JPH0441460A - Production of cyclohexyl acetate - Google Patents
Production of cyclohexyl acetateInfo
- Publication number
- JPH0441460A JPH0441460A JP2147231A JP14723190A JPH0441460A JP H0441460 A JPH0441460 A JP H0441460A JP 2147231 A JP2147231 A JP 2147231A JP 14723190 A JP14723190 A JP 14723190A JP H0441460 A JPH0441460 A JP H0441460A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- sulfuric acid
- cyclohexene
- catalyst
- acetic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- YYLLIJHXUHJATK-UHFFFAOYSA-N Cyclohexyl acetate Chemical compound CC(=O)OC1CCCCC1 YYLLIJHXUHJATK-UHFFFAOYSA-N 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims abstract description 113
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 claims abstract description 85
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000006243 chemical reaction Methods 0.000 claims abstract description 61
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 13
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 13
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 28
- 238000010304 firing Methods 0.000 claims 1
- 239000003054 catalyst Substances 0.000 abstract description 42
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 abstract description 18
- 238000007259 addition reaction Methods 0.000 abstract description 12
- 239000002994 raw material Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 5
- 239000004677 Nylon Substances 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract description 2
- 229920001778 nylon Polymers 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 2
- 239000002253 acid Substances 0.000 description 18
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 9
- 238000003756 stirring Methods 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- -1 acetate ester Chemical class 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 239000003729 cation exchange resin Substances 0.000 description 5
- 239000003085 diluting agent Substances 0.000 description 5
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- NUOYUAPJNWWWTI-UHFFFAOYSA-N oxygen(2-) sulfuric acid zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4].OS(O)(=O)=O NUOYUAPJNWWWTI-UHFFFAOYSA-N 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 150000002168 ethanoic acid esters Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229940023913 cation exchange resins Drugs 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 208000012839 conversion disease Diseases 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- IPCAPQRVQMIMAN-UHFFFAOYSA-L zirconyl chloride Chemical compound Cl[Zr](Cl)=O IPCAPQRVQMIMAN-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は酢酸シクロヘキシルの製造方法に関する。詳し
くは本発明は、フェノール、アジピン酸及びナイロン等
の中間原料として有用なシクロヘキサノール等の原料や
、特殊溶剤として有用なシクロアルカノール脂肪族カル
ボン酸エステルの製造方法に関するものであり、更に詳
しくは、酸化ジルコニアに硫酸を担持したものと硫酸を
触媒としてシクロヘキセンに酢酸を付加させる事により
シクロヘキサノールの酢酸エステルである酢酸シクロヘ
キシルを高収率、高選択率で製造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for producing cyclohexyl acetate. Specifically, the present invention relates to a method for producing raw materials such as cyclohexanol, which are useful as intermediate raw materials for phenol, adipic acid, and nylon, and cycloalkanol aliphatic carboxylic acid esters, which are useful as special solvents. This invention relates to a method for producing cyclohexyl acetate, which is the acetate ester of cyclohexanol, in high yield and high selectivity by adding acetic acid to cyclohexene using zirconia oxide supporting sulfuric acid and sulfuric acid as a catalyst.
従来の技術
従来シクロヘキサノールの製造方法としては、シクロヘ
キサンの空気酸化によりシクロヘキサノンとシクロヘキ
サノールの混合物を得る方法が一般的であり、且つ広く
工業化されている。又、シクロヘキセンからの直接水和
反応により製造する方法も最近盛んに行われている。例
えばゼオライトを触媒として製造する方法としては、特
開昭63−250334号、特開昭63−156736
号又は、特開平1−190644号等がある。更に、特
開昭63−253040号、特開昭62−123140
号等では有機酸を触媒として反応を行っている。又、特
開昭62−120333号においては触媒として強酸性
カチオン交換樹脂を触媒として行っている。しかしなが
ら、これらの方法においては、例えばゼオライト触媒で
はシクロヘキセンの転化率は10%程度と低く、又、有
機酸触媒を用いる反応では原料シクロヘキセンよりも数
倍の重量の有機酸を用いて行っている。更に、強酸性カ
チオン交換樹脂触媒を使用している場合にもシクロヘキ
センの約1.5倍量の触媒を用い、加えて添加側として
シクロヘキセンと同!量のフェノール類を用いており、
何れの方法においても経済的な方法であるとは言い難い
。2. Description of the Related Art Conventionally, as a method for producing cyclohexanol, a method of obtaining a mixture of cyclohexanone and cyclohexanol by air oxidation of cyclohexane is common and has been widely industrialized. In addition, a method of producing by direct hydration reaction from cyclohexene has recently been widely used. For example, methods for producing zeolite as a catalyst include JP-A-63-250334 and JP-A-63-156736.
or Japanese Patent Application Laid-open No. 1-190644. Furthermore, JP-A-63-253040, JP-A-62-123140
In this paper, the reaction is carried out using an organic acid as a catalyst. Further, in JP-A-62-120333, a strongly acidic cation exchange resin is used as a catalyst. However, in these methods, for example, with a zeolite catalyst, the conversion rate of cyclohexene is as low as about 10%, and in the reaction using an organic acid catalyst, an organic acid several times the weight of the raw material cyclohexene is used. Furthermore, even when using a strongly acidic cation exchange resin catalyst, the amount of catalyst used is approximately 1.5 times that of cyclohexene, and in addition, the amount of catalyst added is the same as that of cyclohexene! The amount of phenols used is
It is difficult to say that either method is an economical method.
一方、シクロヘキサノールの酢酸エステルの製造方法と
しては、シクロヘキサノールと酢酸とのエステル化反応
及びシクロヘキサノールと無水酢酸との反応により製造
される事が古くから知られている。しかしこれらの方法
は、共に原料としてシクロヘキサノールを用いてお一つ
、上記したようにシクロヘキサノールを使用する事は前
記した様にその製造方法に問題点を有している等、種々
の欠点を有している。加えてエステル化反応おいては平
衡反応である為、該エステルの高反応収率を達成する事
は困難であり、更に副生ずる水を除去する何らかの手段
を講じる必要がある。又、無水酢酸を用いる方法におい
ては該エステルの収率は高いが、使用する無水酢酸が高
価であり、加えて酢酸−分子が遊離しこの酢酸を無水物
に変換する事は不可能である等の様々な欠点を有してい
る。On the other hand, it has been known for a long time that cyclohexanol acetate is produced by an esterification reaction between cyclohexanol and acetic acid and a reaction between cyclohexanol and acetic anhydride. However, both of these methods use cyclohexanol as a raw material, and as mentioned above, the use of cyclohexanol has various drawbacks, such as the production method having problems as described above. have. In addition, since the esterification reaction is an equilibrium reaction, it is difficult to achieve a high reaction yield of the ester, and it is also necessary to take some means to remove by-produced water. In addition, although the yield of the ester is high in the method using acetic anhydride, the acetic anhydride used is expensive, and in addition, acetic acid molecules are liberated and it is impossible to convert this acetic acid into an anhydride. It has various drawbacks.
ここにおいて、これらの問題点を解決する方法として、
シクロヘキセンと酢酸との付加反応によりシクロヘキサ
ノールの酢酸エステルである酢酸シクロヘキシルを製造
する方法が最近提案されて来つつある。例えば、特開平
1−254634号においては、触媒として強酸性カチ
オン交換樹脂を触媒としてシクロヘキセンと酢酸の反応
により酢酸シクロヘキシルを製造している。しかしなが
ら、該特許出願においては、酢酸シクロヘキシルを高収
率で取得する為には130 ’Cで5時−間反応を行う
事が必要があり、カチオン交換樹脂触媒としては極めて
高温となり且つ反応時間が長い。加えて、これらの強酸
性カチオン交換樹脂はその特質として、−船釣には耐熱
温度は100°C前後であり、高耐熱性のものでも実質
的に160°Cを越えるものはない。Here, as a way to solve these problems,
Recently, a method has been proposed for producing cyclohexyl acetate, which is the acetate ester of cyclohexanol, by an addition reaction between cyclohexene and acetic acid. For example, in JP-A-1-254634, cyclohexyl acetate is produced by the reaction of cyclohexene and acetic acid using a strongly acidic cation exchange resin as a catalyst. However, in the patent application, in order to obtain cyclohexyl acetate in high yield, it is necessary to conduct the reaction at 130'C for 5 hours, which is an extremely high temperature and reaction time for a cation exchange resin catalyst. long. In addition, these strongly acidic cation exchange resins have the following characteristics: - The heat resistance temperature for boat fishing is around 100°C, and even those with high heat resistance do not substantially exceed 160°C.
又、これらの交換樹脂は機械的強度が低く破壊されやす
い等の欠点も併せて有している事から、その触媒の安定
性には極めて高い危険性を有しているものである。In addition, these exchange resins also have drawbacks such as low mechanical strength and susceptibility to destruction, and therefore pose an extremely high risk to the stability of the catalyst.
発明が解決しよう・とする課題
本発明の目的は、酸化ジルコニウムに硫酸を担持した超
強酸に硫酸を添加したものを触媒として用いて、シクロ
ヘキセンに酢酸を付加させてシクロヘキサノールの酢酸
エステルである酢酸シクロヘキシルを高い選択率及び収
率で製造するとともに該反応の高温領域においても安定
な触媒を提供する事である。加えて、該酢酸エステルは
容易に加水分解されてシクロヘキサノールを生成する事
から、シクロヘキサノールの前駆体である酢酸シクロヘ
キシルの経済性の高い製造方法を提供する事も目的とし
ている。Problems to be Solved by the Invention The purpose of the present invention is to add acetic acid to cyclohexene using a super strong acid in which sulfuric acid is supported on zirconium oxide and sulfuric acid as a catalyst to obtain acetic acid, which is an acetate ester of cyclohexanol. The object of the present invention is to produce cyclohexyl with high selectivity and yield and to provide a catalyst that is stable even in the high temperature range of the reaction. In addition, since the acetate ester is easily hydrolyzed to produce cyclohexanol, another object of the present invention is to provide a highly economical method for producing cyclohexyl acetate, which is a precursor of cyclohexanol.
課題を解決するための手段
本発明者らは、上記シクロヘキサノールの前駆体である
酢酸シクロヘキシルの効率的な製造方法を検討し、シク
ロヘキセンと酢酸の付加反応が優れた製造法である事に
着目し、従来の欠点である、触媒活性の低さ、触媒の機
械的強度及び耐熱性を含めた耐久性の問題、触媒使用の
温度範囲の制限等を解決すべく鋭意検討したところ、触
媒として実質的に酸化ジルコニウムと硫酸を反応させて
得られる超強酸と硫酸の混合物を触媒として該反応を実
施する事により、驚(べき事に70°Cという極めて温
和な温度においても高収率且つ高選択率で酢酸シクロヘ
キシルが得られ、更に高温条件においても安定且つ効果
的に実施する事を可能とならしめ本発明を完成させるに
至った。Means for Solving the Problems The present inventors investigated an efficient method for producing cyclohexyl acetate, which is a precursor of cyclohexanol, and noticed that the addition reaction of cyclohexene and acetic acid is an excellent production method. After intensive study to solve the conventional drawbacks such as low catalytic activity, durability problems including mechanical strength and heat resistance of the catalyst, and restrictions on the temperature range of catalyst use, we found that By carrying out this reaction using a mixture of super strong acid and sulfuric acid obtained by reacting zirconium oxide and sulfuric acid as a catalyst, surprisingly high yield and high selectivity can be achieved even at the extremely mild temperature of 70°C. Cyclohexyl acetate was obtained, and the present invention was completed by making it possible to carry out the process stably and effectively even under high temperature conditions.
本発明において使用する触媒は実質的に酸化ジルコニウ
ムに硫酸が作用して得られる超強酸と石奇酸の混合物で
あり、これらの相乗作用によって触媒作用が向上する。The catalyst used in the present invention is essentially a mixture of a super strong acid obtained by the action of sulfuric acid on zirconium oxide and a mineral acid, and their synergistic action improves the catalytic action.
又この触媒弄を使用して本発明を実施すれば、反応は実
質的に固体−液体の不均一反応として実施され、本質的
な触媒の回収は容易に可能である。更にこの触媒系は熱
的且つ機械的にも極めて安定である事から、高温におい
ても充分安定に本発明方法を実施する事が可能となり、
本発明を完成させるに至った。Furthermore, when the present invention is carried out using this catalyst, the reaction is substantially carried out as a solid-liquid heterogeneous reaction, and the essential catalyst can be easily recovered. Furthermore, since this catalyst system is extremely stable both thermally and mechanically, it is possible to carry out the method of the present invention with sufficient stability even at high temperatures.
The present invention has now been completed.
即ち、本発明は、
シクロヘキセンに酢酸を付加して酢酸シクロヘキシルを
製造する方法において、酸化ジルコニウムの硫酸担持物
と硫酸の存在下に反応を行う事を特徴とする酢酸シクロ
ヘキシルの製造方法である。That is, the present invention is a method for producing cyclohexyl acetate by adding acetic acid to cyclohexene, which is characterized in that the reaction is carried out in the presence of sulfuric acid supported zirconium oxide and sulfuric acid.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の製造方法において原料となる酢酸及びシクロヘ
キセンは特に精製の必要は無く、−船釣な試薬純度の酢
酸及びシクロヘキセンをそのまま使用して差し支えない
。又、本発明においては反応を実施する際に仕込むシク
ロヘキセンに対する酢酸の使用量は特に限定はしないが
、効率よく反応を実施するには、酢酸のシクロヘキセン
に対する仕込みモル比が1以上となる。酢酸過剰の状態
で実施する事が推奨される。この事は、このモル比が1
以下であれば反応は実質的にシクロヘキセンの転化率1
00%を達成する事は不可能である為である。更に、酢
酸を余りに大量に使用する事は、その後の生成物分離等
に過大な負荷を生しさせる結果となる為、極端に大量使
用は避けるべきである。従って本発明を効率的に実施す
るには、酢酸のシクロヘキセンに対する仕込みモル比が
1以上、30以下で実施する事が好ましく、更に好まし
くは2以上、15以下で実施する事である。Acetic acid and cyclohexene, which are raw materials in the production method of the present invention, do not need to be particularly purified, and acetic acid and cyclohexene with a reagent purity that can be used as is can be used as they are. Further, in the present invention, the amount of acetic acid used relative to the cyclohexene charged when carrying out the reaction is not particularly limited, but in order to carry out the reaction efficiently, the molar ratio of acetic acid to cyclohexene charged should be 1 or more. It is recommended to carry out the test with excess acetic acid. This means that this molar ratio is 1
If the reaction is below, the conversion rate of cyclohexene is substantially 1
This is because it is impossible to achieve 00%. Furthermore, use of acetic acid in too large a quantity will result in an excessive load on subsequent product separation, etc., and therefore, extremely large quantities should be avoided. Therefore, in order to carry out the present invention efficiently, the molar ratio of acetic acid to cyclohexene is preferably 1 or more and 30 or less, more preferably 2 or more and 15 or less.
本発明においてその実施する反応温度は特に限定はしな
いが、好ましくは0°C以上、500°C以下、更に好
ましくは30°C以上、300°C以下で実施する事が
推奨される。余りに低温で実施すれば反応速度は低下し
、望ましい反応転化率を達成する事が困難となり、又余
りに高温で実施する際にはシクロヘキセン等の反応試剤
等の熱安定性の低下をもたらし経済的でない事が予測さ
れる。本発明を実施するにあたり、酢酸もしくはシクロ
ヘキセンが大気圧下におけるそれらの沸点以上で実施す
る場合には、反応形態を加圧下で液相反応として実施す
る事も熱論可能である。更に、酢酸及び/又はシクロヘ
キセンを気体状態として反応を行う事も可能である。こ
の際に触媒成分である硫酸も気体として用いても何ら差
し支えない。本発明は触媒を用いて酢酸とシクロヘキセ
ンの付加反応によってシクロヘキサノールの酢酸エステ
ルである酢酸シクロヘキシルを製造する方法である。こ
れに使用する触媒は、水酸化ジルコニウムと希硫酸を反
応させたものを500°C以上で焼成したものすなわち
酸化ジルコニウムの硫酸担持物と硫酸の混合物である。In the present invention, the reaction temperature is not particularly limited, but it is recommended that the reaction temperature is preferably 0°C or higher and 500°C or lower, more preferably 30°C or higher and 300°C or lower. If carried out at too low a temperature, the reaction rate will decrease and it will be difficult to achieve the desired reaction conversion rate, and if carried out at too high a temperature, the thermal stability of the reaction reagent such as cyclohexene will decrease, making it uneconomical. things are predicted. In carrying out the present invention, if the reaction is carried out at a temperature above the boiling point of acetic acid or cyclohexene at atmospheric pressure, it is also theoretically possible to carry out the reaction as a liquid phase reaction under pressure. Furthermore, it is also possible to carry out the reaction using acetic acid and/or cyclohexene in a gaseous state. At this time, there is no problem in using the sulfuric acid as a catalyst component in the form of a gas. The present invention is a method for producing cyclohexyl acetate, which is an acetate ester of cyclohexanol, by an addition reaction of acetic acid and cyclohexene using a catalyst. The catalyst used for this is a mixture of zirconium hydroxide and dilute sulfuric acid reacted and calcined at 500°C or higher, ie, zirconium oxide supported on sulfuric acid and sulfuric acid.
この水酸化ジルコニウム(Zr (OH) 4) (!
: N硫酸を作用させて焼成したものは、例えばジャー
ナル オブ ケミカル ソサエティ ケミカルコミニケ
ーションの1980年の851ページに記載されている
如く、超強酸の性質を示すものである。本発明において
はこの超強酸に硫酸を加える事により、これらの相乗作
用が認められ、優れたシクロヘキセンへの酢酸付加反応
による酢酸シクロヘキシルの製造に有効は触媒となるー
ものである。ここにおいて本発明方法においてはこの超
強酸の製造方法は特に限定されるものではなく、種々の
方法により製造されるものを使用する事が可能である。This zirconium hydroxide (Zr (OH) 4) (!
: Products calcined by the action of N sulfuric acid exhibit the properties of a super strong acid, as described, for example, in Journal of Chemical Society Chemical Communication, 1980, page 851. In the present invention, by adding sulfuric acid to this super strong acid, a synergistic effect between them is observed, and it becomes an effective catalyst for the production of cyclohexyl acetate through the addition reaction of acetic acid to cyclohexene. Here, in the method of the present invention, the method for producing this super strong acid is not particularly limited, and it is possible to use those produced by various methods.
例えば、上記ジャーナルに記載の酸としては、市販の水
酸化ジルコニウムに1規定の硫酸を加え、濾過後575
°Cから650°Cで空気存在下に焼成したもの、酸化
ジルコニル(ZrOCl z)の加水分解により水酸化
ジルコニウムとした後、同様に硫酸処理及び焼成処理を
したもの、硝酸ジルコニル(ZrO(N(h) 2)を
加水分解して水酸化ジルコニウムとした後同様に硫酸及
び焼成処理をしたもの等が挙げられる。For example, as the acid described in the above journal, 1N sulfuric acid is added to commercially available zirconium hydroxide, and after filtration, 575%
zirconyl oxide (ZrOCl z) was hydrolyzed into zirconium hydroxide, which was then treated with sulfuric acid and fired in the same manner, and zirconyl nitrate (ZrO(N( h) Examples include those obtained by hydrolyzing 2) to produce zirconium hydroxide and then subjecting it to sulfuric acid and calcination treatment in the same manner.
次に、シクロヘキセンと酢酸の付加反応による酢酸シク
ロヘキシルへの変換方法に付いて述べる。Next, a method for converting cyclohexene to cyclohexyl acetate by addition reaction of cyclohexene and acetic acid will be described.
変換方法は基本的にはシクロヘキセンへの酢酸の付加反
応として進行する。本発明においては、反応は固体(触
媒)−液体不均一相反応として行う事が好ましいが、同
体−液体(触媒)−気体及び/または触媒の一部である
g酸も気体として用いる不均一反応として行う事も可能
である。また本発明を効果的に実施する為に、必要であ
るならば触媒及び反応試剤に対して不活性な媒体(気体
及び/又は液体)を溶媒もしくは希釈剤として使用して
も何ら差し支えない。本発明は常圧、減圧、加圧のいず
れの条件でも実施する事が可能であり、特に高温で実施
する際には、加圧により液相反応として実施する事が好
ましい、加圧において実施する際には本発明の反応系を
窒素、アルゴン等の反応試剤及び触媒に対して不活性な
媒体を予め圧入して実施する事も可能である。The conversion process basically proceeds as an addition reaction of acetic acid to cyclohexene. In the present invention, the reaction is preferably carried out as a solid (catalyst)-liquid heterogeneous phase reaction, but it is also a heterogeneous reaction in which the isomer-liquid (catalyst)-gas and/or g-acid, which is a part of the catalyst, is also used as a gas. It is also possible to do this as Furthermore, in order to effectively carry out the present invention, if necessary, an inert medium (gas and/or liquid) to the catalyst and reaction reagent may be used as a solvent or diluent. The present invention can be carried out under normal pressure, reduced pressure, or increased pressure. Particularly when carried out at high temperatures, it is preferable to carry out the reaction as a liquid phase reaction under pressure. In some cases, it is also possible to carry out the reaction system of the present invention by previously pressurizing a medium inert to the reaction reagents and catalysts, such as nitrogen and argon.
又、本発明を実施するに当たり、添加する触媒の量につ
いてはあえて限定はしないが、酸化ジルコニウムの硫酸
処理による超強酸については仕込みのシクロヘキセンに
対して0.1〜50重量%、好ましくは、1〜30重量
%で使用する事が推奨される。又、添加する硫酸量につ
いては同様にシクロヘキセンに対して0.1〜50重量
%、好ましくは1〜30重量%で使用する事が推奨され
る。これ以下の量では反応の進行が遅くなり、又これ以
上の量では充分反応は進行するが1.経済的な観点及び
反応系内への固体量の増大や反応液粘度の上昇等が予測
され好ましい状態とは言い難い為である。In carrying out the present invention, the amount of the catalyst to be added is not intentionally limited, but the amount of super strong acid obtained by treating zirconium oxide with sulfuric acid is 0.1 to 50% by weight, preferably 1% by weight, based on the cyclohexene used. It is recommended to use it at ~30% by weight. Regarding the amount of sulfuric acid added, it is similarly recommended to use it in an amount of 0.1 to 50% by weight, preferably 1 to 30% by weight based on cyclohexene. If the amount is less than this, the progress of the reaction will be slow, and if the amount is more than this, the reaction will proceed sufficiently, but 1. This is because it is difficult to say that this is a desirable situation from an economic point of view and because it is predicted that the amount of solids in the reaction system will increase, the viscosity of the reaction liquid will increase, etc.
寧ろ、触媒の高い活性の面からもこれ以上の量は不必要
である。しかしながら本発明においてはこの範囲外で実
施する事も当然可能であり本発明がこの範囲に1恨定さ
れるものではない。On the contrary, in view of the high activity of the catalyst, a larger amount is unnecessary. However, it is of course possible to implement the present invention outside this range, and the present invention is not limited to this range.
次に、本発明を実施する為の具体的な態様について述べ
る。前記したように本発明における反応は好ましくはO
″C0以上に好ましくは30°C以上で行うが、流通反
応法またはバッチ式反応の何れの方法によっても行う事
が可能である。Next, specific embodiments for carrying out the present invention will be described. As mentioned above, the reaction in the present invention is preferably performed using O
The reaction may be carried out at a temperature of ``C0 or higher, preferably 30°C or higher, but it can be carried out by either a flow reaction method or a batch reaction method.
本発明における実施方法に関しては特に限定はしないが
、実施し易い方法として以下のの方法が挙げられる。勿
論、これらの方法に本発明は限定されるものではない。The method of carrying out the present invention is not particularly limited, but the following method may be mentioned as a method that is easy to carry out. Of course, the present invention is not limited to these methods.
(1)攪拌装置を取り付けたガラス製のフラスコ中に所
定量の触媒、酢酸及びシクロヘキセンを必要ならば溶媒
等の希釈剤と共に入れ、必要に応じて還流器を取り付け
た後、加熱攪拌反応を行う方法。(1) Place a predetermined amount of catalyst, acetic acid, and cyclohexene in a glass flask equipped with a stirring device, along with a diluent such as a solvent if necessary, and after installing a reflux device if necessary, perform a heating stirring reaction. Method.
(2)オートクレーブ中に所定量の触媒、酢酸及びシク
ロヘキセンを必要ならば溶媒等の希釈剤や窒素またはア
ルゴン等の加圧媒体とともに入れた後、攪拌加熱反応を
行う方法。(2) A method in which a predetermined amount of catalyst, acetic acid, and cyclohexene are placed in an autoclave together with a diluent such as a solvent and a pressurizing medium such as nitrogen or argon if necessary, and then the reaction is carried out with stirring and heating.
(3)予め所定温度、所定圧力に保たれた反応群中所定
量の触媒、シクロヘキセン及び酢酸を必要であるならば
溶媒等の希釈剤と共に連続的に導入し反応を行う方法。(3) A method in which a reaction is carried out by continuously introducing a predetermined amount of catalyst, cyclohexene, and acetic acid into a reaction group previously maintained at a predetermined temperature and pressure, together with a diluent such as a solvent if necessary.
(4)酸化ジルコニウムの硫酸処理をした超強酸を所定
量入れ、所定温度及び所定圧力に保たれた反応器中にg
酸、シクロヘキセン及び酢酸を必要であるならばン容媒
等の希釈剤と共に連続的に導入して反応を行う方法。(4) Pour a specified amount of super strong acid obtained by treating zirconium oxide with sulfuric acid into a reactor maintained at a specified temperature and pressure.
A method in which the reaction is carried out by continuously introducing acid, cyclohexene, and acetic acid together with a diluent such as a solvent if necessary.
実施例 以下本発明を実施例によって具体的に説明する。Example EXAMPLES The present invention will be specifically explained below using examples.
般娠夏製造方抜
(1)水酸化ジルコニウムの製造
塩化ジルコニル(ZrOClz、8ToO)100gを
純水1リンドルに溶解させこれに28%アンモニア水を
攪拌しながら徐々に滴下してPH9,qLで白色沈澱を
生成させた。これを濾過洗浄した後、100°Cで48
時間乾燥し、水酸化ジルコニウム47gを得た。(1) Production of zirconium hydroxide Dissolve 100 g of zirconyl chloride (ZrOClz, 8ToO) in 1 lindre of pure water, and gradually add 28% ammonia water dropwise to it while stirring to obtain a white color at pH 9, qL. A precipitate formed. After filtering and washing this, it was heated to 48°C at 100°C.
After drying for hours, 47 g of zirconium hydroxide was obtained.
(2)酸化ジルコニウム系硫酸処理超強酸の製造(1)
で得た水酸化ジルコニウム10gに1規定硫酸水150
m1を加え室温で1時間攪拌処理をした後濾過洗浄し、
空気中、200°C1時間加熱後、650°Cで空気存
在下に3時間焼成した。これを超強酸触媒として以下の
実施例に使用した。(2) Production of zirconium oxide-based sulfuric acid-treated superacid (1)
Add 150 g of 1N sulfuric acid to 10 g of the zirconium hydroxide obtained in
Add m1 and stir at room temperature for 1 hour, then filter and wash.
After heating at 200°C in air for 1 hour, it was fired at 650°C in the presence of air for 3 hours. This was used as a super strong acid catalyst in the following examples.
比較例1
磁気攪拌装置、及び還流冷却器を取り付けた、70m1
の三ツロフラスコ中に、上記調製法により得られた酸化
ジルコニウム−硫酸系超強酸2.0g、市販の95%酢
酸(国産化学社製、特級) 20.5g、及び市販の9
8%シクロヘキセン(東京化成社製、特m)4.5gを
入れ、予め加熱しておいたオイルバスにつけ、70”C
11,5時間攪拌反応を行った後、撹拌を停止しフラス
コをオイルバスから取り出した。Comparative Example 1 70ml equipped with magnetic stirrer and reflux condenser
In a Mitsuro flask, 2.0 g of zirconium oxide-sulfuric acid super strong acid obtained by the above preparation method, 20.5 g of commercially available 95% acetic acid (manufactured by Kokusan Kagaku Co., Ltd., special grade), and commercially available 9
Add 4.5 g of 8% cyclohexene (manufactured by Tokyo Kasei Co., Ltd., special), place in a preheated oil bath, and heat to 70"C.
After stirring the reaction for 11.5 hours, stirring was stopped and the flask was taken out from the oil bath.
室温にまで冷却した後、反応液をガスクロマトグラフ法
により分析した。表に示した様に、シクロヘキサノール
の酢酸エステルの生成は殆ど認められなかった。After cooling to room temperature, the reaction solution was analyzed by gas chromatography. As shown in the table, almost no formation of cyclohexanol acetate was observed.
比較例2
酸化ジルコニウム−硫酸系超強酸の代わりに濃硫酸0.
56gを加えた以外は比較例1と全く同一の反応条件で
シクロヘキセンと酢酸の付加反応を行った。表に示した
様に酢酸シクロヘキシルが低い収率で生成した。Comparative Example 2 Concentrated sulfuric acid was used instead of zirconium oxide-sulfuric acid super strong acid.
An addition reaction between cyclohexene and acetic acid was carried out under exactly the same reaction conditions as in Comparative Example 1, except that 56 g was added. As shown in the table, cyclohexyl acetate was produced in low yield.
実施例1
触媒として上記調製法により製造した酸化ジルコニウム
−硫酸系超強酸2.Og及び濃硫酸0.56gとして加
えた以外は比較例1と全く同一の反応条件によりシクロ
ヘキセンと酢酸の付加反応を行った0表に示した如く、
硫酸と超強酸の相乗効果が明らかに現れ、酢酸シクロヘ
キシルの生成量の増加が認められた。Example 1 Zirconium oxide-sulfuric acid super strong acid produced by the above preparation method as a catalyst 2. As shown in Table 0, the addition reaction of cyclohexene and acetic acid was carried out under the same reaction conditions as in Comparative Example 1, except that Og and concentrated sulfuric acid were added as 0.56 g.
A synergistic effect between sulfuric acid and super strong acid was clearly evident, and an increase in the amount of cyclohexyl acetate produced was observed.
実施例2
反応時間を3時間とした以外は実施例1と全く同一の反
応条件で反応を行った0表に示した様に高い収率でシク
ロヘキサノールの酢酸エステルが得られた。Example 2 The reaction was carried out under exactly the same reaction conditions as in Example 1 except that the reaction time was 3 hours. As shown in Table 0, acetic acid ester of cyclohexanol was obtained in a high yield.
実施例3
反応時間を5時間とした以外は実施例1と全く同一の反
応条件で反応を行った。表に示した様に、反応時間の増
加と共に酢酸シクロヘキシルの生成量の増加が認められ
た。Example 3 A reaction was carried out under exactly the same reaction conditions as in Example 1, except that the reaction time was 5 hours. As shown in the table, an increase in the amount of cyclohexyl acetate produced was observed as the reaction time increased.
実施例4
硫酸及び酸化ジルコニウム−硫酸系超強酸の量をそれぞ
れ実施例1の2倍とした以外は実施例1と全く同一の反
応条件で反応を行った0表に示した様に触媒量を増加さ
せる事により、酢酸シクロヘキシルの生成量の増加が認
められた。Example 4 A reaction was carried out under exactly the same reaction conditions as in Example 1, except that the amounts of sulfuric acid and zirconium oxide-sulfuric acid super strong acid were twice those of Example 1.The amount of catalyst was changed as shown in Table 1. By increasing the amount, an increase in the amount of cyclohexyl acetate produced was observed.
実施例5
200n+ 1のオートクレーブに触媒として酸化ジル
コニア−硫酸系超強酸8.0g、硫酸2.2g、更に酢
酸61.5g及びシクロヘキセン13.5gを入れた後
、5kg/cI11!ゲージ圧となるように窒素を圧入
した後、120℃、1.0時間反応を行った0表に示し
た様にシクロヘキサノールの酢酸エステルは高い収率で
生成していた。Example 5 After putting 8.0 g of zirconia oxide-sulfuric acid super strong acid, 2.2 g of sulfuric acid, 61.5 g of acetic acid and 13.5 g of cyclohexene as catalysts into a 200n+ 1 autoclave, 5 kg/cI11! After injecting nitrogen to the gauge pressure, the reaction was carried out at 120° C. for 1.0 hours. As shown in Table 0, acetic acid ester of cyclohexanol was produced in high yield.
実施例6
反応温度を200°Cとした以外は実施例5と全く同一
の反応条件でシクロヘキセンと酢酸の付加反応を行った
0表に示した様に非常に高い収率で酢酸シクロヘキシル
が得られた。Example 6 The addition reaction of cyclohexene and acetic acid was carried out under the same reaction conditions as in Example 5 except that the reaction temperature was 200°C. As shown in Table 0, cyclohexyl acetate was obtained in a very high yield. Ta.
第 1 表
表中のCy−Hexはシクロヘキセン、Cy−Hex−
Oacは酢酸シクロヘキシルを表す。Cy-Hex in Table 1 is cyclohexene, Cy-Hex-
Oac represents cyclohexyl acetate.
発明の効果
本発明によれば、触媒を用いて酢酸とシクロヘキセンの
付加反応を効率よく遂行しシクロヘキサノールの酢酸エ
ステルである酢酸シクロヘキシルを高収率かつ高選択率
で取得する事が可能である。Effects of the Invention According to the present invention, it is possible to efficiently carry out the addition reaction between acetic acid and cyclohexene using a catalyst, and to obtain cyclohexyl acetate, which is the acetate ester of cyclohexanol, in high yield and high selectivity.
特許出願人 三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.
Claims (3)
シルを製造する方法において、酸化ジルコニウムの硫酸
担持物と硫酸の存在下に反応を行う事を特徴とする酢酸
シクロヘキシルの製造方法。(1) A method for producing cyclohexyl acetate by adding acetic acid to cyclohexene, which is characterized in that the reaction is carried out in the presence of sulfuric acid-supported zirconium oxide and sulfuric acid.
ニウムと硫酸を反応させた後、焼成処理したものである
請求項1に記載の方法。(2) The method according to claim 1, wherein the zirconium oxide supported on sulfuric acid is obtained by reacting zirconium hydroxide with sulfuric acid and then firing the product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2147231A JPH0441460A (en) | 1990-06-07 | 1990-06-07 | Production of cyclohexyl acetate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2147231A JPH0441460A (en) | 1990-06-07 | 1990-06-07 | Production of cyclohexyl acetate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0441460A true JPH0441460A (en) | 1992-02-12 |
Family
ID=15425538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2147231A Pending JPH0441460A (en) | 1990-06-07 | 1990-06-07 | Production of cyclohexyl acetate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0441460A (en) |
-
1990
- 1990-06-07 JP JP2147231A patent/JPH0441460A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5463119A (en) | Recycling process for the production of adipic acid and other aliphatic dibasic acids | |
EP0562105B1 (en) | Process for preparing 2,6-naphthalenedicarboxylic acid | |
US2723994A (en) | Oxidation of xylene and toluic acid mixtures to phthalic acids | |
JP2021528377A (en) | Method for preparing dicarboxylic acid | |
US4287357A (en) | Process for the production of 6-hydroxy-2-naphthoic acid | |
CN112334439A (en) | Process for isomerizing cyclohexane dicarboxylic acids | |
JP3303173B2 (en) | Method for producing trimellitic acid | |
JPS58219944A (en) | Supported catalyst containing cobalt and production thereof | |
JPH0441460A (en) | Production of cyclohexyl acetate | |
KR0131203B1 (en) | Process for the production of ñò-butyrolactone | |
JPH04226940A (en) | Production of cyclohexyl acetate | |
JPH05163188A (en) | Production of ether compounds | |
JPH08119892A (en) | Production of hydroxyaromatic compound | |
JPS6327446A (en) | Method for recovering useful substance form phenol distillation residue | |
JPH06211744A (en) | Production of high-purity dimethyl 4,4'-biphenyldicarboxylate | |
JPS62258335A (en) | Production of methyl isobutyl ketone | |
CN1180587A (en) | Synthetic method for titaniam silicon molecular sieve | |
JPH0516419B2 (en) | ||
JPS61112040A (en) | Production of phenylacetaldehyde | |
JPH05155811A (en) | Production of carboxylic acid cyclohexyl ester | |
EP0083140B1 (en) | Process for the decarboxylative oxidation of a benzene monocarboxylic acid | |
JP2000344699A (en) | Production of bisphenol a | |
JP3927835B2 (en) | Process for producing iodinated aromatic compound diacetate | |
JPS6317833A (en) | Dehydration of methylphenylcarbinol | |
CN116764673A (en) | Modified molecular sieve catalyst and preparation method and application thereof |