JPH0441964A - Double thrust solid rocket motor - Google Patents

Double thrust solid rocket motor

Info

Publication number
JPH0441964A
JPH0441964A JP14351190A JP14351190A JPH0441964A JP H0441964 A JPH0441964 A JP H0441964A JP 14351190 A JP14351190 A JP 14351190A JP 14351190 A JP14351190 A JP 14351190A JP H0441964 A JPH0441964 A JP H0441964A
Authority
JP
Japan
Prior art keywords
rocket motor
propellant
metal
thrust
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14351190A
Other languages
Japanese (ja)
Other versions
JP2749707B2 (en
Inventor
Isao Kozuki
上月 功
Akira Yokoyama
横山 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP14351190A priority Critical patent/JP2749707B2/en
Publication of JPH0441964A publication Critical patent/JPH0441964A/en
Application granted granted Critical
Publication of JP2749707B2 publication Critical patent/JP2749707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To obtain a double thrust rocket motor having high reliability with the same manufacturing process as that for a single thrust rocket motor by arranging a cylindrical and metal permiable forming member as an inner layer of an inner combustion type propellant. CONSTITUTION:A one-chamber two-layer double thrust solid rocket motor is provided with at least a propellant 1, a metal permeable foaming member 2, an ignitor 3, a rocket motor combustion chamber 4, and a resctictor 5. For manufacturing, the metal peamiable forming member 6 which has a space on its center of a cross-sectional face, a metal die 8 which has the same cross-sectional shape and made of aluminum or the like is fitted to the space 7, to form a propellant charging molding core. The above-mentioned molding core is arranged on a center of a rocket motor combustion chamber 9. After the slurrey of the propellant 1 is charged and heated for hardening, the aluminum metal die is drawn. End parts are treated by the restrictor 5, and the manufacturing is completed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発進時に大推力を示し、以後低推力を持続する
一室二層二段推力固体ロケットモータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a single-chamber, two-layer, two-stage thrust solid rocket motor that exhibits a large thrust at the time of takeoff and maintains a low thrust thereafter.

〔従来の技術及び発明が解決しようとする課題〕ロケッ
トモータには発進時の飛翔安定性を高くする目的で初期
(ブースト期)に大推力を発生し、以後低推力の巡航(
サステナ期)を行うために巡航ロケットの外部にブース
タ補助ロケットを付加させる方式のもの、大推力のブー
スタロケットモータと小推力のサステナロケットモータ
を直列に持続する方式のもの等があるが、これらは構造
が複雑かつ大型となり高価になる。
[Problems to be solved by conventional technology and the invention] Rocket motors generate large thrust in the initial stage (boost period) for the purpose of increasing flight stability during takeoff, and then generate a low thrust cruise (
There are systems that add a booster auxiliary rocket to the outside of the cruise rocket in order to perform (sustainer stage), systems that maintain a high-thrust booster rocket motor and a small-thrust sustainer rocket motor in series, etc. The structure is complicated, large and expensive.

一方、ロケットモータの燃焼室を一室とし、内部の内面
燃焼推進薬を二層とし、内層に高燃速推進薬、外層に低
燃速推進薬を配した二段推力固体ロケットモータは単純
、小型で安価であるが、高燃速推進薬は固体酸化剤の粒
径が細かく、かつその含有量が多く、更に高燃速触媒を
多量に含むために機械的強度が低下し、低温では内面に
大きな引張応力を発生するので、推進薬に致命的な亀裂
欠陥を生じる。また、製造工程も初めに内層になる高燃
速推進薬の円筒を予め硬化成形しておき、これをロケッ
トモータ燃焼室の中央部に配置して、その外側と燃焼室
内壁との間に外層となる低燃速推進薬を注入した後、硬
化させ成形するというように製造工程が2倍となる。更
に内層と外層間の推進薬が剥離を起こす危険があり、両
層間の接着力を維持させるには高度の技術を必要とする
On the other hand, a two-stage thrust solid rocket motor, which has a single combustion chamber and two internal internal combustion propellant layers, with a high combustion velocity propellant in the inner layer and a low combustion velocity propellant in the outer layer, is simple. Although they are small and inexpensive, high-flame propellants have fine solid oxidizer particles and a large amount of solid oxidizer, and also contain a large amount of high-flame catalysts, which reduces their mechanical strength and causes the inner surface to deteriorate at low temperatures. This generates large tensile stress, which causes fatal crack defects in the propellant. In addition, in the manufacturing process, the cylinder of high-flame propellant that will become the inner layer is hardened and molded in advance, and this is placed in the center of the rocket motor combustion chamber, and the outer layer is placed between the outside and the inner wall of the combustion chamber. After injecting a low-burning propellant, it is hardened and molded, which doubles the manufacturing process. Furthermore, there is a risk that the propellant between the inner and outer layers will separate, and advanced techniques are required to maintain the adhesive force between the two layers.

本発明の目的は一段推力ロケットモータと殆ど同一の製
造工程で、信頼性の高い二段推力ロケットモータを得る
ことにある。
An object of the present invention is to obtain a highly reliable two-stage thrust rocket motor using almost the same manufacturing process as a single-stage thrust rocket motor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記の目的を達成すべく鋭意検討した結
果、本発明を完成するに到った。
The present inventors have completed the present invention as a result of intensive studies to achieve the above object.

即ち、本発明は一室二層二段推力固体ロケットモータに
おいて、内面燃焼方式推進薬の内層として円筒状で金属
製の通気性発泡体を配置したことを特徴とする二段推力
固体ロケットモータを提供するものである。
That is, the present invention provides a one-chamber, two-layer, two-stage thrust solid rocket motor characterized in that a cylindrical metal breathable foam is disposed as an inner layer of an internal combustion propellant. This is what we provide.

本発明において内面燃焼方式推進薬として用いる推進薬
は一種類でも良く、高燃速推進薬をあえて用いる必要は
なく燃焼室の中央に推進薬の内層として円筒状で金属製
の通気性発泡体を配置するのみで二段推力を得ることが
でき、かつ低温に曝された場合も推進薬内面に亀裂を生
じることがなく、耐環境性も向上する。勿論、ブースタ
期とサステナ期の推力比をより大きくする必要がある場
合は内面燃焼方式推進薬の内層推進薬として高燃速推進
薬を使用することもでき、この場合は内層に配置された
前記発泡体が低温において推進薬内面に低温で亀裂を生
じることを防ぐ効果もある。
In the present invention, only one type of propellant can be used as the internal combustion propellant, and there is no need to intentionally use a high-burning-speed propellant; instead, a cylindrical, metal, breathable foam is used as the inner layer of the propellant in the center of the combustion chamber. Two-stage thrust can be obtained by simply arranging the propellant, and even when exposed to low temperatures, the inner surface of the propellant does not crack, improving environmental resistance. Of course, if it is necessary to increase the thrust ratio between the booster stage and the sustainer stage, a high combustion rate propellant can be used as the inner layer propellant of the internal combustion type propellant. The foam also has the effect of preventing cracks from forming on the inner surface of the propellant at low temperatures.

本発明の詳細を図面により説明すると、第1図は本発明
になる一室二層二段推力固体ロケットモータの断面略示
図であり、第2図は同じく胴部直角方向の断面略示図で
ある。第1図において1は推進薬を、2は金属通気性発
泡体を、3は点火器、4はロケットモータ燃焼室、5は
レストリフタを示す。
To explain the details of the present invention with reference to the drawings, FIG. 1 is a schematic cross-sectional view of a one-chamber, two-layer, two-stage thrust solid rocket motor according to the present invention, and FIG. It is. In FIG. 1, 1 is a propellant, 2 is a metal breathable foam, 3 is an igniter, 4 is a rocket motor combustion chamber, and 5 is a rest lifter.

本発明になるロケットモータの製造方法を説明すると、
予め第3図に示すような横断面の中央部に光芒形の空間
部を有する金属製の通気性発泡体6を制作し、その光芒
形空間部7に第4図に示すアルミニウム等の金属からな
る同じ断面形をもつ金属型8をはめ込み、推進薬注型芯
とする。使用する金属発泡体の通気性の一例を示すと、
厚さ1cm、平均孔径3.2 mm、空気流速2m/s
ecで圧力損失は約7mmt1gのものである。
To explain the manufacturing method of the rocket motor according to the present invention,
A metal breathable foam 6 having a beam-shaped space in the center of its cross section as shown in FIG. 3 is prepared in advance, and a metal such as aluminum as shown in FIG. A metal mold 8 having the same cross-sectional shape is fitted to form a propellant casting core. An example of the breathability of the metal foam used is:
Thickness: 1 cm, average pore diameter: 3.2 mm, air flow rate: 2 m/s
ec, the pressure loss is about 7 mmt1g.

孔径が大きくなるに従い、圧力損失は低下し通気性が向
上し、推進薬の注型性が向上する。発泡体を構成する金
属としてはアルミニウム、銀が好ましく、アルミニウム
の材質は純アルミニウムの他に、A6101. A10
70、AC2A、 AC4C)I等のアルミニウム合金
も使用できる。金属発泡体の見掛密度は0.05g/c
sff程度であり、熱伝導率は重量比で銅の約2倍であ
る。ブースタ期とサステナ期の高い推力比は金属気泡壁
の厚さを薄くするか、より熱伝導率の高い銀を使用する
ことで得られる。
As the pore size increases, pressure loss decreases, air permeability improves, and propellant castability improves. As the metal constituting the foam, aluminum and silver are preferable, and the material of the aluminum is pure aluminum, A6101. A10
Aluminum alloys such as 70, AC2A, AC4C)I can also be used. The apparent density of metal foam is 0.05g/c
sff, and its thermal conductivity is about twice that of copper by weight. A high thrust ratio during the booster and sustainer phases can be achieved by reducing the thickness of the metal cell walls or by using silver, which has a higher thermal conductivity.

上記の注型芯を第5図中のロケットモータ燃焼室9の中
心に設置し、通常の手段で推進薬1のスラリーを注型し
、加熱硬化した後、アルミニウム金属型8を抜芯し、端
部をレストリフタ5仕上げし、製造を完了する。
The above-mentioned casting core is installed in the center of the rocket motor combustion chamber 9 in FIG. The end portion is finished with a rest lifter 5 to complete manufacturing.

この様にして製造したロケットモータを通常の手法で点
火信号によって燃焼させると、点火器の火炎が推進薬内
面を着火させるが、推進薬内面から内層部には熱伝導率
の高いアルミニウム、銀等の金属通気性発泡体が存在し
ており、この発泡体壁の金属薄箔は燃焼部からの熱を推
進薬の燃焼進行方向に急速に伝えるために金属発泡体壁
に接している推進薬は温度が上昇し、燃焼速度が早くな
り、結果的には金属発泡体を含む推進薬全体の燃焼速度
が金属発泡体を含まぬものより数倍早くなる。
When a rocket motor manufactured in this manner is combusted using an ignition signal using the normal method, the flame from the igniter ignites the inner surface of the propellant, but the inner layer from the inner surface of the propellant contains aluminum, silver, etc. with high thermal conductivity. A metal breathable foam is present, and the metal foil on the foam wall is in contact with the metal foam wall to rapidly transfer heat from the combustion zone in the direction of combustion of the propellant. The temperature increases, the burn rate increases, and the result is that the overall propellant containing the metal foam burns several times faster than one without the metal foam.

このように金属の熱伝導を利用して推進薬の燃焼速度を
上げる方式は従来から銀線やハネカムを用いることが提
案されているが、端面燃焼のみにしか適用できなかった
り、又は材料が軟弱なために一定の形状を保つことが困
難であった。また金属箔片を推進薬中に予め練込む方式
は注形に問題が多く、再現性に乏しかった。
The use of silver wire or honeycombs has been proposed as a method to increase the burning speed of propellant by utilizing heat conduction in metals, but these methods are only applicable to end-face combustion, or the materials are too soft. For this reason, it was difficult to maintain a certain shape. Furthermore, the method of kneading metal foil pieces into the propellant in advance had many problems with casting and poor reproducibility.

一方、本発明で用いる金属発泡体は各気孔が多角形であ
るために、3次元的に等方向性であり、かつ剛性が高い
ので任意の形状に加工することができ、内面燃焼方式の
他に端面燃焼方式にも適用できる。
On the other hand, since the metal foam used in the present invention has polygonal pores, it is three-dimensionally isotropic and has high rigidity, so it can be processed into any shape, and it can be processed into any shape other than the internal combustion method. It can also be applied to end-face combustion methods.

〔実 施 例〕〔Example〕

以下実施例にて本発明を説明するが、本発明はこれらの
実施例に限定されるものではない。
The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples.

第3図に示す如き中央部に光芒形の空間部を有する外径
が6CI11、長さ20cmの円筒形のアルミニウム金
属通気性発泡体(平均孔径6.4+++m)の光芒形空
間部7に、第4図に示すアルミニウム金属型8をはめ込
み、注型芯とし、内径8cm、平行部長さが20cmの
円筒形のロケットモータ燃焼室の中心部に設置し、燃焼
速度7 +++s+/secを示す粘度2キロボイズの
過塩素酸アンモニウム−ポリブタジェン系推進薬スラリ
ーを注型し65℃で3日間加熱硬化した後、中心部のア
ルミニウム金属型を抜芯した0両端部を耐熱材でレスト
リフタ加工し、本発明のロケットモータの製造を完了し
た。
As shown in FIG. 3, a cylindrical aluminum metal breathable foam (average pore diameter 6.4 +++ m) with an outer diameter of 6CI11 and a length of 20 cm, which has a beam-shaped space in the center, has a beam-shaped space 7. The aluminum metal mold 8 shown in Fig. 4 was fitted into the core, and placed in the center of a cylindrical rocket motor combustion chamber with an inner diameter of 8 cm and a parallel length of 20 cm. After casting the ammonium perchlorate-polybutadiene propellant slurry and curing it by heating at 65°C for 3 days, the center aluminum metal mold was pulled out and both ends of the core were restlifted with a heat-resistant material to create the rocket of the present invention. Completed motor manufacturing.

比較例として燃焼速度25+++w/secを示す粘度
12キロポイズの過塩素酸アンモニウム−ポリブタジェ
ン系推進薬で、中央部に光芒形の空間部を有する外径が
6cm、長さ20cmの円筒形のブースタ推進薬を予め
製造しておき、アルミニウム金属型が付いたままこれを
注型芯として、内径8ca+、平行部長さが20c+e
の円筒形のロケットモータの中心部に設置し、注型芯の
外側と燃焼室内壁との間にサステナ推進薬として燃焼速
度7mm/secを示す粘度2キロボイズの過塩素酸ア
ンモニウム−ポリブタジェン系推進薬スラリーを注型し
、65°Cで3日間加熱硬化した後、抜芯し、両端部を
耐熱材でレストリフタ加工して比較用ロケットモータを
作製した。
As a comparative example, an ammonium perchlorate-polybutadiene propellant with a viscosity of 12 kpoise and a burning rate of 25+++ w/sec was used, and a cylindrical booster propellant with an outer diameter of 6 cm and a length of 20 cm had a halo-shaped space in the center. was manufactured in advance and used as a casting core with the aluminum metal mold attached, and the inner diameter was 8ca+ and the parallel length was 20c+e.
An ammonium perchlorate-polybutadiene propellant with a viscosity of 2 kilovoids and a combustion speed of 7 mm/sec is installed as a sustainer propellant between the outside of the cast core and the combustion chamber wall. After casting the slurry and curing it by heating at 65°C for 3 days, the core was extracted and both ends were treated with a heat-resistant material to create a comparative rocket motor.

本発明のロケットモータと比較用ロケットモータを一6
0″Cに調温した後、−60°Cにおいで振動試験を行
うと、比較ロケットモータは内面光芒形の空間部の底部
にモータ軸に添って亀裂が発生しており爆発の危険があ
り、燃焼試験に供し得なかった。
The rocket motor of the present invention and the rocket motor for comparison
After controlling the temperature to 0''C, we performed a vibration test at -60℃, and found that the comparative rocket motor had cracks along the motor shaft at the bottom of the inner halo-shaped space, indicating the risk of explosion. , it could not be subjected to a combustion test.

本発明のロケットモータは内面目視及びX線による非破
壊検査に於いても全く異常がないので、点火器を取りつ
け一60°Cに再び調温した後、燃焼スタンドに取りつ
け燃焼試験を行うと、ブースタ期に292kgの推力を
0.61秒間発生し、サステナ期に97.4kgの推力
を1.83秒間持続し、正常な二段推力の燃焼を示した
The rocket motor of the present invention showed no abnormalities in internal visual inspection and non-destructive inspection using X-rays, so after attaching an igniter and adjusting the temperature to -60°C, it was attached to a combustion stand and a combustion test was performed. A thrust of 292 kg was generated for 0.61 seconds during the booster phase, and a thrust of 97.4 kg was sustained for 1.83 seconds during the sustain phase, indicating normal two-stage thrust combustion.

〔発明の効果〕〔Effect of the invention〕

実施例で示すように従来の二段推力固体ロケットモータ
は製造工程が複数回であり、がっ低温環境では強度不足
から推進薬内面に亀裂を発生し使用に耐えない。
As shown in the examples, conventional two-stage thrust solid rocket motors require multiple manufacturing steps, and cracks occur in the inner surface of the propellant due to insufficient strength in low-temperature environments, making them unusable.

これに対し、本発明のロケットモータは推進薬の注型工
程が一回ですむため製造が簡単になり、かつ−60°C
の低温環境にも耐え、正常な燃焼を示し、優れた性能を
発揮する。
On the other hand, the rocket motor of the present invention requires only one propellant casting process, which simplifies manufacturing and allows the rocket motor to operate at -60°C.
It can withstand low-temperature environments, exhibits normal combustion, and exhibits excellent performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のロケットモータの断面略示図、第2図
は本発明のロケットモータの胴部直角方向の断面略示図
、第3図は本発明に用いられる金属発泡体の斜視図、第
4図は金属型の斜視図、第5図は製造工程中のロケット
モータを示す断面略示図である。 1・・・推進薬 2.6・・・金属発泡体 3・・・点火器 4.9・・・燃焼室 5・・・レストリフタ フ・・・光芒形空間部 8・・・金属型
Fig. 1 is a schematic cross-sectional view of a rocket motor of the present invention, Fig. 2 is a schematic cross-sectional view of the rocket motor of the present invention in a direction perpendicular to the body, and Fig. 3 is a perspective view of a metal foam used in the present invention. , FIG. 4 is a perspective view of the metal mold, and FIG. 5 is a schematic cross-sectional view showing the rocket motor during the manufacturing process. 1... Propellant 2.6... Metal foam 3... Igniter 4.9... Combustion chamber 5... Restlift tough... Beam shaped space 8... Metal type

Claims (1)

【特許請求の範囲】 1 一室二層二段推力固体ロケットモータにおいて、内
面燃焼方式推進薬の内層として円筒状で金属製の通気性
発泡体を配置したことを特徴とする二段推力固体ロケッ
トモータ。 2 金属製の通気性発泡体がアルミニウム又は銀製であ
る請求項1記載の二段推力固体ロケットモータ。
[Scope of Claims] 1. A two-stage thrust solid rocket motor, characterized in that a cylindrical metal breathable foam is disposed as an inner layer of an internal combustion propellant in a one-chamber, two-layer, two-stage thrust solid rocket motor. motor. 2. The two-stage thrust solid rocket motor according to claim 1, wherein the metal breathable foam is made of aluminum or silver.
JP14351190A 1990-06-01 1990-06-01 Two-stage thrust solid rocket motor Expired - Fee Related JP2749707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14351190A JP2749707B2 (en) 1990-06-01 1990-06-01 Two-stage thrust solid rocket motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14351190A JP2749707B2 (en) 1990-06-01 1990-06-01 Two-stage thrust solid rocket motor

Publications (2)

Publication Number Publication Date
JPH0441964A true JPH0441964A (en) 1992-02-12
JP2749707B2 JP2749707B2 (en) 1998-05-13

Family

ID=15340437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14351190A Expired - Fee Related JP2749707B2 (en) 1990-06-01 1990-06-01 Two-stage thrust solid rocket motor

Country Status (1)

Country Link
JP (1) JP2749707B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143033A1 (en) * 2007-05-14 2008-11-27 Mitsubishi Heavy Industries, Ltd. Dual-pulse rocket motor
JP2009174482A (en) * 2008-01-28 2009-08-06 Ihi Aerospace Co Ltd End combustion gas generator
JP2010285891A (en) * 2009-06-09 2010-12-24 Ihi Aerospace Co Ltd Molding method for solid rocket motor propellant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110566366B (en) * 2019-09-02 2021-07-13 湖北三江航天江河化工科技有限公司 Combined core mold structure for rocket engine grain molding and use method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143033A1 (en) * 2007-05-14 2008-11-27 Mitsubishi Heavy Industries, Ltd. Dual-pulse rocket motor
US8397486B2 (en) 2007-05-14 2013-03-19 Mitsubishi Heavy Industries, Ltd. Two-pulse rocket motor
JP2009174482A (en) * 2008-01-28 2009-08-06 Ihi Aerospace Co Ltd End combustion gas generator
JP2010285891A (en) * 2009-06-09 2010-12-24 Ihi Aerospace Co Ltd Molding method for solid rocket motor propellant

Also Published As

Publication number Publication date
JP2749707B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
RU2317207C2 (en) Method of manufacture of the composite wall
US3316718A (en) Honeycomb structured propellant for rocket motors
US5084219A (en) Method of fabricating composite structures
US6460807B1 (en) Missile components made of fiber-reinforced ceramics
EP3055087B1 (en) Method of forming a complexly curved metallic sandwich panel
US3196735A (en) Method of casting a foam-cored rocket propellant grain
JPH0441964A (en) Double thrust solid rocket motor
JPS5925083B2 (en) radial turbine rotor
US3807171A (en) Supported high-surface-area propellant charges for high-acceleration rockets
US4776281A (en) Combustible push rod for launching tubular projectiles
US3421325A (en) Solid propellant rocket motor
Boury et al. Sepcarb materials for solid rocket booster nozzle components
US20200377428A1 (en) Solid Rocket Motor Propellant Manufacture and Configurations
US3324795A (en) Solid propellant
US3570364A (en) Method of making a solid propellant rocket motor
US5084329A (en) Ceramic joined body
JP2002543346A (en) Piston and method of manufacturing such piston
US7117797B2 (en) Pyrotechnic charge structure
GB2214617A (en) Rocket motors and igniters
Ishitha et al. Burning rate studies: Potassium-doped ammonium perchlorate with other burn-rate modifiers
JP2560096B2 (en) Method of manufacturing compound piston for internal combustion engine
CN117932792B (en) Method for reducing thrust imbalance of binding boosting solid rocket engine
GB2571915A (en) Use of metal foam or lattice structures to support solid propellant
EP0333944A1 (en) Solid rocket motor propellants with reticulated structures embedded therein to provide variable burn rate characteristics
EP3334919A1 (en) Solid rocket motor with barrier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees