株が資化しうる物質に、
適当な量の油脂を添加させたものを使用すればよ
い。窒素源には、硫酸アンモニウム、肉エキス、
ポリペプトン、大豆粉などが利用できる。さらに
無機塩として、カリウム、ナトリウム、リン酸、
マグネシウム、カルシウムなどの各塩類を添加す
る必要がある。 以上述べた培地組成でPHを7.0に調整し、30℃
において、好気的に培養をおこなえば、培養開始
後1日〜2日間で培地中のリパーゼ生産量は最大
となる。得られた培養液は遠心分離によつて菌体
を除去した後、その上澄液を酵素液として使用で
きる。また、上澄液を部分精製の後に使用しても
さしつかえない。すなわち、低温下において上澄
液に、冷却したアセトンを最終濃度80%(V/
V)となるよう加え、その沈殿物を遠心分離など
で回収する。さらにこの沈殿物を適当な緩衝液で
溶解し酵素液として使用すればよい。 次に菌株が生産する耐熱性リパーゼの若干の性
質を以下に述べる。なお、リパーゼ活性の測定は
山田−町田法(日本農芸化学会誌、36、860〜
864、1962)を用いた。すなわち、2%オリーブ
油/ポリビニルアルコールエマルジヨンを基質と
して、37℃において1分間に1マイクロモルの脂
肪酸を遊離せしめる酵素量を1単位(以下Uと表
示。)とした。 作用 トリグリセリドを基質として脂肪酸とグリセ
リンにまで加水分解する。 作用最適温度。 第1図に示す様に、作用最適温度は80℃であ
る。 耐熱性 第2図は酵素液を各温度下で12時間熱処理し
たものである。第3図は酵素液を60℃の温度下
で各時間熱処理したものである。60℃12時間の
熱処理で残存活性は58%以上、60℃24時間の熱
処理で36%の残存活性を示す。 作用最適PH 第4図に示す様に、作用最適PHは8である
が、PH4にもピークが見られる。 次に実施例によつて本発明を詳細に説明する。 (実施例) 肉エキス1%(W/W)、ポリペプトン1%
(W/W)、塩化ナトリウム0.5%(W/W)、オリ
ーブ油1%(W/W)よりなる液体培地を水酸化
ナトリウム水溶液を用いてPH7.0に調節し、その
50mlを500ml容の坂口フラスコに加え、オートク
レープによつて加圧滅菌した。この培地にシユー
ドモナスKWI−4株を植菌し、ロータリーシユ
ーカーを用いて30℃毎分150回転の条件下で50時
間の振盪培養をおこなつた。培養終了後の培養液
のリパーゼ活性は18.4U/mlであつた。さらに、
この培養液から遠心分離によつて菌体を除去しそ
の上澄液を得た。上澄液のリパーゼ活性は
8.1U/mlであつた。
[Table] Based on the above findings, this strain was determined to be a new strain even though it has a very close taxonomic relationship with Pseudomonas putida biovar B, and was named Pseudomonas KWI-4 strain. This bacterial strain was deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology, Ministry of International Trade and Industry on June 16, 1989. The microorganism accession number is FERM P-10784. (Action and Effect) Thermostable lipase can be produced using this strain. The culture conditions are as follows. First, regarding the medium composition, this strain inducibly produces lipase only when fats and oils such as olive oil are present in the medium. Therefore, as a carbon source, we use fats and oils such as olive oil, or substances that this strain can assimilate, such as glycerin and various sugars.
It is sufficient to use one with an appropriate amount of fat added. Nitrogen sources include ammonium sulfate, meat extract,
Polypeptone, soybean flour, etc. can be used. Furthermore, as inorganic salts, potassium, sodium, phosphoric acid,
It is necessary to add various salts such as magnesium and calcium. Adjust the pH to 7.0 with the medium composition described above and store at 30°C.
If culture is carried out aerobically, the amount of lipase produced in the medium reaches its maximum within 1 to 2 days after the start of culture. After removing the bacterial cells from the obtained culture solution by centrifugation, the supernatant can be used as an enzyme solution. Furthermore, the supernatant may be used after partial purification. That is, cooled acetone was added to the supernatant at a final concentration of 80% (V/
V) and collect the precipitate by centrifugation or the like. Furthermore, this precipitate may be dissolved in an appropriate buffer and used as an enzyme solution. Next, some properties of the thermostable lipase produced by the strain will be described below. The lipase activity was measured using the Yamada-Machida method (Journal of the Japanese Society of Agricultural Chemistry, 36, 860~
864, 1962). That is, using 2% olive oil/polyvinyl alcohol emulsion as a substrate, 1 unit (hereinafter referred to as U) was the amount of enzyme that liberated 1 micromole of fatty acid per minute at 37°C. Action Hydrolyzes triglyceride as a substrate into fatty acids and glycerin. Optimum temperature for action. As shown in Figure 1, the optimum temperature for action is 80°C. Heat resistance Figure 2 shows enzyme solutions heat-treated at various temperatures for 12 hours. Figure 3 shows the enzyme solution heat-treated at a temperature of 60°C for various times. The residual activity is more than 58% after heat treatment at 60°C for 12 hours, and 36% after heat treatment at 60°C for 24 hours. Optimum PH for action As shown in Figure 4, the optimum PH for action is 8, but a peak can also be seen at PH4. Next, the present invention will be explained in detail with reference to Examples. (Example) Meat extract 1% (W/W), polypeptone 1%
A liquid medium consisting of (W/W), 0.5% (W/W) sodium chloride, and 1% (W/W) olive oil was adjusted to pH 7.0 using an aqueous sodium hydroxide solution.
50 ml was added to a 500 ml Sakaguchi flask and sterilized under pressure using an autoclave. This medium was inoculated with Pseudomonas strain KWI-4, and shake culture was performed for 50 hours at 30° C. and 150 revolutions per minute using a rotary shaker. The lipase activity of the culture solution after completion of the culture was 18.4 U/ml. moreover,
Bacterial cells were removed from this culture solution by centrifugation to obtain a supernatant. The lipase activity of the supernatant is
It was 8.1U/ml.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシユードモナスKWI−4株が生産す
るリパーゼの作用最適温度を示す図である。各温
度条件下で20分間の活性測定反応をおこなつた。
第2図は同リパーゼの耐熱性を示す図である。酵
素液を各温度で12時間熱処理し、残存活性を求め
た。第3図も同リパーゼの耐熱性を示す図であ
る。酵素液を60℃の温度下で各時間熱処理し、残
存活性を求めた。第4図は同リパーゼの作用最適
PHを示す図である。
FIG. 1 is a diagram showing the optimum temperature for action of lipase produced by Pseudomonas strain KWI-4. Activity measurement reactions were carried out for 20 minutes under each temperature condition.
FIG. 2 is a diagram showing the heat resistance of the lipase. The enzyme solution was heat-treated at each temperature for 12 hours, and the residual activity was determined. FIG. 3 is also a diagram showing the heat resistance of the same lipase. The enzyme solution was heat-treated at a temperature of 60°C for various hours, and the residual activity was determined. Figure 4 shows the optimal action of the same lipase.
It is a figure showing PH.

Claims (1)

【特許請求の範囲】[Claims] 1 シユードモナス(Pseudomonas)属に属し、
かつリパーゼ生産能を有するシユードモナス
KWI−4菌株。
1 Belongs to the genus Pseudomonas,
Pseudomonas with lipase production ability
KWI-4 strain.
JP17372889A 1989-07-05 1989-07-05 Pseudomonas kwi-4 strain Granted JPH0339086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17372889A JPH0339086A (en) 1989-07-05 1989-07-05 Pseudomonas kwi-4 strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17372889A JPH0339086A (en) 1989-07-05 1989-07-05 Pseudomonas kwi-4 strain

Publications (2)

Publication Number Publication Date
JPH0339086A JPH0339086A (en) 1991-02-20
JPH0441993B2 true JPH0441993B2 (en) 1992-07-10

Family

ID=15966042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17372889A Granted JPH0339086A (en) 1989-07-05 1989-07-05 Pseudomonas kwi-4 strain

Country Status (1)

Country Link
JP (1) JPH0339086A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159290A (en) * 2000-11-27 2002-06-04 Hiroshima Industrial Technology Organization New lipase and method for producing the same

Also Published As

Publication number Publication date
JPH0339086A (en) 1991-02-20

Similar Documents

Publication Publication Date Title
US4444886A (en) Diacetinase from Bacillus subtilis
DK153953B (en) PROCEDURE FOR THE PREPARATION OF D-AMINO ACIDS AND THE USE OF THE PROCEDURE
HU202918B (en) Process for producing acidic urease
US5281527A (en) Process for producing pullalanase
JPH0441993B2 (en)
US4904593A (en) Novel microorganism, a novel esterase and method for preparing the same
JP3514799B2 (en) Lipase and microorganism producing the same
JPH01112979A (en) Pseudomonas kwi-56 strain
JPH0638746A (en) Alkali lipase, microorganism producing the same and detergent containing alkali lipase
JPH08238088A (en) Lipase having high activity at high temperature
JP3824244B2 (en) Method for producing cholesterol esterase
JP3032390B2 (en) Pseudomonas sp. Strain S10-071 and lipase produced by the microorganism
JPH11253157A (en) Microbe having ability for producing new lipase, lipase, its production and its use
US4791059A (en) Process for preparing lipase
KR960007741B1 (en) Novel(alpha)-1,6-glucosidase and process for producing the same
JPH0789913B2 (en) Method for producing lipase AML
JPH0616704B2 (en) Bacterial catalase resistant to fluoride ions and Micrococcus sp. KWI-5 strain
JP3649765B2 (en) Novel glycerol kinase and process for producing the same
JPH0550268B2 (en)
JPH08275776A (en) New chitinase and its production
JP4752024B2 (en) Cell wall degrading enzyme, producing microorganism, and protoplast preparation method using the same
JP3989976B2 (en) Ethyl alcohol resistant proteolytic enzyme, method for producing the same, and ethyl alcohol resistant proteolytic enzyme producing bacterium
JPH0829082B2 (en) New lipase and its manufacturing method
JPH04341186A (en) New glucose isomerase, its production and production of isomerized syrup
JPS5840469B2 (en) Manufacturing method of enzyme preparation for cholesterol determination

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees