JPH0441682B2 - - Google Patents

Info

Publication number
JPH0441682B2
JPH0441682B2 JP23119987A JP23119987A JPH0441682B2 JP H0441682 B2 JPH0441682 B2 JP H0441682B2 JP 23119987 A JP23119987 A JP 23119987A JP 23119987 A JP23119987 A JP 23119987A JP H0441682 B2 JPH0441682 B2 JP H0441682B2
Authority
JP
Japan
Prior art keywords
hydrocarbon
magnesium
polymerization
compound
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23119987A
Other languages
Japanese (ja)
Other versions
JPS6475503A (en
Inventor
Yukitoshi Iwashita
Shigeo Tsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP23119987A priority Critical patent/JPS6475503A/en
Publication of JPS6475503A publication Critical patent/JPS6475503A/en
Publication of JPH0441682B2 publication Critical patent/JPH0441682B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オレフインとくにエチレンまたはエ
チレンと他の1−オレフインを重合る方法に関す
る。詳しくは、特定のマグネシウム−ジ−アルコ
キシドおよび遷移金属アルコキシドから得た炭化
水素可溶性成分と特定のハロゲン化有機アルミニ
ウム化合物と反応して得た固体触媒成分を用いる
ことを特徴とする活性が高いオレフイン重合方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for polymerizing olefins, particularly ethylene or ethylene and other 1-olefins. Specifically, highly active olefin polymerization characterized by using a solid catalyst component obtained by reacting a hydrocarbon-soluble component obtained from a specific magnesium di-alkoxide and a transition metal alkoxide with a specific halogenated organoaluminium compound. Regarding the method.

(従来の技術) オレフイン、とくにエチレンまたはエチレンと
他の1−オレフインとの重合において、従来から
マグネシウム、ハロゲンおよびチタンを構成原子
とする固体触媒成分と有機アルミニウム化合物と
から成る触媒系は、高活性を示すことが知られて
いる。このマグネシウム含有固体触媒成分の合成
法としては、無機の塩化マグネシウムから合成す
る方法、有機マグネシウムから合成する方法など
多数の提案があるが、近年ダウケミカル社の出願
になる特開昭61−250004号公報、アメリカ特許第
4526943号明細書、同第4544647号明細書等にて、
特定の有機マグネシウム溶液とアルコール当の
OH基含有有機化合物と遷移金属アルコキシドか
ら均一溶液を作り、これをハロゲン化有機アルミ
ニウムでハロゲン化し、固体触媒成分を合成する
方法が発表されている。
(Prior Art) In the polymerization of olefins, particularly ethylene or ethylene and other 1-olefins, a catalyst system consisting of a solid catalyst component containing magnesium, halogen, and titanium and an organoaluminum compound has traditionally been used with high activity. is known to show. There are many proposals for synthesizing this magnesium-containing solid catalyst component, such as synthesis from inorganic magnesium chloride and organic magnesium. Publication, U.S. Patent No.
In specification No. 4526943, specification No. 4544647, etc.,
Certain organomagnesium solutions and alcohol
A method has been published in which a homogeneous solution is prepared from an OH group-containing organic compound and a transition metal alkoxide, and this is halogenated with organoaluminum halide to synthesize a solid catalyst component.

例えば上記特開昭61−250004号公報に記載の技
術によつて得られた触媒は、非常に高活性であつ
てポリマーからの触媒除去は不要であり、且つ得
られたポリマーは比較的広い分子量分布を有する
ものであつて、更に例えば多段重合法と組み合わ
せる等の方法により押出成形や中空成形に適した
広い分子量分布をもつポリマーを製造することが
できる。
For example, the catalyst obtained by the technique described in JP-A No. 61-250004 has extremely high activity and does not require removal of the catalyst from the polymer, and the obtained polymer has a relatively wide molecular weight. It is possible to produce a polymer having a wide molecular weight distribution suitable for extrusion molding or blow molding, for example, by combining it with a multi-stage polymerization method.

しかしながら、特開昭61−250004号公報に記載
の技術に例えば、触媒製造において、特定の炭化
水素可溶性マグネシウム含有成分合成時に、均一
溶液とするための大量の有機アルミニウム化合物
が必要であるという問題があつた。
However, the technique described in JP-A No. 61-250004 has the problem that, for example, in catalyst production, a large amount of organoaluminum compound is required to form a homogeneous solution when synthesizing a specific hydrocarbon-soluble magnesium-containing component. It was hot.

一方、リチウムコーポレーシヨン・オブ・アメ
リカ社の出願になる特表昭61−500438号公報明細
書にて、特定のマグネシウム−ジ−アルコキシド
がチーグラー触媒の製造において利用される塩化
マグネシウム支持体の前駆物質として利用しうる
との開示がなされている。例えば、マグネシウム
−2−エトキシエトキシドを炭化水素溶媒中でク
ロル化し、α−オレフイン重合用触媒の支持体と
なりうることが開示されている。
On the other hand, in the specification of Japanese Patent Application Publication No. Sho 61-500438 filed by Lithium Corporation of America, it is disclosed that a specific magnesium di-alkoxide is a precursor of a magnesium chloride support used in the production of Ziegler catalysts. It has been disclosed that it can be used as For example, it has been disclosed that magnesium-2-ethoxyethoxide can be chlorinated in a hydrocarbon solvent and used as a support for a catalyst for α-olefin polymerization.

(発明が解決しようとする問題点) 前記特表昭61−500438号公報の開示によれば、
炭化水素可溶性マグネシウム含有成分合成時に有
機アルミニウム化合物を実質的に用いないのであ
るから、結果的に大量の有機アルミニウム化合物
不要となり得て、従つて前記特開昭61−250004号
公報の項にて述べた問題は解決されうる可能性が
示唆されていることになる。
(Problems to be Solved by the Invention) According to the disclosure of the above-mentioned Japanese Patent Application Publication No. 61-500438,
Since an organoaluminum compound is not substantially used during the synthesis of the hydrocarbon-soluble magnesium-containing component, a large amount of an organoaluminum compound may not be necessary as a result. This suggests that the problem may be solved.

しかしながら、前記特表昭61−500438号公報に
おいては、その発明の趣旨がマグネシウム−ジ−
アルコキシド自体の合成法にあるため、明細書の
記載内容は主にマグネシウム−ジ−アルコキシド
自体の合成法に関するものであつて、触媒固体合
成に関する具体的な技術的開示はなされていな
い。更に、具体的な開示はなされていないが、触
媒固体合成への可能性が示唆されているマグネシ
ウム−2−エトキシエトキシドにおいては通常当
業者が採用するところのクロル化方法の際に、粒
子性状良好なる触媒固体合成が困難であるという
問題があつた。
However, in the above-mentioned Japanese Patent Application Publication No. 61-500438, the gist of the invention is
The content of the specification mainly relates to the method for synthesizing the alkoxide itself, and there is no specific technical disclosure regarding the synthesis of the catalyst solid. Furthermore, although no specific disclosure has been made, in the case of magnesium-2-ethoxyethoxide, which has been suggested to have the potential for catalytic solid synthesis, particle properties are There was a problem in that it was difficult to synthesize a good solid catalyst.

(問題点を解決するための手段) 本発明者らは、上記の問題点を解決すべく研究
を重ねた結果、特定のチタン含有炭化水素可溶性
マグネシウム成分の均一溶液合成時に、特定の炭
化水素可溶性マグネシウム−ジ−ルコキシドを用
いる事で粒子性状良好、且つ高活性な触媒を合成
できることを見出し本発明に到達した。
(Means for Solving the Problems) As a result of repeated research in order to solve the above problems, the present inventors have discovered that when synthesizing a homogeneous solution of a specific titanium-containing hydrocarbon-soluble magnesium component, The present invention was achieved by discovering that a highly active catalyst with good particle properties could be synthesized by using magnesium dilkoxide.

すなわち、本発明は、 (A)()(a) 2位の位置にアルキル基を有する炭化
水素可溶性ジアルコキシマグネシウム化合
物と (b) チタンのアルコキシドとを炭化水素中で
混合して得た炭化水素溶液と () 一般式AlR3-oXo(式中、Rは炭化水素基
であり、Xはハロゲンであり、且つnは1≦
n≦2の値である)で表わされるハロゲン化
有機アルミニウム化合物とを反応させて得た
固体触媒成分(A)と (B) 有機アルミニウム化合物 とから成る触媒を用いることを特徴とするオレフ
インの重合方法 に係るものである。
That is, the present invention provides a hydrocarbon obtained by mixing (A)()(a) a hydrocarbon-soluble dialkoxymagnesium compound having an alkyl group at the 2-position and (b) a titanium alkoxide in a hydrocarbon. solution and () general formula AlR 3-o X o (wherein R is a hydrocarbon group, X is a halogen, and n is 1≦
Polymerization of olefin characterized by using a catalyst consisting of a solid catalyst component (A) obtained by reacting a halogenated organoaluminum compound represented by n≦2 and (B) an organoaluminum compound. It is related to the method.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明(A)()(a)に用いられる2位の位置にア
ルキル基を有する炭化水素可溶性ジアルコキシマ
グネシウム化合物としては、例えば、マグネシウ
ム−2メチル−ペンチルオキシド、マグネシウム
−2エチル−ヘキシルオキシド、マグネシウム−
2エチル−4メチル−ペンチルオキシド等が挙げ
られ、特にマグネシウム−2メチル−ペンチルオ
キシドが好んで用いられる。
Examples of the hydrocarbon-soluble dialkoxymagnesium compound having an alkyl group at the 2-position used in the present invention (A)()(a) include magnesium-2-methyl-pentyl oxide, magnesium-2-ethyl-hexyl oxide, Magnesium
Examples include 2-ethyl-4-methyl-pentyl oxide, and magnesium-2-methyl-pentyl oxide is particularly preferred.

また、これらの化合物は炭化水素媒体への溶解
性を損わない範囲で多のマグネシウム−ジ−アル
コシド例えば、マグネシウム−ジ−イソプロポキ
シド、マグネシウム−ジ−イソブトキシド、マグ
ネシウム−ジ−sec−ブトキシド等との混合物と
しても使用できる。なお、炭化水素への溶解度を
上げたり、溶液の粘性を下げる為に微量のアルミ
ニウム、ナトリウム、カリウム、カルシウム、バ
リウム、ホウ素及び亜鉛等のアルコキシドを加え
てもよい。これらの炭化水素可溶性のマグネシウ
ム−ジ−アルコキシドは、製造法に特に限定はな
いが、例えば、特表昭61−500438号公報等に従つ
て合成すればよい。すなわち、例えば、ジアルキ
ルマグネシウムを用い、これと対応するアルコー
ルとから合成すればよい。
In addition, these compounds may contain a large number of magnesium di-alcosides, such as magnesium di-isopropoxide, magnesium di-isobutoxide, magnesium di-sec-butoxide, to the extent that their solubility in hydrocarbon media is not impaired. It can also be used as a mixture with etc. Note that a trace amount of alkoxides such as aluminum, sodium, potassium, calcium, barium, boron, and zinc may be added in order to increase the solubility in hydrocarbons or lower the viscosity of the solution. These hydrocarbon-soluble magnesium di-alkoxides may be synthesized according to, for example, Japanese Patent Publication No. 500438/1983, although there are no particular limitations on the production method. That is, for example, it may be synthesized from dialkylmagnesium and the corresponding alcohol.

本発明(A)()(a)に用いられるチタンのアルコ
キシドとしては、例えば、テトライソプロポキシ
チタン、テトラ−n−ブトキシチタン、テトラ
(2−エチルヘキソキシ)チタン、などが挙げら
れる。特に好ましい例としてテトライソプロポキ
シチタンテトラ−n−ブトキシチタンが挙げられ
る。
Examples of the titanium alkoxide used in the present invention (A)()(a) include tetraisopropoxytitanium, tetra-n-butoxytitanium, and tetra(2-ethylhexoxy)titanium. Particularly preferred examples include tetraisopropoxytitanium and tetra-n-butoxytitanium.

本発明()に用いられるハロゲン化有機アル
ミニウム化合物としては、一般式AlR3-oXo(式
中、Rは炭化水素基であり、Xはハロゲンであ
り、且つnは1≦n≦2の値である)で表わされ
るものであり、好ましい例として、エチルアルミ
ニウムジクロライド、エチルアルミニウムセスキ
クロライド、ジエチルアルミニウムクロライドな
どが挙げられる。特に好ましくは、エチルアルミ
ニウムジクロライドが用いられる。
The halogenated organoaluminum compound used in the present invention () has the general formula AlR 3-o X o (wherein R is a hydrocarbon group, X is a halogen, and n is 1≦n≦2). Preferred examples include ethylaluminum dichloride, ethylaluminum sesquichloride, diethylaluminum chloride, and the like. Particularly preferably, ethylaluminum dichloride is used.

次に、本発明(B)に用いられる有機アルミニウイ
ム化合物について説明する。
Next, the organic aluminum compound used in the present invention (B) will be explained.

本発明(B)に用いられる有機アルミニウイム化合
物としては、特に好ましくはトリアルキルアルミ
ニウムもしくはジアルキルアルイニウムハイドラ
イドが用いられる。例えば、トリエチルアルミニ
ウム、トリイソブチルアルミニウム、トリn−ヘ
キシルアルミニウム、トリデシルアルミニウム、
ジエチルアルミニウムハイドライド、イソプレニ
ルアルミニウムならびにこれらの混合物が挙げら
れる。
As the organic aluminum compound used in the present invention (B), trialkylaluminum or dialkylalinium hydride is particularly preferably used. For example, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tridecylaluminum,
Mention may be made of diethylaluminium hydride, isoprenylaluminum and mixtures thereof.

次に、固体触媒成分(A)の合成について説明す
る。
Next, the synthesis of the solid catalyst component (A) will be explained.

まず、(A)()(a)の炭化水素可溶性のジアルコ
キシマグネシウム化合物と(b)遷移金属のアルコキ
シドとを混合し、炭化水素溶液を得ることについ
て説明する。
First, a description will be given of (A)() mixing the hydrocarbon-soluble dialkoxymagnesium compound (a) and (b) the transition metal alkoxide to obtain a hydrocarbon solution.

この反応は水分および酸素を充分排除した雰囲
気中で、不活性炭化水素媒体、たとえば、ヘキサ
ン、ヘプタンの如き脂肪族炭化水素、ベンゼン、
トルエン、キシレンの如き芳香族炭化水素、もし
くはシクロヘキサン、メチルシクロヘキサンの如
き脂環式炭化水素、あるいはこれらの混合媒体中
で行なうことができる。触媒性能上好ましくは脂
肪族炭化水素媒体が推奨される。反応温度は特に
制限はなく、例えば室温ないし100℃の間の、通
常行なわれる温度で行なうことができる。各成分
の反応比率にも特に制限はないが、好ましくは、
(a)の炭化水素可溶性ジアルコキシマグネシウム化
合物中のマグネシウム1原子に対する(b)の遷移金
属アルコキシド中の遷移金属原子の比が、0.02〜
0.2、特に好ましくは0.05〜0.1が推奨される。
The reaction is carried out in an atmosphere sufficiently excluded from moisture and oxygen in an inert hydrocarbon medium such as aliphatic hydrocarbons such as hexane, heptane, benzene,
The reaction can be carried out in an aromatic hydrocarbon such as toluene or xylene, or an alicyclic hydrocarbon such as cyclohexane or methylcyclohexane, or a mixed medium thereof. In terms of catalytic performance, an aliphatic hydrocarbon medium is preferably used. The reaction temperature is not particularly limited, and can be carried out at a commonly used temperature, for example, between room temperature and 100°C. There is no particular restriction on the reaction ratio of each component, but preferably,
The ratio of the transition metal atom in the transition metal alkoxide (b) to one atom of magnesium in the hydrocarbon-soluble dialkoxymagnesium compound (a) is 0.02 to
0.2, particularly preferably 0.05 to 0.1 is recommended.

次に、得られた炭化水素可溶性成分()とハ
ロゲン化有機アルミニウム化合物()とを反応
させて固体触媒成分(A)を得る方法について説明す
る。
Next, a method for obtaining the solid catalyst component (A) by reacting the obtained hydrocarbon-soluble component () with the halogenated organic aluminum compound () will be explained.

この反応は水分および酸素を充分排除した雰囲
気中で、不活性炭化水素媒体、たとえば、ヘキサ
ン、ヘプタンの如き脂肪族炭化水素、ベンゼン、
トルエン、キシレンの如き芳香族炭化水素、もし
くはシクロヘキサン、メチルシクロヘキサンの如
き脂環式炭化水素、あるいはこれらの混合媒体中
で行なうことができる。触媒性能上好ましくは脂
肪族炭化水素媒体が推奨される。反応温度は特に
制限はなく、例えば室温ないし100℃の間の、通
常行なわれる温度で行なうことができるが、反応
進行上、好ましくは20〜60℃で実施される。2種
成分の反応比率にも特に制限はないが、好ましく
は炭化水素可溶性成分中のMg原子の数に対する
Cl原子の比が6〜20、特に好ましくは8〜12の比
が推奨される。反応方法については、2種触媒成
分を反応帯に同時に導入しつつ反応させる同時添
加の方法、もしくは、1種触媒成分を事前に反応
帯に仕込んだ後に、残りの触媒成分を反応帯に導
入しつつ反応させる、いわゆる正(逆)添加法の
いずれの方法も可能であり、かつ好ましい結果を
与える。
The reaction is carried out in an atmosphere sufficiently excluded from moisture and oxygen in an inert hydrocarbon medium such as aliphatic hydrocarbons such as hexane, heptane, benzene,
The reaction can be carried out in an aromatic hydrocarbon such as toluene or xylene, or an alicyclic hydrocarbon such as cyclohexane or methylcyclohexane, or a mixed medium thereof. From the viewpoint of catalytic performance, an aliphatic hydrocarbon medium is preferably used. The reaction temperature is not particularly limited and can be carried out at a commonly used temperature, for example between room temperature and 100°C, but is preferably carried out at a temperature of 20 to 60°C in view of the progress of the reaction. There is no particular restriction on the reaction ratio of the two components, but preferably the reaction ratio is based on the number of Mg atoms in the hydrocarbon-soluble component.
A ratio of Cl atoms of 6 to 20, particularly preferably 8 to 12, is recommended. Regarding the reaction method, there is a simultaneous addition method in which the two types of catalyst components are simultaneously introduced into the reaction zone and reacted, or a method in which the first type of catalyst component is charged into the reaction zone in advance, and then the remaining catalyst components are introduced into the reaction zone. Any of the so-called forward (reverse) addition methods, in which the reaction is carried out while reacting, is possible and gives preferable results.

次に、上記反応によつて得た(A)の固体触媒成分
と(B)の有機アルミニウム化合物とを組み合わせる
方法について説明する。
Next, a method of combining the solid catalyst component (A) obtained by the above reaction with the organoaluminum compound (B) will be explained.

(A)の固体触媒成分と(B)の有機アルミニウム化合
物とは、重合条件下に重合系内に添加してもよい
し、あらかじめ重合に先立つて組み合わせてもよ
い。また、固体触媒成分をあらかじめ該有機アル
ミニウム化合物にて処理した後に、さらに有機ア
ルミニウム化合物と組み合せて重合系内に送り込
むような方法も可能である。組み合せる両成分の
比率は(有機Al)/Tiのモル比で0.01〜3000の
範囲が推奨される。
The solid catalyst component (A) and the organoaluminum compound (B) may be added to the polymerization system under polymerization conditions, or may be combined in advance prior to polymerization. It is also possible to use a method in which the solid catalyst component is treated in advance with the organoaluminum compound and then further combined with the organoaluminum compound and fed into the polymerization system. The recommended molar ratio of both components to be combined is (organic Al)/Ti in the range of 0.01 to 3000.

次に、本発明の触媒を用いてオレフインを重合
する方法に関して説明する。
Next, a method for polymerizing olefin using the catalyst of the present invention will be explained.

本発明の触媒を用いて重合しうるオレフインは
α−オレフインであり、特にエチレンである。さ
らに本発明の触媒はエチレンとプロピレン、プテ
ン−1、ヘキセン−1等のモノオレフインとの共
重合、あるいはさらにブタジエン、イソプレン等
のジエンの共存下での重合に用いることも可能で
ある。
Olefins that can be polymerized using the catalysts of the invention are alpha-olefins, especially ethylene. Furthermore, the catalyst of the present invention can also be used for copolymerization of ethylene with monoolefins such as propylene, putene-1, hexene-1, etc., or for polymerization in the coexistence of dienes such as butadiene, isoprene, etc.

本発明の触媒を用い、共重合を実施することに
よつて密度0.91〜0.97g/cm3の範囲のポリマーを
製造することが可能である。
By carrying out copolymerization using the catalyst of the present invention, it is possible to produce a polymer having a density in the range of 0.91 to 0.97 g/cm 3 .

重合方法としては、通常の懸濁重合、溶液重
合、気相重合が可能である。懸濁重合、溶液重合
の場合は触媒を重合溶媒、たとえば、プロパン、
ブタン、ペンタン、ヘキサン、ヘプタンのごとき
脂肪族炭化水素、ベンゼン、トルエン、キシレン
のごとき芳香族炭化水素、シクロヘキサン、メチ
ルシクロヘキサンのごとき脂環式炭化水素ととも
に反応器に導入し、不活性雰囲気下にエチレンを
1〜200Kg/cm2に圧入して、室温ないし320℃の温
度で重合を進めることができる。また、チユーブ
ラー反応器、オートクレーブ反応器、オートクレ
ーブ〜チユーブラー反応器などを用いてたとえば
圧力200〜2000Kg/cm2、温度150〜300℃なる条件
で重合を行なういわゆる高圧重合法も適用するこ
とが可能である。
As the polymerization method, usual suspension polymerization, solution polymerization, and gas phase polymerization are possible. In the case of suspension polymerization or solution polymerization, the catalyst is a polymerization solvent such as propane,
It is introduced into the reactor together with aliphatic hydrocarbons such as butane, pentane, hexane, heptane, aromatic hydrocarbons such as benzene, toluene, xylene, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylene is introduced into the reactor under an inert atmosphere. The polymerization can be carried out at a temperature of room temperature to 320°C by injecting 1 to 200 kg/cm 2 of the polymer. It is also possible to apply a so-called high-pressure polymerization method in which polymerization is carried out using a tubular reactor, an autoclave reactor, an autoclave to a tubular reactor, etc. at a pressure of 200 to 2000 Kg/cm 2 and a temperature of 150 to 300°C. be.

一方、気相重合はエチレンを1〜50Kg/cm2の圧
力で室温ないし120℃の温度条件下で、エチレン
と触媒の接触が良好となるよう流動床、移動床、
あるいは撹拌によつ混合を行なう等の手段を講じ
て重合を行なうことが可能である。
On the other hand, in gas phase polymerization, ethylene is heated at a pressure of 1 to 50 kg/cm 2 at a temperature of room temperature to 120°C, using a fluidized bed, moving bed, etc. to ensure good contact between ethylene and the catalyst.
Alternatively, polymerization can be carried out by means of mixing by stirring or the like.

重合は1反応帯を用いる通常の1段重合で行な
つてもよいし、または複数個の反応帯を用いる、
いわゆる多段重合で行なつてもよい。本発明の触
媒は高活性であり、生成ポリマーからの触媒残渣
除去工程を当然ながら省略できる。さらに、本発
明の触媒を用いて重合したポリマーは、通常の1
段重合でも比較的広い分子量分布をもち、ことに
2個以上の異なつた反応条件下で重合を行なう多
段重合を適用すれば、さらに広い分子量分布のポ
リマーの製造が可能となり中空成形や押出成形用
途に極めて適したものとなる。
The polymerization may be carried out in a conventional one-stage polymerization using one reaction zone, or using multiple reaction zones.
It may also be carried out by so-called multi-stage polymerization. The catalyst of the present invention is highly active, and the step of removing catalyst residue from the produced polymer can naturally be omitted. Furthermore, the polymer polymerized using the catalyst of the present invention can be
Even stage polymerization has a relatively wide molecular weight distribution, and in particular, by applying multistage polymerization in which polymerization is performed under two or more different reaction conditions, it is possible to produce polymers with an even wider molecular weight distribution, making it suitable for blow molding and extrusion molding applications. It is extremely suitable for

ポリマーの分子量を調節するために、重合温度
の調節、重合系への水素の添加、あるいは連鎖移
動を起こし易い有機金属化合物の添加等の公知の
技術を用いることも勿論可能である。さらに、チ
タン酸エステルを添加して密度調節、分子量調節
を行なう等の方法を組合わせて重合を実施するこ
ともまた可能である。
In order to adjust the molecular weight of the polymer, it is of course possible to use known techniques such as adjusting the polymerization temperature, adding hydrogen to the polymerization system, or adding an organometallic compound that tends to cause chain transfer. Furthermore, it is also possible to perform polymerization by combining methods such as adding a titanate ester to control density and molecular weight.

(実施例) 以下、本発明の実施例を示すが、本発明は、こ
れらの実施例によつて何ら制限されるものではな
い。
(Examples) Examples of the present invention will be shown below, but the present invention is not limited to these Examples in any way.

なお、実施例中の触媒活性とは、モノマー圧力
10Kg/cm2において、触媒固体成分1g・1時間当
りのポリマー生成量(g)を表わす。また、MI
はメルトインデツクスを表わし、ASTM・D−
1238にしたがい、温度190℃、荷重2.16Kgにて測
定したものである。FRは温度190℃、荷重21.6Kg
にて測定した値をMIで除した商であり、分子量
分布の広さを表わす指標として当業者に知られて
いるものである。
In addition, the catalytic activity in the examples refers to the monomer pressure.
At 10 kg/cm 2 , it represents the amount of polymer produced (g) per 1 g of catalyst solid component/1 hour. Also, MI
stands for melt index, ASTM D-
1238, measured at a temperature of 190°C and a load of 2.16 kg. FR has a temperature of 190℃ and a load of 21.6Kg.
It is the quotient obtained by dividing the value measured by MI by MI, and is known to those skilled in the art as an index representing the breadth of molecular weight distribution.

実施例 1 1 固体触媒成分(A)の合成 マグネシウム−ジ−2メチルペンチルオキシ
ドの0.5150モル/ Isopar (炭素原子数8
〜10のパラフイン系炭化水素混合溶媒)溶液
(Lithium Corporation of America社製)
48.5ml(25ミリモル)を、乾燥窒素置換によつ
て水分と酸素を除去した容量200mlの滴下ロー
ト付フラスコに秤量し、テトラ−ico−プロポ
キシチタンの1モル/ヘキサン溶液2.5ml
(2.5ミリモル)を室温撹拌下で滴下した。
Example 1 1 Synthesis of solid catalyst component (A) 0.5150 mol of magnesium-di-2methylpentyl oxide/Isopar (8 carbon atoms
~10 paraffinic hydrocarbon mixed solvent) solution (manufactured by Lithium Corporation of America)
Weigh 48.5 ml (25 mmol) into a 200 ml flask with a dropping funnel that had been purged with dry nitrogen to remove moisture and oxygen, and add 2.5 ml of a 1 mol/hexane solution of tetra-ico-propoxytitanium.
(2.5 mmol) was added dropwise under stirring at room temperature.

得られた溶液は、均一で透明な炭化水素溶液
であつた。
The resulting solution was a homogeneous and clear hydrocarbon solution.

この均一溶液に、エチルアルミニウムジクロ
ライドの2モル/ヘキサン溶液62.5ml(125
ミリモル)を約25℃撹拌下で滴下し、更に50℃
で2時間熟成し、固体触媒成分を含むスラリー
を得た。
To this homogeneous solution, add 62.5 ml (125 ml) of 2 mol/hexane solution of ethylaluminum dichloride.
mmol) was added dropwise under stirring at approximately 25°C, and further heated to 50°C.
The mixture was aged for 2 hours to obtain a slurry containing a solid catalyst component.

得られたスラリーをヘキサンを用いデカンテ
ーシヨンを繰返すことにより液相中のAl成分
を充分に洗浄除去し固体触媒成分(A)とした。こ
の固体触媒中のTi量は、3.9wt%であつた。
The obtained slurry was repeatedly decanted using hexane to thoroughly wash and remove the Al component in the liquid phase, thereby obtaining a solid catalyst component (A). The amount of Ti in this solid catalyst was 3.9wt%.

2 重合 1で合成した固体触媒成分(A)2mgを含むスラ
リーと、有機金属化合物(B)としてトリイソブチ
ルアルミニウム0.20ミリモルとを脱水脱酸素し
たヘキサン0.8とともに、内部を真空脱気し
窒素置換した1.5のオートクレーブに入れた。
オートクレーブの内温を80℃に保ち水素を4
Kg/cm2加え、エチレンを加えて全圧を10Kg/cm2
とした。エチレンを補給することにより全圧を
10Kg/cm2に保ちつつ1時間重合を行ない70gの
ポリマーを得た。触媒活性は35000g/g一固
体触媒・hr、MIは0.72、FR46であつた。
2 Polymerization A slurry containing 2 mg of the solid catalyst component (A) synthesized in 1 and 0.20 mmol of triisobutylaluminum as the organometallic compound (B) were mixed with 0.8 of hexane obtained by dehydrating and deoxygenating the inside of the slurry, which was vacuum degassed and replaced with nitrogen. was placed in an autoclave.
Keep the internal temperature of the autoclave at 80℃ and add hydrogen to
Add Kg/cm 2 and add ethylene to bring the total pressure to 10Kg/cm 2
And so. The total pressure is increased by replenishing ethylene.
Polymerization was carried out for 1 hour while maintaining the pressure at 10 kg/cm 2 to obtain 70 g of polymer. Catalytic activity was 35000 g/g-solid catalyst/hr, MI was 0.72, and FR46.

比較例 実施例1の固体触媒成分に際し、マゲネシウム
−ジ−2メチルペンチルオキシドをマグネシウム
−2エトキシエトキシド0.93モル/シクロヘキ
サン溶液(Lithium Corporation of America社
製)26.9ml(25ミリモル)に変更した外は実施例
1と同様に合成した。
Comparative Example The solid catalyst component of Example 1 was changed from magnesium-di-2-methylpentyl oxide to 0.93 mol of magnesium-2-ethoxyethoxide/cyclohexane solution (manufactured by Lithium Corporation of America), 26.9 ml (25 mmol). It was synthesized in the same manner as in Example 1.

チタン成分を添加した後のチタン含有炭化水素
可溶性マグネシウム成分は、均一溶液であつた。
After adding the titanium component, the titanium-containing hydrocarbon soluble magnesium component was a homogeneous solution.

しかしながら、エチルアルミニウムジクロライ
ドを添加し、固体触媒成分を析出させると、析出
物がほとんどフラスコ壁に付着する粘稠泥状物と
なり、デカンテーシヨン・ろ過等の洗浄・回収操
作が不能の、粒子性状の悪いものであつた。
However, when ethylaluminum dichloride is added to precipitate the solid catalyst component, most of the precipitate becomes a viscous slurry that adheres to the flask wall, and the particle properties are such that cleaning and recovery operations such as decantation and filtration are impossible. It was a bad one.

実施例 2 実施例1の固体触媒合成に際し、マグネシウム
−ジ−2メチルペンチルオキシドをマグネシウム
−ジ−2エチルヘキシルオキシド0.9モル/シ
クロヘキサン溶液27.8ml(25ミリモル)に変更し
た外は実施例1と同様に合成および重合を行なつ
た。
Example 2 The same procedure as in Example 1 was carried out except that during the synthesis of the solid catalyst in Example 1, magnesium-di-2-methylpentyl oxide was changed to 0.9 mol of magnesium-di-2-ethylhexyl oxide/27.8 ml (25 mmol) of a cyclohexane solution. Performed synthesis and polymerization.

ポリマー収量は75g、触媒活性37500g/g−
固体触媒・hr、MIは0.68、FR44であつた。
Polymer yield is 75g, catalyst activity 37500g/g-
The solid catalyst hr and MI were 0.68 and FR44.

(発明の効果) 触媒製造において、特定のチタン含有炭化水素
可溶性マグネシウム成分の合成に際し、本発明の
方法を用いれば、均一溶液とするために新たに有
機アルミニウム化合物添加の必要はなく、しか
も、粒子性状良好、且つ高活性な触媒を合成でき
る。即ち、従来の技術である特開昭61−250004号
公報にて開示されているもに従えば、例えばチタ
ン含有マグネシウムの炭化水素均一溶液を得るた
めに、マグネシウム原子に対して0.5モル相当の
有機アルミニウム化合物が必要であつた。これに
対し、本発明の方法、例えばマグネシウム−ジ−
2メチルペントキシドを用いれば実施例の通り均
一溶液にする為に新たに有機アルミニウム化合物
を添加する事なくチタン含有炭化水素可溶性マグ
ネシウム均一溶液を得ることができる。本発明に
おいては、2位の位置にアルキル基を有する炭化
水素可溶性のジアルコキシマグネシウム化合物を
用いる事が重要であり、比較例に示す通り、炭化
水素可溶性であつても2位の位置にアルキル基を
有しないマグネシウム−ジ−アルコキシド、例え
ば、マグネシウム−ジ−2エトキシエトキシドで
は触媒粒子性状が極めて悪く触媒合成自体が困難
である。
(Effect of the invention) When the method of the present invention is used to synthesize a specific titanium-containing hydrocarbon-soluble magnesium component in the production of a catalyst, there is no need to newly add an organoaluminum compound to obtain a homogeneous solution. A catalyst with good properties and high activity can be synthesized. That is, according to the conventional technique disclosed in JP-A No. 61-250004, for example, in order to obtain a homogeneous hydrocarbon solution of titanium-containing magnesium, 0.5 mole of organic An aluminum compound was needed. In contrast, the method of the present invention, e.g.
If 2-methyl pentoxide is used, a titanium-containing hydrocarbon-soluble magnesium homogeneous solution can be obtained without newly adding an organoaluminum compound to make a homogeneous solution as in the example. In the present invention, it is important to use a hydrocarbon-soluble dialkoxymagnesium compound having an alkyl group at the 2-position. In the case of magnesium di-alkoxide which does not have the following, for example, magnesium di-2-ethoxyethoxide, the properties of the catalyst particles are extremely poor and the catalyst synthesis itself is difficult.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の態様を示す概略フローチヤー
トである。
FIG. 1 is a schematic flowchart illustrating aspects of the present invention.

Claims (1)

【特許請求の範囲】 1 (A)()(a) 2位の位置にアルキル基を有する
炭化水素可溶性ジアルコキシマグネシウム
化合物と (b) チタンのアルコキシドとを炭化水素中で
混合して得た炭化水素溶液と () 一般式AlR3-oXo(式中、Rは炭化水素基
であり、Xはハロゲンであり、かつ、nは1
≦n≦2の値である)で表わされるハロゲン
化有機アルミニウム化合物とを反応させて得
た固体触媒成分(A)と (B) 有機アルミニウム化合物 とから成る触媒を用いることを特徴とするオレフ
インの重合方法。 2 (a)の2位の位置にアルキル基を有する炭化水
素可溶性ジアルコキシマグネシウム化合物が、マ
グネシウム−ジ−2メチルペンチルオキシドであ
る特許請求の範囲第1項記載のオレフインの重合
方法。
[Claims] 1 (A)()(a) A carbonized compound obtained by mixing a hydrocarbon-soluble dialkoxymagnesium compound having an alkyl group at the 2-position and (b) a titanium alkoxide in a hydrocarbon. Hydrogen solution and () General formula AlR 3-o X o (wherein R is a hydrocarbon group, X is a halogen, and n is 1
A solid catalyst component (A) obtained by reacting a halogenated organoaluminum compound represented by ≦n≦2) and (B) an organoaluminum compound. Polymerization method. 2. The method for polymerizing olefins according to claim 1, wherein the hydrocarbon-soluble dialkoxymagnesium compound having an alkyl group at the 2-position of (a) is magnesium-di-2-methylpentyl oxide.
JP23119987A 1987-09-17 1987-09-17 Polymerization of alpha-olefin Granted JPS6475503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23119987A JPS6475503A (en) 1987-09-17 1987-09-17 Polymerization of alpha-olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23119987A JPS6475503A (en) 1987-09-17 1987-09-17 Polymerization of alpha-olefin

Publications (2)

Publication Number Publication Date
JPS6475503A JPS6475503A (en) 1989-03-22
JPH0441682B2 true JPH0441682B2 (en) 1992-07-09

Family

ID=16919895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23119987A Granted JPS6475503A (en) 1987-09-17 1987-09-17 Polymerization of alpha-olefin

Country Status (1)

Country Link
JP (1) JPS6475503A (en)

Also Published As

Publication number Publication date
JPS6475503A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
JPS635405B2 (en)
JPS5850242B2 (en) Polymerization method of α-olefin
JPH0725818B2 (en) Method for polymerizing α-olefin
EP0012397B1 (en) Polymerization catalyst and process for polymerizing alpha-olefins
JPH0343285B2 (en)
SU424360A3 (en) METHOD OF OBTAINING POLYOLEFINS
JPH07649B2 (en) Method for producing catalyst component for olefin polymerization
US4364851A (en) Process for producing olefin polymers
JPH10212315A (en) Olefin polymerization and copolymerization method
JPS6354722B2 (en)
JPS6356248B2 (en)
JPH0441682B2 (en)
JPS5915407A (en) Polymerization of 1-olefin
JPH02173103A (en) Production of polyolefin
JP2677394B2 (en) Method for producing magnesium chloride-supported titanium catalyst
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS6363561B2 (en)
JPH0118926B2 (en)
JPH0317843B2 (en)
JP2637137B2 (en) Method for producing isotactic poly-α-olefin
JPH0532404B2 (en)
JP2536527B2 (en) Method for producing polyethylene
KR100546500B1 (en) A Method for producing ethylene polymer and copolymer having high molecular tail in molecular weight distribution
JPH0532407B2 (en)
JPS6334168B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees