JPH0441944B2 - - Google Patents

Info

Publication number
JPH0441944B2
JPH0441944B2 JP2684387A JP2684387A JPH0441944B2 JP H0441944 B2 JPH0441944 B2 JP H0441944B2 JP 2684387 A JP2684387 A JP 2684387A JP 2684387 A JP2684387 A JP 2684387A JP H0441944 B2 JPH0441944 B2 JP H0441944B2
Authority
JP
Japan
Prior art keywords
lower electrode
upper electrode
humidity
baking
ceramic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2684387A
Other languages
Japanese (ja)
Other versions
JPS63195554A (en
Inventor
Toyoaki Ueki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP2684387A priority Critical patent/JPS63195554A/en
Publication of JPS63195554A publication Critical patent/JPS63195554A/en
Publication of JPH0441944B2 publication Critical patent/JPH0441944B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 対向電極間に流入する空気の相対湿度の変化を
電極間容量の変化として検出する静電容量型湿度
センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a capacitive humidity sensor that detects a change in relative humidity of air flowing between opposing electrodes as a change in interelectrode capacitance.

(従来の技術) 一般に湿度センサは、感湿材料としセラミツク
スを用いたものと高分子を用いたものに大別され
る。相対湿度が変化すると、その電気抵抗が変わ
るセラミツクスの代表的なものとして次のものが
ある。
(Prior Art) Humidity sensors are generally classified into those using ceramics as a moisture-sensitive material and those using polymers. The following are typical ceramics whose electrical resistance changes as the relative humidity changes:

第1のものは酸性セラミツクスと塩基性セラミ
ツクスの複合体で、たとえば酸化チタン(TiO2
とマグネシウムクロムスピネル(MgCr2O4)と
の組合せである。一般にこれは多孔質で多孔質セ
ラミツク素体の孔の中に水を吸着し酸・塩基など
の作用を受け、水素イオンH+と水酸基OH-とに
解離して電流が流れるようになり、湿度が変わる
と孔の中に吸着される水の量が変化するため解離
イオンの量が変化し、その抵抗が変化するものと
説明されている。第2のタイプは動きやすいリチ
ウムイオンLi+を含む酸化物で、たとえばZnO−
Li2O−V2O5−Cr2O3がある。このタイプは
ZnCr2O4スピネルからなるグレーンの周囲に一様
に感湿ガラスが形成され、この感湿ガラスに多層
吸着される水分の量によつて電気伝導に寄与する
イオンの量が変化し抵抗が変わるものと言われて
いる。
The first is a composite of acidic and basic ceramics, such as titanium oxide (TiO 2 ).
and magnesium chromium spinel (MgCr 2 O 4 ). In general, water is adsorbed into the pores of a porous ceramic body, and when subjected to the action of acids, bases, etc., it dissociates into hydrogen ions H + and hydroxyl groups OH - , and current flows. It is explained that when the pores change, the amount of water adsorbed into the pores changes, resulting in a change in the amount of dissociated ions, which in turn changes the resistance. The second type is an oxide containing mobile lithium ions Li + , such as ZnO−
There is Li2O - V2O5 - Cr2O3 . This type is
A moisture-sensitive glass is formed uniformly around the grains made of ZnCr 2 O 4 spinel, and the amount of ions that contribute to electrical conduction changes depending on the amount of moisture adsorbed in multiple layers on this moisture-sensitive glass, changing the resistance. It is said to be a thing.

いずれにしても従来の湿度センサは、一対の電
極間に連続して感湿材料が配置されている構造で
あり、これは高分子を用いた湿度センサについて
も同じであつた。
In any case, conventional humidity sensors have a structure in which a moisture-sensitive material is continuously disposed between a pair of electrodes, and the same is true for humidity sensors using polymers.

しかしながら、上記構成になる各湿度センサ
は、イオン伝導性のため直流電圧を連続して印加
することができない。また湿度を検出する際の印
加電圧は通常数V以下で、これ以上ではジユール
熱が発生し感湿部の温度が上昇するため湿度セン
サの感湿部に吸着した水分が発散し、実際の湿度
に対する抵抗よりも大きな値の抵抗値が検出さ
れ、正確な湿度測定ができなくなる。さらに大き
な過電圧が印加されると熱破壊してしまうなど
種々の欠点を有すると同時に、高分子タイプの湿
度センサは、たとえば浴室の換気または木材乾燥
などの用途で高温高湿の環境に放置されると感湿
部となる高分子材料が劣化し、また、たとえば85
℃以上の高温に弱いため産業用には適していなか
つた。
However, each humidity sensor having the above configuration cannot continuously apply a DC voltage due to its ionic conductivity. In addition, the applied voltage when detecting humidity is usually less than a few volts; if it is higher than this, Joule heat is generated and the temperature of the humidity sensing part increases, so the moisture adsorbed on the humidity sensing part of the humidity sensor is dissipated, and the actual humidity is A resistance value greater than the resistance value will be detected, making accurate humidity measurement impossible. Furthermore, they have various drawbacks, such as thermal breakdown if a large overvoltage is applied, and at the same time, polymer-type humidity sensors can be left in high-temperature, high-humidity environments for applications such as bathroom ventilation or wood drying. This may cause the polymer material that becomes the moisture sensitive part to deteriorate.
It was not suitable for industrial use because it was sensitive to high temperatures above ℃.

(発明が解決しようとする問題点) 以上のようにセラミツク湿度センサおよび高分
子タイプの湿度センサは、連続で直流電圧を印加
すると劣化してしまい、また印加可能電圧も数V
以下であるため使用するにあたつては十分注意し
なければならなかつた。
(Problems to be Solved by the Invention) As described above, ceramic humidity sensors and polymer type humidity sensors deteriorate when DC voltage is applied continuously, and the voltage that can be applied is only a few volts.
Due to the following, we had to be very careful when using it.

本発明は、湿度センサを構成する2つの対向し
た電極間に空〓があることによつて、該電極間に
生ずる静電容量をC、電極間距離をd、対向電極
面積をS、空気の誘電率をεとした場合、この間
に成立つよく知られている関係式 C=εS/dにおいて、 εが大きくなつてdが小さくなればCが大きく
なる点に着目してなされたもので、印加電圧範囲
が広く、また誤つて直流電圧が長時間印加されて
も劣化することのない新規な構成からなる静電容
量型湿度センサを提供することを目的とするもの
である。
In the present invention, since there is a space between two opposing electrodes constituting a humidity sensor, the capacitance generated between the electrodes is C, the distance between the electrodes is d, the area of the opposing electrode is S, and the air This was done by focusing on the well-known relational expression C=εS/d that holds true between the dielectric constant and ε, and that as ε increases and d decreases, C increases. It is an object of the present invention to provide a capacitive humidity sensor having a novel configuration that has a wide voltage range and does not deteriorate even if DC voltage is mistakenly applied for a long time.

[発明の構成] (問題点を解決するための手段) 本発明の静電容量型湿度センサは、アルミナ基
板上に周辺一部から延長した下部電極引出部を連
設して焼付形成した下部電極と、この下部電極と
独立して焼付形成した上部電極引出部と、前記下
部電極周囲数箇所に焼付形成した前記下部電極面
より突出したガラス絶縁支持層と、この絶縁支持
層先端部と固着し面対向して配設した固着面と反
対面のみに上部電極を焼付形成した多孔質セラミ
ツク素体と、前記上部電極と前記上部電極引出部
とを接続した接続体と、前記下部電極と前記セラ
ミツク素体対向面間に設けた外気と通気した空〓
部とからなることを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The capacitance type humidity sensor of the present invention includes a lower electrode formed on an alumina substrate by baking a lower electrode extension portion extending from a part of the periphery. , an upper electrode lead-out portion formed by baking independently from the lower electrode, a glass insulating support layer protruding from the lower electrode surface formed by baking at several places around the lower electrode, and a tip portion of the insulating support layer fixed to the A porous ceramic element body having an upper electrode baked only on the opposite side to the fixed face which are arranged to face each other, a connecting body connecting the upper electrode and the upper electrode lead-out part, and a connecting body connecting the lower electrode and the ceramic body. Outside air and ventilated air between the facing surfaces of the element
It is characterized by consisting of parts.

(作用) 以上の構成になる静電容量型湿度センサによれ
ば、下部電極と反対面に上部電極を形成した多孔
質セラミツク素体間に外気と通気した空〓部を設
けた構造であるため、湿度が高くなつた場合空〓
部に水分子が多く存在するようになり電極間の静
電容量を大きくする作用をする。すなわち水分子
の量が多くなれば誘電率が増加し、かつセラミツ
ク素体の電気抵抗は小さくなるから実質的に電極
間距離が小さくなつたと同様な作用となり、前関
係式における静電容量Cが大きくなる。よつて湿
度変化に対して容量が大きく変化する。また電極
間が空〓部によつて絶縁されているため過電圧な
らびに直流電圧の印加が可能である。
(Function) According to the capacitance type humidity sensor having the above configuration, the structure is such that a cavity through which outside air is ventilated is provided between the porous ceramic body with the upper electrode formed on the opposite surface of the lower electrode. , when the humidity is high, the sky is empty.
There are many water molecules in the area, which acts to increase the capacitance between the electrodes. In other words, as the amount of water molecules increases, the dielectric constant increases, and the electrical resistance of the ceramic body decreases, so the effect is essentially the same as if the distance between the electrodes became smaller, and the capacitance C in the previous relation becomes growing. Therefore, the capacity changes greatly with changes in humidity. Furthermore, since the electrodes are insulated by the space, overvoltage and DC voltage can be applied.

(実施例) 以下本発明の一実施例につき図面を参照して説
明する。すなわち第3図に示すようにアルミナ基
板1上にたとえば金、白金ペーストを印刷−焼付
けて周辺一部から延長して連設した下部電極引出
部2を設けた下部電極3と、この下部電極3と独
立して上部電極引出部4を形成する。つぎに前記
下部電極3周囲数箇所にガラスペーストの印刷−
焼付を融点の高いものから低い順に数回繰返し、
前記下部電極面より突出したガラス絶縁支持層5
を設け、この支持層5先端部に第1図および第2
図に示すように別個に形成した、たとえば酸化亜
鉛、酸化クロムを主成分として添加物として炭酸
リチウムまたは酸化バナジウムなどを添加した金
属酸化物粉体を加圧成形、高温焼結し、一方面に
たとえば金、白金ペーストを印刷−焼付け上部電
極6を設けた多孔質セラミツク素体7の前記上部
電極6形成反対面を固着し、前記下部電極3表面
と前記多孔質セラミツク素体7対向面間に外気と
通気した空〓部8を設ける。
(Example) An example of the present invention will be described below with reference to the drawings. That is, as shown in FIG. 3, a lower electrode 3 is provided with a lower electrode lead-out portion 2 extending from a part of the periphery by printing and baking, for example, gold or platinum paste on an alumina substrate 1, and this lower electrode 3. The upper electrode lead-out portion 4 is formed independently from the above. Next, print glass paste at several places around the lower electrode 3.
Repeat baking several times in descending order of melting point,
Glass insulation support layer 5 protruding from the lower electrode surface
1 and 2 at the tip of this support layer 5.
As shown in the figure, a separately formed metal oxide powder containing, for example, zinc oxide or chromium oxide as the main component and additives such as lithium carbonate or vanadium oxide is press-molded, high-temperature sintered, and one side is formed. For example, a gold or platinum paste is printed and baked to fix the surface of the porous ceramic body 7 on which the upper electrode 6 is formed, opposite to the formation of the upper electrode 6, and between the surface of the lower electrode 3 and the facing surface of the porous ceramic body 7. An air space 8 that is ventilated with outside air is provided.

なお、固着手段としては前記ガラス絶縁支持層
5を構成するガラスペーストの最終印刷後、多孔
質セラミツク素体7を載置しガラスペースト焼付
によつて行う。
The fixing means is to place the porous ceramic body 7 after the final printing of the glass paste constituting the glass insulating support layer 5 and to bake the glass paste.

しかして、前記上部電極6と前記アルミナ基板
1に形成した上部電極引出部4とをたとえば金、
白金ワイヤからなる接続体9で接続し、しかるの
ち前記下部電極引出部2および上部電極引出部4
それぞれにリード線10を取着してなるものであ
る。
Thus, the upper electrode 6 and the upper electrode extension portion 4 formed on the alumina substrate 1 are made of gold, for example.
The connection is made with a connecting body 9 made of platinum wire, and then the lower electrode lead-out part 2 and the upper electrode lead-out part 4 are connected.
A lead wire 10 is attached to each of them.

以上のような構成になる静電容量型湿度センサ
によれば、下部電極3と、反対面に上部電極6を
形成した多孔質セラミツク素体7間に外気と通気
した空〓部8を設けた構造であるため、湿度が高
くなつた場合空〓部8に存在する水分子量が多く
なり、下部電極3と上部電極6間の誘電率が増加
し、さらに多孔質セラミツク素体7に多くの水分
子が吸着されることによつて電気抵抗が小さくな
る、つまり実質的に下部電極3と上部電極6間距
離が小さくなるのと同様の作用によつて、下部電
極3と上部電極6間の静電容量が大きくなる。す
なわち誘電率の変化と電極間距離の変化という両
者の相乗作用によつて湿度変化に対して静電容量
が大きく変化する特徴を有する。これは湿度変化
に対する容量の変化が大きいことを意味し、わず
かな湿度変化でも容易に検出することが可能であ
るということである。また、過電圧印加によるジ
ユール熱の発生は無視できる程度の微少であつて
湿度測定精度を損ねることはなく、かつ熱破壊の
危険性はない。
According to the capacitive humidity sensor configured as described above, a cavity 8 that is vented to outside air is provided between the lower electrode 3 and the porous ceramic body 7 on which the upper electrode 6 is formed on the opposite surface. Because of this structure, when the humidity increases, the amount of water molecules existing in the cavity 8 increases, the dielectric constant between the lower electrode 3 and the upper electrode 6 increases, and more water is added to the porous ceramic body 7. The static between the lower electrode 3 and the upper electrode 6 is reduced by the same effect as the electric resistance is reduced by adsorption of molecules, that is, the distance between the lower electrode 3 and the upper electrode 6 is substantially reduced. Capacity increases. That is, due to the synergistic effect of the change in dielectric constant and the change in the distance between the electrodes, the capacitance changes greatly with respect to changes in humidity. This means that the capacitance changes greatly in response to changes in humidity, and even a slight change in humidity can be easily detected. Furthermore, the generation of Joule heat due to the application of overvoltage is negligible and does not impair humidity measurement accuracy, and there is no risk of thermal damage.

さらに、誤つて直流電圧が長時間印加されたと
してもセラミツク素体7は下部電極3と上部電極
6間に外気と通気した空〓部8を設けた状態で配
設しているため、前記セラミック素体7中でのイ
オンの移動は従来構造のものと比較して無視して
もよい程度であり、劣化することはない。
Furthermore, even if DC voltage is accidentally applied for a long time, the ceramic body 7 is arranged with a cavity 8 that is vented to outside air between the lower electrode 3 and the upper electrode 6. The movement of ions in the element body 7 is negligible compared to the conventional structure, and there is no deterioration.

つぎに、本発明の実験例について述べる。すな
わち本発明に係る実施例Aと多孔質セラミック素
体を用いず絶縁支持層を介し一対の電極板間に単
に空〓部だけを設けた参考例Bとの相対湿度−静
電容量特性の関係を調べた結果第6図に示すよう
になり、参考例Bと比較して実施例Aのものは同
一相対湿度に対して容量が大きく直線性良好にし
て大きな感度が得られた。試料として用いた電極
板は、実施例Aにおける電極ペーストおよび参考
例Bにおける電極板の材質は金からなるもので静
電容量は1KHzで測定した。
Next, an experimental example of the present invention will be described. That is, the relationship between relative humidity and capacitance characteristics between Example A according to the present invention and Reference Example B in which no porous ceramic body was used and only a void was provided between a pair of electrode plates via an insulating support layer. As a result of the investigation, as shown in FIG. 6, it was found that, compared to Reference Example B, Example A had a larger capacity for the same relative humidity, good linearity, and high sensitivity. The electrode plates used as samples were made of gold using the electrode paste in Example A and the electrode plate in Reference Example B, and the capacitance was measured at 1 KHz.

なお、上記実施例では上部電極6と上部電極引
出部4との接続体9としてワイヤを介するものを
例示して説明したが、第4図に示すようにアルミ
ナ基板1に形成する上部電極引出部4パターンと
して、下部電極3周囲に設けたガラス絶縁支持層
5の一箇所と接触または接近した状態で形成し、
第5図に示すように上部電極引出部4と接触また
は接近したガラス絶縁支持層5の側面と、この側
面に位置する多孔質セラミック素体7側面を介し
塗布−焼付された導体からなる接続体9によつて
接続した構造であつてもよい。第4図および第5
図中第1図および第2図と同一部分については同
一符号を付し説明を省略した。
In the above embodiment, the connection body 9 between the upper electrode 6 and the upper electrode lead-out part 4 was explained using a wire as an example, but as shown in FIG. 4, the upper electrode lead-out part formed on the alumina substrate 1 4 patterns are formed in contact with or close to one location of the glass insulating support layer 5 provided around the lower electrode 3,
As shown in FIG. 5, a connection body made of a conductor coated and baked through the side surface of the glass insulating support layer 5 that is in contact with or close to the upper electrode lead-out portion 4 and the side surface of the porous ceramic body 7 located on this side surface. It may be a structure connected by 9. Figures 4 and 5
In the figure, the same parts as in FIGS. 1 and 2 are denoted by the same reference numerals, and explanations thereof are omitted.

また、上記実施例では各電極材として耐錆性を
考慮し金、白金を用いるものを例示して説明した
が、銅材を用いた焼付後、ニツケルメツキを施し
た構成とすれば低コスト化に貢献できる。さら
に、上記実施例ではアルミナ基板1形状を角形形
状とし下部電極3および上部電極6を含む多孔質
セラミック素体7形状を円形としたものを例示し
て説明したが、これに限定されるものでないこと
は言うまでもない。
In addition, in the above embodiments, gold and platinum were used as electrode materials in consideration of rust resistance, but costs could be reduced by using a structure in which copper was baked and then nickel plated. I can contribute. Further, in the above embodiment, the alumina substrate 1 is square in shape and the porous ceramic body 7 including the lower electrode 3 and the upper electrode 6 is circular. However, the present invention is not limited to this. Needless to say.

[発明の効果] 本発明によれば、相対湿度の高さに応じ電極間
の誘電率が大きくなり、また等価的に電極間距離
が小さくなり、結果として静電容量が大きく大き
な感度を有し、かつ過電圧印加または直流電圧が
印加されても劣化ならびに破壊のない測定精度良
好な静電容量型湿度センサを得ることができる。
[Effects of the Invention] According to the present invention, the dielectric constant between the electrodes increases in accordance with the height of the relative humidity, and the distance between the electrodes equivalently decreases, resulting in a large capacitance and a high sensitivity. It is possible to obtain a capacitive humidity sensor with good measurement accuracy and which does not deteriorate or break even when overvoltage or DC voltage is applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の一実施例に係り、第
1図および第2図は静電容量型湿度センサを示し
第1図は平面図、第2図は第1図イ−イ断面図、
第3図は製造途中の平面図、第4図および第5図
は他の実施例に係り、第4図は製造途中の平面
図、第5図は静電容量型湿度センサの断面図、第
6図は相対湿度−静電容量特性曲線図である。 1……アルミナ基板、2……下部電極引出部、
3……下部電極、4……上部電極引出部、5……
ガラス絶縁支持層、6……上部電極、7……多孔
質セラミック素体、8……空〓部、9……接続
体。
1 to 3 relate to an embodiment of the present invention, and FIGS. 1 and 2 show a capacitance type humidity sensor, and FIG. 1 is a plan view, and FIG. 2 is a top view of FIG. cross section,
FIG. 3 is a plan view of the manufacturing process, FIGS. 4 and 5 relate to other embodiments, FIG. 4 is a plan view of the manufacturing process, and FIG. 5 is a cross-sectional view of the capacitive humidity sensor. FIG. 6 is a relative humidity-capacitance characteristic curve diagram. 1... Alumina substrate, 2... Lower electrode extraction part,
3... Lower electrode, 4... Upper electrode extraction part, 5...
Glass insulating support layer, 6... upper electrode, 7... porous ceramic body, 8... void, 9... connection body.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ基板上に下部電極引出部を連設して
焼付形成した下部電極と、この下部電極と独立し
て焼付形成した上部電極引出部と、前記下部電極
周囲数箇所に焼付形成した前記下部電極面より突
出したガラス絶縁支持層と、この絶縁支持層先端
部に固着し面対向して配設した固着面と反対面の
みに上部電極を焼付形成した多孔質セラミツク素
体と、前記上部電極と前記上部電極引出部とを接
続した接続体とを具備し、前記下部電極と前記セ
ラミツク素体対向面間に外気と通気した空〓部を
設けたことを特徴とする静電容量型湿度センサ。
1. A lower electrode formed by baking a lower electrode lead-out part connected to the alumina substrate, an upper electrode lead-out part formed by baking independently from this lower electrode, and the lower electrode formed by baking at several places around the lower electrode. A glass insulating support layer that protrudes from the surface, a porous ceramic body that is fixed to the tip of the insulating support layer and has an upper electrode formed by baking only on the opposite surface to the fixed surface that is disposed facing the surface, and the upper electrode and A capacitance type humidity sensor, comprising: a connecting body connected to the upper electrode lead-out portion; and a cavity ventilated with outside air is provided between the lower electrode and the facing surface of the ceramic body.
JP2684387A 1987-02-07 1987-02-07 Electrostatic capacity type humidity sensor Granted JPS63195554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2684387A JPS63195554A (en) 1987-02-07 1987-02-07 Electrostatic capacity type humidity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2684387A JPS63195554A (en) 1987-02-07 1987-02-07 Electrostatic capacity type humidity sensor

Publications (2)

Publication Number Publication Date
JPS63195554A JPS63195554A (en) 1988-08-12
JPH0441944B2 true JPH0441944B2 (en) 1992-07-09

Family

ID=12204552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2684387A Granted JPS63195554A (en) 1987-02-07 1987-02-07 Electrostatic capacity type humidity sensor

Country Status (1)

Country Link
JP (1) JPS63195554A (en)

Also Published As

Publication number Publication date
JPS63195554A (en) 1988-08-12

Similar Documents

Publication Publication Date Title
US4453397A (en) Gas detecting sensor
JPH01109250A (en) Gas sensor
EP0078058B1 (en) Dew sensor
JPH0441944B2 (en)
JPH076937B2 (en) Capacitance type humidity sensor
JPH0720080A (en) Humidity sensor
JPH0471463B2 (en)
JP2001141575A (en) Temperature sensor element and temperature sensor using it
JPH0612528Y2 (en) Electrochemical device
JP3529500B2 (en) Humidity-sensitive element and method of manufacturing the same
JPS58142252A (en) Sensing element for dew condensation
JP3074901B2 (en) Humidity sensor
JPS6032722Y2 (en) thick film thermistor
JPH06118045A (en) Humidity sensor
JPS63188752A (en) Electrostatic capacity type humidity sensor
JPH0242191B2 (en)
JP2677991B2 (en) Moisture sensitive element
JPH0552795A (en) Humidity sensitive element
JPS63180846A (en) Electrostatic capacitance type moisture sensor
JPH053973Y2 (en)
JPH07107523B2 (en) Gas detector manufacturing method
JPS6116933B2 (en)
JPH0447658Y2 (en)
JPS59153160A (en) Sensor
JPS6149621B2 (en)