JPH0441806A - Sludge purifying method - Google Patents

Sludge purifying method

Info

Publication number
JPH0441806A
JPH0441806A JP14869890A JP14869890A JPH0441806A JP H0441806 A JPH0441806 A JP H0441806A JP 14869890 A JP14869890 A JP 14869890A JP 14869890 A JP14869890 A JP 14869890A JP H0441806 A JPH0441806 A JP H0441806A
Authority
JP
Japan
Prior art keywords
water
reaction
sludge
reaction tower
water flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14869890A
Other languages
Japanese (ja)
Inventor
Tadayuki Yoshida
吉田 忠幸
Tatsuji Kobayashi
小林 達治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YOSHIDA SOGO KENKYUSHO KK
Original Assignee
YOSHIDA SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YOSHIDA SOGO KENKYUSHO KK filed Critical YOSHIDA SOGO KENKYUSHO KK
Priority to JP14869890A priority Critical patent/JPH0441806A/en
Publication of JPH0441806A publication Critical patent/JPH0441806A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decompose sludge effectively by installing a reaction tower having a reaction floor in the vertical direction in the sludge deposit part, and generating water flow from the lower part of this reaction tower upward through the reaction floor. CONSTITUTION:When an air lift pump is started, the sludge is included in the surrounding water to generate a water flow with the assist of the air B exhausted from an exhaust pipe 2, and the water flow rises in a reaction floor 1 of a reaction tower 4. When the water flow C passes through the reaction floor 1, organic substances in the water are decomposed through the action of fixing bacteria surrounding them, and the water flow D which has risen is released in the upper part of the reaction tower 4. Because water is fed to the reaction floor 1 always from the lower part of the reaction tower 4, an attraction force is produced for the surrounding parts, and the water is led in the sludge along a guide 5 to produce a water flow A. The water is fed back by these water flows A, C, D, and oxygen is supplied to the part near the water bottom.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水圏底層におけるへどろ層の浄化法に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for purifying a sludge layer in the bottom layer of the hydrosphere.

[従来の技術] 富栄養化による水圏底層における有機物の沈殿(堆積)
とその嫌気的微生物分解作用によるへどろ化は深刻な問
題である。
[Conventional technology] Precipitation (deposition) of organic matter in the aquatic bottom layer due to eutrophication
The sludge formation caused by anaerobic microbial decomposition is a serious problem.

へどろ化により水圏の魚介類や、微小甲殻類、藻類等動
植物は、へどろ堆積部から発生する例えば硫化水素、ア
ミン類、窒素駿化物といった有毒物質により死滅に追い
やられ、悪臭が発生し、湖沼を始め養殖槽や水耕栽培槽
、建築物屋上に設置せる循環水槽等に多大な被害が出て
いる。
Due to sludge formation, fish, shellfish, microcrustaceans, algae, and other plants and animals in the aquatic area are driven to death by toxic substances such as hydrogen sulfide, amines, and nitrogen hydrides that are generated from the sludge deposits, resulting in a foul odor. Great damage has been caused to lakes, aquaculture tanks, hydroponic cultivation tanks, circulating water tanks installed on the roofs of buildings, etc.

そのため、これらの対策として水槽等では水を抜いてへ
どろを直接除去したり、また、大掛かりな場合には浚渫
機を用いて、水底のへどろを除去している。
For this reason, countermeasures include draining the water from aquariums and directly removing the sludge, or, in large-scale cases, using a dredger to remove the sludge from the bottom of the water.

[発明が解決しようとする課題] しかしながらへどろは水底に沈滞しているため採取が困
難であり、浚渫には多大な労力と費用がかかっている。
[Problems to be Solved by the Invention] However, it is difficult to collect sludge because it remains at the bottom of the water, and dredging requires a great deal of labor and expense.

また、除去したへどろを廃棄する場所も必要であり、問
題が有る。
Additionally, a place is required to dispose of the removed sludge, which poses a problem.

[課題を解決するための手段] 本発明は上記問題点を解決し、へどろを採取することな
(効率良(分解し、水底から除去する方法である。
[Means for Solving the Problems] The present invention solves the above-mentioned problems and provides a method for efficiently disassembling sludge without collecting it and removing it from the bottom of the water.

すなわち本発明は、垂直方向に少なくとも1段以上の反
応床を有する反応塔をへどろ堆積部に設置し、該反応塔
の下部から上記反応床を通して反応塔上部へ向って水流
を起こすことを特徴とするへどろ浄化法である。
That is, the present invention is characterized in that a reaction tower having at least one stage of reaction beds in the vertical direction is installed in the sludge accumulation section, and a water flow is caused from the lower part of the reaction tower through the reaction bed to the upper part of the reaction tower. This is a sludge purification method.

本発明において、反応床とは水中の微生物増殖用の培養
床又は微生物を予め固定化したバイオリアクターである
In the present invention, the reaction bed is a culture bed for growing microorganisms in water or a bioreactor in which microorganisms are immobilized in advance.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いる培養床とは、水中の微生物が増殖するの
に適した環境を提供するものであり、例えば活性珪酸(
SiO□)を主成分とし、表面に微細な凹凸を有し且つ
水の通過が可能であるものであり、好ましくは主成分を
活性珪酸(SiO□)とじてその他に微量のアルミナ(
Aj!203)、 MgO,Mnそれ自身がキレート構
造を有しているものからなる直径1 m/m以上10’
m/m以下の球形もしくは不定形の小石状で且つ表面に
微細な凹凸が有り微生物が棲息し易い形状で水が通過す
る間隙を有しているものである。
The culture bed used in the present invention provides an environment suitable for the growth of microorganisms in water, and includes, for example, activated silicic acid (
The main component is activated silicic acid (SiO□), which has fine irregularities on the surface and allows water to pass through.It is preferable that the main component is activated silicic acid (SiO□) and a trace amount of alumina (SiO□).
Aj! 203), MgO, Mn itself has a chelate structure and has a diameter of 1 m/m or more and 10'
They are spherical or irregularly shaped pebbles with a size of less than m/m and have fine irregularities on the surface, making it easy for microorganisms to inhabit, and having gaps through which water can pass.

また、本発明に用いるバイオリアクターとは好気的に水
中有機物を分解しつる微生物を固定化したものであり、
例えば光合成細菌群では、ロードシュードモナス(Rh
odopseudomonas)属のロドスピソラーシ
ェ(rhodospirillaceae ) 、クロ
マチウムシ:c (chromatiaceae ) 
、カブシュラータ(capsulata ) 、クロマ
チウム(chromatium)、ゼラチノサ(gel
atinosa)や紅色硫黄細菌のチオカブサ(thi
ocapsa )から選択される1種又は2種以上を混
合し、通常の固定化法により、固定化したものであり、
好ましくは上記中のカブシュラータとクロマチウム、ゼ
ラチノサとチオカブサの組合わせがBOD源となる有機
酸と毒性の強い硫化水素をよく除去できるので好ましい
Furthermore, the bioreactor used in the present invention is one in which microorganisms that aerobically decompose organic matter in water are immobilized,
For example, in the group of photosynthetic bacteria, Rhodopseudomonas (Rh
rhodospirillaceae of the genus odopseudomonas, chromatiaceae: c (chromatiaceae)
, capsulata, chromatium, gelatinosa
atinosa) and the purple sulfur bacterium Thiocabsa (thi).
ocapsa), which is a mixture of one or two or more selected from the group and is immobilized by a normal immobilization method,
Preferably, the above-mentioned combinations of Cabusulata and Chromatium, and Gelatinosa and Thiocabsa are preferred since they can effectively remove organic acids that are BOD sources and highly toxic hydrogen sulfide.

本発明において、予め微生物の存在がある程度期待でき
る水域には培養床を、水中の微生物が極端に減少し、培
養床を用いても微生物の増殖にかなりの時間を要すると
思われる水域にはバイオリアクターを用いれば良い。
In the present invention, a culture bed is installed in water areas where the presence of microorganisms can be expected to some extent, and a culture bed is installed in areas where the number of microorganisms in the water is extremely reduced and it is thought that even if a culture bed is used, it will take a considerable amount of time for microorganisms to multiply. You can use a reactor.

本発明の反応塔はこの反応床を少なくとも1段以上縦方
向に有し、反応床と水底との間は、堆積したへどろの厚
みにもよるが、少なくとも5cm以上おいていることが
必要である。
The reaction tower of the present invention has at least one stage of this reaction bed in the vertical direction, and the distance between the reaction bed and the water bottom is at least 5 cm depending on the thickness of the accumulated sludge. be.

反応床の大きさや形状は反応塔を設置する場所により適
宜選択すれば良いが、反応効率を考慮すると円柱状が好
ましく、また、反応塔の設置や反応床の清掃・交換時の
作業性を考慮すると大き過ぎるものや重過ぎるものは好
ましくない。大きさでは直径10〜60cm高さ30〜
200cmの円柱、重さでは50kg以下が好ましい。
The size and shape of the reaction bed can be selected as appropriate depending on the location where the reaction tower is installed, but a cylindrical shape is preferred in consideration of reaction efficiency, and workability during installation of the reaction tower and cleaning/replacement of the reaction bed is also considered. Therefore, items that are too large or too heavy are not desirable. The size is 10-60cm in diameter and 30-60cm in height.
A cylinder of 200 cm and a weight of 50 kg or less are preferable.

反応床は複数段重ねると水の処理時間が長(なり処理効
果が高まる。従ってへどろの多い水域では反応床の段数
を増やし、また、汚染や目詰まり等で処理効率の低下し
た反応床を適宜交換すれば効率良(浄化が行える。その
後水質が向上するに従って反応床の段数を必要量にまで
減らしてゆけば良い。
Stacking multiple reaction beds increases the water treatment time (and increases the treatment effect. Therefore, in water areas with a lot of sludge, increase the number of reaction beds, and replace the reaction beds whose treatment efficiency has decreased due to contamination or clogging. Efficient purification can be achieved by replacing the water as needed.Afterwards, as the water quality improves, the number of reaction beds can be reduced to the required amount.

上記の如く水質の程度により、反応床の段数や水底との
距離等好適な処理条件が変わるため、反応塔は任意に反
応床の位置を変えられるように製作するのが好ましい。
As mentioned above, suitable treatment conditions such as the number of stages of the reaction bed and the distance from the water bottom vary depending on the water quality, so it is preferable to manufacture the reaction tower so that the position of the reaction bed can be arbitrarily changed.

例えば、ネジ穴を連続して設けた骨組として、ネジ穴の
位置により、このネジ穴を利用して固定する反応床の水
底からの高さを変えられるようにする。複数段の反応床
を用いる場合、重ねて1段にしても、また間をあけて設
置してもかまわない。
For example, by using a framework in which screw holes are continuously provided, the height from the water bottom of the reaction bed fixed using the screw holes can be changed depending on the position of the screw holes. When using multiple stages of reaction beds, they may be stacked to form a single stage or may be installed with gaps between them.

本発明において上記反応塔の下部から反応床を通して反
応塔上部へ向う水流を起こす手段としては、特に限定さ
れないが、浄化水域外部に設置したポンプによって行え
ば良い。
In the present invention, the means for generating a water flow from the lower part of the reaction tower to the upper part of the reaction tower through the reaction bed is not particularly limited, but may be carried out by a pump installed outside the purified water area.

具体的には、反応塔上部から水を吸引してこの吸引力に
より水流を起こし、吸引した水を浄化水域に排出する方
法、及びエアーリフトポンプによって反応塔下部からエ
アーを送り、これにより水流を起こす方法が挙げられる
。特に後者では反応床の反応に必要な酸素も供給され、
好ましい。
Specifically, there are two methods: sucking water from the top of the reaction tower, creating a water flow using this suction force, and discharging the sucked water into a purified water area; There are ways to wake it up. Especially in the latter case, the oxygen necessary for the reaction in the reaction bed is also supplied,
preferable.

また、本発明においては反応塔を中心にして放射状にガ
イドを設置すると効率良く浄化が行えるため好ましい。
Further, in the present invention, it is preferable to install guides radially around the reaction tower because purification can be performed efficiently.

本発明に用いるガイドとは、長尺であって、単純な棒状
のもの、板状のものでも良いが、断面に凹凸が有り、長
手方向に溝の有る様なものが好ましい。例えば、第3図
(a)に示す電車のレール状のものや、第3図(b)に
示すY字形の断面を有するもの、また、綿状のものが好
適に用いられる。ガイドの材質はへどろ内に埋没させる
ので重い方が好ましいが、ガイドの所々に重しを取り付
ければ特に軽い材質でも十分使用することができる。ま
た、川底の様に底が平でない様な場合には、ガイドを底
の形状にあわせられる様に柔軟な変形し易い素材を用い
るのが好ましい。
The guide used in the present invention is long and may be a simple rod-like or plate-like guide, but it is preferable that the guide has an uneven cross section and a groove in the longitudinal direction. For example, a train rail-shaped material as shown in FIG. 3(a), a material having a Y-shaped cross section as shown in FIG. 3(b), and a cotton-like material are preferably used. Since the material of the guide is to be buried in the hollow, it is preferable to use a heavy material, but if weights are attached to various parts of the guide, even a particularly light material can be used. Furthermore, in cases where the bottom is not flat, such as a river bed, it is preferable to use a flexible and easily deformable material so that the guide can be adapted to the shape of the bottom.

本発明のへどろ浄化法は反応塔を複数用いることにより
池や湖、川、海等広範囲な水域にも好適に利用できる。
By using a plurality of reaction towers, the sludge purification method of the present invention can be suitably used in a wide range of water bodies such as ponds, lakes, rivers, and the sea.

[作 用] 本発明の作用を図面を用いて説明する。[Work] The operation of the present invention will be explained using the drawings.

第1図、第2図は本発明の具体的な施工方法の概略図で
ある。
FIGS. 1 and 2 are schematic diagrams of a specific construction method of the present invention.

先ず第1図において反応塔4には3段の反応床1が付設
されており、地上から反応塔4の位置が確認できるよう
に浮3が取り付けである。一方反応塔4の最下部の反応
床1の下側には地上のエアーリフトポンプから引き込ん
だ排気管2が排出口を反応床1に向けて設置されている
First, in FIG. 1, a three-stage reaction bed 1 is attached to a reaction tower 4, and a float 3 is attached so that the position of the reaction tower 4 can be confirmed from the ground. On the other hand, below the reaction bed 1 at the lowest part of the reaction tower 4, an exhaust pipe 2 drawn from an air lift pump above ground is installed with its exhaust port facing the reaction bed 1.

一方、反応塔4の中心点を中心に放射状にガイド5が水
底に付設されている。
On the other hand, guides 5 are attached to the bottom of the water radially around the center point of the reaction tower 4.

ここで不図示のエアーリフトポンプを始動させると排気
管2から排出されたエアー(矢印B)に伴って周囲の水
がへどろも巻き込んで水流となり(矢印C)反応床1内
を上昇する。この水流が反応床1内を通過する際に内部
の固定化菌体により水中の有機物が分解され、水の浄化
が進む。上昇した水流は反応塔上部で開放される(矢印
D)。
When an air lift pump (not shown) is started, the air discharged from the exhaust pipe 2 (arrow B) causes surrounding water to be drawn in as well, forming a water flow (arrow C) that rises inside the reaction bed 1. When this water flow passes through the reaction bed 1, organic matter in the water is decomposed by the immobilized bacterial cells inside, and water purification progresses. The rising water stream is released at the top of the reaction column (arrow D).

一方反応塔下部からは常時反応床1に水を送り込むため
周囲に対して吸引力を生じる。ここでガイド5が付設さ
れていると、ガイド5に沿ってへどろ中を水が誘導され
て移動するためより遠(の水が反応床内に送り込むこと
ができる、且つ効率が良い。こうして図中の矢印A−I
C−4Dの水流が起こり、水が還流される。水が還流さ
れると水底付近にも酸素が供給され、また、ガイド5が
付設された場合にはへどろ中を水が移動することにより
、沈滞していたへどろが撹拌され、反応床外でも分解反
応が進む。
On the other hand, since water is constantly fed into the reaction bed 1 from the lower part of the reaction tower, a suction force is generated against the surroundings. If the guide 5 is attached here, the water is guided and moved in the sludge along the guide 5, so that the water can be sent further into the reaction bed and is efficient. Arrow A-I inside
A stream of C-4D occurs and the water is refluxed. When the water is refluxed, oxygen is supplied near the bottom of the water, and when the guide 5 is attached, the water moves through the sludge, stirring the sludge that has been stagnant, and outside the reaction bed. However, the decomposition reaction continues.

第2図は、反応塔上部から吸水することにより水流を起
こす方法である。
Figure 2 shows a method of generating a water flow by absorbing water from the upper part of the reaction tower.

図中7の吸水管で反応塔上部から吸水する(矢印E)と
必然的に反応塔下部から水が吸引され(矢印C)、反応
床1を通過して浄化されながら上昇する。吸引した水は
排水管8により浄化水域へ戻せば良い。第2図において
も第1図同様のガイド5が付設され、第1図同様の効果
が期待できる。水はA−C−4E→F→Gの経路で還流
する。
When water is absorbed from the upper part of the reaction tower by the water suction pipe 7 in the figure (arrow E), water is inevitably sucked from the lower part of the reaction tower (arrow C), passes through the reaction bed 1, and rises while being purified. The sucked water may be returned to the purified water area through the drain pipe 8. In FIG. 2 as well, a guide 5 similar to that in FIG. 1 is provided, and the same effect as in FIG. 1 can be expected. Water refluxes along the path AC-4E→F→G.

[実施例] 実施例1 平均水位時の容積500m” 、水面の面積500m2
最深部2mの湖の底に厚さ20cmのへどろが溜ってい
た。この湖の深さll11以上の水底に100 m”当
りに1塔の割合で反応塔を設置した。反応塔は高さ0.
9mで、直径50cm高さ30cmのバイオリアクター
を2段重ねて設置した。バイオリアクターには活性珪酸
を圧縮成形して球形粒子にしたものにゼラチノサとチオ
カブサを固定化したものを用いた。反応塔最下部のバイ
オリアクターから水底までの距離は10cmで、水底に
は放射状に、長さ10mの合成高分子製線状ガイドを6
本均等に付設した。そしてエアーリフトポンプから延長
した排気管を反応塔の下側に設置し、ポンプを始動させ
た。
[Example] Example 1 Volume at average water level: 500 m'', water surface area: 500 m2
At the bottom of the lake, which was 2 meters deep at its deepest point, there was a sludge 20 centimeters thick. Reaction towers were installed at the bottom of this lake at a depth of 11 or more at a rate of one tower per 100 m.The reaction towers had a height of 0.
Two bioreactors with a diameter of 50 cm and a height of 30 cm were installed with a length of 9 m. For the bioreactor, activated silicic acid was compressed into spherical particles and Gelatinosa and Thiocabsa were immobilized thereon. The distance from the bioreactor at the bottom of the reaction tower to the water bottom is 10 cm, and six 10 m long synthetic polymer linear guides are placed radially at the bottom of the water.
Attached to the book evenly. Then, an exhaust pipe extending from the air lift pump was installed at the bottom of the reaction tower, and the pump was started.

ポンプ始動後3日後には徐々に水底のへどろが減り始め
10日後にはほとんどな(なり、水の透明度も高まった
Three days after starting the pump, the amount of sludge at the bottom of the water gradually decreased, and by 10 days it had almost disappeared, and the water became clearer.

実施例2 平均水位時の容積300m3、水面の面積500I11
2、最深部15mの湖の底に厚さ5cmのへどろが溜っ
ていた。この湖の深さ1m以上の水底に100m”当り
に1塔の割合で反応塔を設置した。反応塔は高さ90m
で、直径30cm高さ30cmの培養床を2段重ねて設
置した。反応塔最下部のバイオリアクターから水底まで
の距離は5cmで、水底には放射状に、長さ8I11の
合成高分子製編状ガイドを6本均等に付設した。そして
エアーリフトポンプから延長した排気管を反応塔の下側
に設置し、ポンプを始動させた。
Example 2 Volume at average water level: 300m3, water surface area: 500I11
2. At the bottom of the lake, which is 15 meters deep at its deepest point, there was a sludge 5 cm thick. Reaction towers were installed at a rate of one tower per 100 m on the bottom of the lake at a depth of 1 m or more.The reaction towers were 90 m high.
Two culture beds with a diameter of 30 cm and a height of 30 cm were placed one on top of the other. The distance from the bioreactor at the bottom of the reaction tower to the water bottom was 5 cm, and six synthetic polymer knitted guides with a length of 8I11 were evenly attached to the water bottom in a radial manner. Then, an exhaust pipe extending from the air lift pump was installed at the bottom of the reaction tower, and the pump was started.

ポンプ始動後2日後には徐々に水底のへどろが減り始め
7日後にはほとんどなくなり、水の透明度も高まった。
Two days after starting the pump, the sludge at the bottom of the water began to gradually decrease, and after seven days, it had almost disappeared, and the water became clearer.

[発明の効果] 本発明の方法によると、へどろの除去を大掛りな浚渫装
置を用いずども簡単に行うことができる。しかもへどろ
の廃棄場所を考慮する心配も無く、分解されたへどろは
、微生物やプランクトンの飼料となり、完全に処理され
る。
[Effects of the Invention] According to the method of the present invention, sludge can be easily removed without using a large-scale dredging device. Furthermore, there is no need to worry about where to dispose of the sludge, and the decomposed sludge becomes feed for microorganisms and plankton, and is completely disposed of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の具体的な施工方法の一例を
概略的に示した図であり、第3図は本発明で用いるガイ
ドの具体例を示す図である。 第2図 第1図 第3図
1 and 2 are diagrams schematically showing an example of a specific construction method of the present invention, and FIG. 3 is a diagram showing a specific example of a guide used in the present invention. Figure 2 Figure 1 Figure 3

Claims (5)

【特許請求の範囲】[Claims] (1)へどろ堆積部に、垂直方向に少なくとも1段の反
応床を有する反応塔を設置し、該反応塔の下部から上記
反応床を通して反応塔上部へ向って水流を起こすことを
特徴とするへどろ浄化法。
(1) A reaction tower having at least one stage of reaction bed is installed in the sludge accumulation section in the vertical direction, and a water flow is caused from the lower part of the reaction tower through the reaction bed to the upper part of the reaction tower. Sludge purification method.
(2)反応床が培養床であることを特徴とする請求項(
1)記載のへどろ浄化法。
(2) A claim characterized in that the reaction bed is a culture bed (
1) The sludge purification method described.
(3)反応床が微生物を固定化したバイオリアクターで
あることを特徴とする請求項(2)記載のへどろ浄化法
(3) The sludge purification method according to claim (2), wherein the reaction bed is a bioreactor in which microorganisms are immobilized.
(4)反応塔を中心にして放射状にガイドを設置したこ
とを特徴とする請求項(1)記載のへどろ浄化法。
(4) The sludge purification method according to claim (1), characterized in that guides are installed radially around the reaction tower.
(5)ガイドが長手方向に溝を有することを特徴とする
請求項(4)記載のへどろ浄化法。
(5) The sludge purifying method according to claim (4), wherein the guide has a groove in the longitudinal direction.
JP14869890A 1990-06-08 1990-06-08 Sludge purifying method Pending JPH0441806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14869890A JPH0441806A (en) 1990-06-08 1990-06-08 Sludge purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14869890A JPH0441806A (en) 1990-06-08 1990-06-08 Sludge purifying method

Publications (1)

Publication Number Publication Date
JPH0441806A true JPH0441806A (en) 1992-02-12

Family

ID=15458599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14869890A Pending JPH0441806A (en) 1990-06-08 1990-06-08 Sludge purifying method

Country Status (1)

Country Link
JP (1) JPH0441806A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170966A (en) * 1974-12-16 1976-06-19 Giichi Yamaguchi
JPS6312182U (en) * 1986-07-10 1988-01-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5170966A (en) * 1974-12-16 1976-06-19 Giichi Yamaguchi
JPS6312182U (en) * 1986-07-10 1988-01-26

Similar Documents

Publication Publication Date Title
CA2145031C (en) Method and apparatus for in situ water purification including sludge reduction within water bodies by biofiltration and for hypolimnetic aeration of lakes
CN102090353B (en) Large-volume three-dimensional circulating aquaculture system
CN106719246A (en) Batch production shrimp ecosystem and method based on air lift circulation
CN103991963A (en) Integrated floating water body purification device
CN105948390A (en) Floating type device riverway bottom pollutant removing and purifying device and method
CN201737773U (en) Sequencing batch biofilm reactor of pig farm wastewater
CN108715486A (en) A kind of method of basin pool shoal molecular fluid restoration of the ecosystem
CN111170580A (en) Sewage purification treatment system
CN219628639U (en) Aquaculture system
CN211339184U (en) Domestic sewage integrated treatment equipment based on steel slag ceramsite filler biological filter
CN219079289U (en) Three-pond two-dam type cultivation tail water ecological treatment system
CN104671600B (en) Sewage pre-treatment device with scarfing cinder coupling air driving biological rotating disk integral structure
CN201040726Y (en) Drift type multifunctional water purifying apparatus
CN109879536A (en) A kind of domestic sewage in rural areas purification system and purification method
JPH0441806A (en) Sludge purifying method
CN214244101U (en) Rural sewage treatment system
CN211497085U (en) Integrated treatment equipment for in-situ treatment and improvement of water body
CN1539758A (en) Reactor of biomembrane of suspended carrier on horizon eddy flow and repairing method on site of water body
CN210048546U (en) Ecological restoration system of natural water body
CN209940771U (en) Constructed wetland treatment system
CN107129116A (en) The method for treating water of floatation type comprehensive water treatment device and the application equipment
CN101863556A (en) Sequencing batch biofilm reactor for piggery wastewater
CN208517061U (en) A kind of solar energy co-immobilization microorganism black and odorous water processing unit
CN1278955C (en) Composite bacterial enzyme stepped sewage purification device
CN110002665A (en) A kind of purifying treatment method of sea-farming Tail water reuse