JPH0440602B2 - - Google Patents
Info
- Publication number
- JPH0440602B2 JPH0440602B2 JP17739383A JP17739383A JPH0440602B2 JP H0440602 B2 JPH0440602 B2 JP H0440602B2 JP 17739383 A JP17739383 A JP 17739383A JP 17739383 A JP17739383 A JP 17739383A JP H0440602 B2 JPH0440602 B2 JP H0440602B2
- Authority
- JP
- Japan
- Prior art keywords
- mixing chamber
- air
- supply pipe
- fuel
- combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000446 fuel Substances 0.000 claims description 39
- 238000002485 combustion reaction Methods 0.000 claims description 37
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 description 11
- 239000002737 fuel gas Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C15/00—Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Silencers (AREA)
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は燃焼室内で空気と燃料との混合気の
燃焼が間欠的に繰り返されるパルス燃焼装置の改
良に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a pulse combustion device in which combustion of a mixture of air and fuel is intermittently repeated in a combustion chamber.
第1図はパルス燃焼装置全体の概略構成を示す
もので、1は燃焼室、2はこの燃焼室1の上流側
に配設された円筒状の混合室である。この混合室
2には空気供給管3および燃料供給管4の各一端
がそれぞれ連結されている。また、空気供給管3
には吸気マフラ5および空気室6内の空気バルブ
7を介して空気が供給されるようになつている。
さらに、燃料供給管4にはクツシヨンタンク8お
よび燃料バルブ9を介して燃料ガスが供給される
ようになつている。そして、空気供給管3および
燃料供給管4を介して混合室2内に導入された空
気および燃料ガスはこの混合室2内で混合され、
燃焼室1内で爆発燃焼されるようになつている。
この場合、始動時には送風フアン10によつて空
気供給管3内に空気が供給されるとともに、混合
室2内で混合された空気と燃料ガスとの混合気は
イグナイタ11によつて着火され、燃焼室1内で
爆発燃焼されるようになつている。そして、始動
後は空気バルブ7および燃料バルブ9が間欠的に
開閉して空気および燃料が間欠的に供給されると
ともに、燃焼室1内の高温状態の残留ガスや内壁
部等との接触によつて燃焼室1内に供給された混
合気が着火され、爆発燃焼がパルス的に繰り返さ
れるようになつている。また、燃焼室1には尾管
12が連結されている。そして、燃焼室1内の排
気ガスは尾管10からデカツプラ13、熱交換器
14および排気マフラ15を介して外部に排出さ
れるようになつている。なお、16は混合室2内
に挿入されたフレームロツドである。
FIG. 1 shows a schematic configuration of the entire pulse combustion apparatus, in which 1 is a combustion chamber, and 2 is a cylindrical mixing chamber disposed upstream of this combustion chamber 1. In FIG. One end of each of an air supply pipe 3 and a fuel supply pipe 4 are connected to the mixing chamber 2. In addition, air supply pipe 3
Air is supplied through an intake muffler 5 and an air valve 7 in an air chamber 6.
Further, fuel gas is supplied to the fuel supply pipe 4 via a cushion tank 8 and a fuel valve 9. The air and fuel gas introduced into the mixing chamber 2 via the air supply pipe 3 and the fuel supply pipe 4 are mixed within this mixing chamber 2,
Explosive combustion occurs within the combustion chamber 1.
In this case, at the time of startup, air is supplied into the air supply pipe 3 by the blower fan 10, and the mixture of air and fuel gas mixed in the mixing chamber 2 is ignited by the igniter 11 and combusted. It is designed to explode and burn inside chamber 1. After starting, the air valve 7 and the fuel valve 9 are intermittently opened and closed to supply air and fuel intermittently, and due to contact with the high temperature residual gas in the combustion chamber 1 and the inner wall, etc. The air-fuel mixture supplied into the combustion chamber 1 is then ignited, and explosive combustion is repeated in a pulsed manner. Further, a tail pipe 12 is connected to the combustion chamber 1. The exhaust gas in the combustion chamber 1 is discharged from the tail pipe 10 to the outside via a decoupler 13, a heat exchanger 14, and an exhaust muffler 15. Note that 16 is a frame rod inserted into the mixing chamber 2.
〔背景技術の問題点〕
空気供給管3および燃料供給管4は第2図に示
すように円筒状の混合室2の中心線に対し互いに
直角方向に連結されていたので、混合室2内に導
入された空気流および燃料ガス流は第2図中に矢
印で示すように略直交する状態で当たり、混合さ
れるようになつている。そのため、混合室2内に
おける混合気の流れが乱れ、混合室2側から燃焼
室1側への混合気の流入が遅れて混合気が混合室
2内で充満し易いので、メタン系燃料のように燃
焼速度が比較的遅い燃料の場合には問題がない
が、水素系燃料のように燃焼速度が比較的速い燃
料の場合には燃焼室1に送り込まれる前に混合室
2内で大部分の混合気が燃焼されてしまう問題が
あつた。このように、混合室2内で混合気の燃焼
が行なわれた場合には混合室2の周壁面が高温状
態に加熱され、水冷等の冷却手段が施されていな
い場合には混合室2の周壁面が赤熱するので、混
合室2からの放熱によつて燃焼効率が低下すると
ともに、混合室2の周囲への放熱により、混合室
2の周囲に配設されている各種部材の破損や火災
発生等のおそれがあつた。また、空気供給管3か
ら混合室2内に送り出された空気は混合室2の周
壁面に略垂直に当たるので、空気の流入抵抗が大
きくなり、空気供給管3側から混合室2側への空
気の供給を円滑に行なえない問題があつた。その
ため、空気の供給量が不足して、空気不足の状態
の不完全燃焼が起こり易く、有害な一酸化炭素
(CO)が発生し易い問題もあつた。[Problems in the Background Art] As shown in FIG. The introduced air flow and fuel gas flow meet in a substantially orthogonal state as shown by the arrows in FIG. 2, and are mixed. As a result, the flow of the air-fuel mixture in the mixing chamber 2 is disturbed, and the inflow of the air-fuel mixture from the mixing chamber 2 side to the combustion chamber 1 side is delayed, making it easy for the air-fuel mixture to fill up in the mixing chamber 2. There is no problem in the case of fuel with a relatively slow burning rate, but in the case of a fuel with a relatively fast burning rate such as hydrogen-based fuel, most of the There was a problem with the mixture being burned. In this way, when the air-fuel mixture is combusted in the mixing chamber 2, the surrounding wall surface of the mixing chamber 2 is heated to a high temperature state, and when no cooling means such as water cooling is provided, the surrounding wall surface of the mixing chamber 2 is heated to a high temperature. Since the surrounding wall surface becomes red-hot, the heat radiated from the mixing chamber 2 reduces combustion efficiency, and the heat radiated to the surroundings of the mixing chamber 2 may cause damage to various components installed around the mixing chamber 2 or a fire. There was a risk of an outbreak. Furthermore, since the air sent into the mixing chamber 2 from the air supply pipe 3 hits the peripheral wall surface of the mixing chamber 2 almost perpendicularly, the air inflow resistance becomes large, and the air flows from the air supply pipe 3 side to the mixing chamber 2 side. There was a problem that the supply could not be carried out smoothly. As a result, there was a problem in that the amount of air supplied was insufficient and incomplete combustion was likely to occur due to lack of air, resulting in the generation of harmful carbon monoxide (CO).
この発明は混合室壁面の温度上昇を防止するこ
とができるとともに、空気供給管から混合室内へ
の空気の供給を円滑化することができ、燃焼特性
の向上を図ることができるパルス燃焼装置を提供
することを目的とするものである。
The present invention provides a pulse combustion device that can prevent a temperature rise on the wall surface of a mixing chamber, and can also smooth the supply of air from an air supply pipe into the mixing chamber, thereby improving combustion characteristics. The purpose is to
円筒状の混合室の内壁面接線方向に沿つて空気
供給管を連結するとともに、この空気供給管から
混合室内に導入される空気によつて混合室内に形
成される渦流の旋回方向と対向する混合室内壁面
の接線方向に燃料供給管を連結するようにしたも
のである。
Air supply pipes are connected along the surface plane of the inner wall of the cylindrical mixing chamber, and the mixing direction is opposite to the swirling direction of the vortex formed in the mixing chamber by the air introduced into the mixing chamber from the air supply pipe. The fuel supply pipe is connected in the tangential direction of the indoor wall surface.
第3図乃至第5図はこの発明の一実施例を示す
ものである。なお、第3図および第4図はパルス
燃焼装置の要部構成を示すもので、21は円筒状
の混合室である。この混合室21は有底円筒状の
もので、この混合室21の開口端側は燃焼室22
に連結されている。また、混合室21の閉塞端側
の周壁面には空気供給管23および燃料供給管2
4がそれぞれ連結されている。この場合、空気供
給管23は混合室21の内壁面の接線方向に沿つ
て連結されており、空気供給管23から混合室2
1内に導入された空気は第3図および第4図中に
矢印で示すように混合室21の内壁面に沿つて旋
回し、混合室21内に渦流が形成されるようにな
つている。さらに、前記燃料供給管24は空気供
給管23から混合室21内に導入される空気によ
つて形成される渦流の旋回方向と対向する混合室
21の接線方向に連結されている。また、混合室
21の周壁面には空気供給管23および燃料供給
管24の両中心線の交点位置に着火用のイズナイ
タ25が取付けられている。
FIGS. 3 to 5 show an embodiment of the present invention. In addition, FIG. 3 and FIG. 4 show the main part structure of a pulse combustion apparatus, and 21 is a cylindrical mixing chamber. This mixing chamber 21 has a cylindrical shape with a bottom, and the open end side of this mixing chamber 21 is connected to a combustion chamber 22.
is connected to. Further, an air supply pipe 23 and a fuel supply pipe 2 are provided on the peripheral wall surface on the closed end side of the mixing chamber 21.
4 are connected to each other. In this case, the air supply pipe 23 is connected along the tangential direction of the inner wall surface of the mixing chamber 21.
The air introduced into the mixing chamber 21 swirls along the inner wall surface of the mixing chamber 21 as shown by arrows in FIGS. 3 and 4, and a vortex is formed within the mixing chamber 21. Furthermore, the fuel supply pipe 24 is connected in the tangential direction of the mixing chamber 21, which is opposite to the swirling direction of the vortex formed by the air introduced into the mixing chamber 21 from the air supply pipe 23. Further, an igniter 25 for ignition is attached to the peripheral wall surface of the mixing chamber 21 at the intersection of the center lines of the air supply pipe 23 and the fuel supply pipe 24.
そこで、上記構成のものにあつては始動時には
フアン10(第1図に示す)によつて供給された
空気が空気供給管23から混合室21内に導入さ
れるとともに、燃料供給管24から混合室21内
に燃料ガスが導入される。このように空気供給管
23から混合室21内に導入された空気は混合室
21の内壁面に沿つて第3図中で時計回り方向に
旋回し、燃料供給管24から混合室21内に導入
された燃料ガスは混合室21の内壁面に沿つて第
3図中で反時計方向に旋回する。そのため、混合
室21内に導入された空気および燃料ガスは空気
供給管23および燃料供給管24の両中心線の交
点位置で接触し、混合されるので、空気供給管2
3および燃料供給管24の両中心線の交点位置に
配置されたイグナイタ25によつて確実に着火さ
れ、パルス燃焼が始動されるようになつている。
また、始動後は燃料室22内の混合気の爆発燃焼
にともない第1図に示す空気バルブ7および燃料
バルブ9が間欠的に開閉して空気および燃料が間
欠的に混合室21内に供給される。この場合、始
動後は空気供給管23から混合室21内に導入さ
れる空気の流入量が燃料供給管24から混合室2
1内に導入される燃料の流入量に比べて極端に大
きくなるので、第3図中に矢印で示すように空気
供給管23から混合室21内に導入される空気に
よつて混合室21の内壁面に沿つて旋回する渦流
が形成される。そして、この混合室21内で空気
が旋回しながら燃料ガスと混合されるようになつ
ている。そして、混合室21から燃焼室22側に
送られた混合気は燃焼室22内の高温状態の残留
ガスや内壁部等との接触によつて着火されて爆発
燃焼され、続いて同様に燃焼室22内で混合気の
爆発燃焼がパルス的に繰り返されるようになつて
いる。 Therefore, in the case of the above structure, at the time of starting, air supplied by the fan 10 (shown in FIG. 1) is introduced into the mixing chamber 21 from the air supply pipe 23, and the air is mixed from the fuel supply pipe 24. Fuel gas is introduced into the chamber 21 . The air thus introduced into the mixing chamber 21 from the air supply pipe 23 turns clockwise in FIG. 3 along the inner wall surface of the mixing chamber 21, and is introduced into the mixing chamber 21 from the fuel supply pipe 24. The fuel gas thus generated swirls counterclockwise in FIG. 3 along the inner wall surface of the mixing chamber 21. Therefore, the air and fuel gas introduced into the mixing chamber 21 come into contact at the intersection of the center lines of the air supply pipe 23 and the fuel supply pipe 24, and are mixed.
An igniter 25 placed at the intersection of the center lines of fuel supply tube 3 and fuel supply pipe 24 reliably ignites the fuel and starts pulse combustion.
Further, after starting, as the air-fuel mixture in the fuel chamber 22 explodes and burns, the air valve 7 and fuel valve 9 shown in FIG. Ru. In this case, after starting, the amount of air introduced into the mixing chamber 21 from the air supply pipe 23 is increased from the fuel supply pipe 24 to the mixing chamber 21.
1, the amount of air introduced into the mixing chamber 21 from the air supply pipe 23 is extremely large compared to the amount of fuel introduced into the mixing chamber 21, as shown by the arrow in FIG. A swirling vortex flow is formed along the inner wall surface. The air is swirled within this mixing chamber 21 and mixed with the fuel gas. The air-fuel mixture sent from the mixing chamber 21 to the combustion chamber 22 side is ignited by contact with the high-temperature residual gas in the combustion chamber 22, the inner wall, etc., and explodes and burns. 22, explosion and combustion of the air-fuel mixture is repeated in a pulsed manner.
かくして、上記構成のものにあつては空気供給
管23は混合室21の内壁面接続線方向に沿つて
連結されており、空気供給管23から混合室21
内に導入される空気は混合室21の内壁面に沿つ
て旋回し、混合室21内に渦流が形成されるよう
になつているので、パルス燃焼中は空気供給管2
3から混合室21内に導入される低温空気によつ
て形成される旋回流によつて混合室21の内壁面
を冷却することができる。そのため、第5図の燃
焼量と混合室21の壁面温度との関係を示す関係
図中で、実線で示すように点線で示す従来構成の
場合に比べて混合室21の壁面温度の上昇を防止
することができ、従来に比べて燃焼効率の向上が
図れるとともに、混合室21の周囲に配設された
各種部材の破損や火災発生等を防止することがで
きる。さらに、空気供給管23から混合室21内
に導入された空気は混合室21の内壁面に沿つて
旋回するので、従来のように混合室の内壁面に空
気が略垂直に当てられる場合に比べて空気の流入
抵抗を低減することができ、空気の供給を円滑化
することができる。そのため、空気の供給量の不
足による不完全燃料の発生を防止することができ
る。また、混合室21内に形成される空気の渦流
によつて空気と燃料ガスとの混合を促進すること
ができ、燃焼特性を一層改良することができる。 Thus, in the above configuration, the air supply pipe 23 is connected along the inner wall connection line direction of the mixing chamber 21, and the air supply pipe 23 is connected to the mixing chamber 21.
The air introduced into the mixing chamber 21 swirls along the inner wall surface of the mixing chamber 21 and a vortex is formed within the mixing chamber 21. During pulse combustion, the air supply pipe 2
The inner wall surface of the mixing chamber 21 can be cooled by the swirling flow formed by the low-temperature air introduced into the mixing chamber 21 from the mixing chamber 3 . Therefore, in the relationship diagram showing the relationship between the combustion amount and the wall temperature of the mixing chamber 21 in FIG. 5, as shown by the solid line, the increase in the wall surface temperature of the mixing chamber 21 is prevented compared to the case of the conventional configuration shown by the dotted line. As a result, combustion efficiency can be improved compared to the conventional method, and damage to various members disposed around the mixing chamber 21 and occurrence of fire can be prevented. Furthermore, since the air introduced into the mixing chamber 21 from the air supply pipe 23 swirls along the inner wall surface of the mixing chamber 21, compared to the conventional case where the air is applied approximately perpendicularly to the inner wall surface of the mixing chamber. This can reduce air inflow resistance and facilitate air supply. Therefore, generation of incomplete fuel due to insufficient air supply can be prevented. Further, the vortex flow of air formed in the mixing chamber 21 can promote mixing of air and fuel gas, and the combustion characteristics can be further improved.
なお、この発明は上記実施例に限定されるもの
ではなく、この発明と要旨を逸脱しない範囲で
種々変形実施できることは勿論である。 It should be noted that this invention is not limited to the above embodiments, and it goes without saying that various modifications can be made without departing from the spirit of the invention.
燃焼室の上流側に配設された混合室の円筒状の
内壁面の接線方向に沿つて空気供給管を連結する
とともに、この空気供給管から混合室内に導入さ
れる空気によつて混合室内に形成される渦流の旋
回方向と対向する混合室内壁面の接線方向に燃料
供給管を連結したので、混合室壁面の温度上昇を
防止することができるとともに、空気供給管から
混合室内への供給を円滑化することができ、燃焼
特性の向上を図ることができる。
An air supply pipe is connected along the tangential direction of the cylindrical inner wall surface of the mixing chamber arranged on the upstream side of the combustion chamber, and the air introduced into the mixing chamber from this air supply pipe is used to generate air inside the mixing chamber. Since the fuel supply pipe is connected in the tangential direction of the wall surface of the mixing chamber, which is opposite to the swirling direction of the vortex flow that is formed, it is possible to prevent the temperature of the wall surface of the mixing chamber from rising, and the supply from the air supply pipe to the mixing chamber is smooth. It is possible to improve the combustion characteristics.
第1図はパルス燃焼装置全体の概略構成図、第
2図は従来例を示す要部の横断面図、第3図乃至
第5図はこの発明の一実施例を示すもので、第3
図は要部の横断面図、第4図は同縦断面図、第5
図は燃焼量と混合室壁面温度との関係を示す関係
図である。
21……混合室、22……燃焼室、23……空
気供給管、24……燃料供給管。
FIG. 1 is a schematic configuration diagram of the entire pulse combustion device, FIG. 2 is a cross-sectional view of main parts showing a conventional example, FIGS. 3 to 5 show an embodiment of the present invention, and FIG.
The figure is a cross-sectional view of the main part, Figure 4 is a longitudinal cross-sectional view of the same, and Figure 5 is a cross-sectional view of the main part.
The figure is a relationship diagram showing the relationship between the combustion amount and the wall surface temperature of the mixing chamber. 21...Mixing chamber, 22...Combustion chamber, 23...Air supply pipe, 24...Fuel supply pipe.
Claims (1)
るとともに、この混合室に空気供給管および燃料
供給管がそれぞれ連結され、これらの空気供給管
および燃料供給管を介して空気および燃料が前記
混合室内にそれぞれ間欠的に導入されて混合さ
れ、前記燃焼室内で間欠的に燃焼されるパルス燃
焼装置において、前記混合室の円筒状の内壁面の
接線方向に沿つて前記空気供給管を連結するとと
もに、前記空気供給管から前記混合室内に導入さ
れる空気によつて前記混合室内に形成される渦流
の旋回方向と対向する前記混合室内壁面の接線方
向に前記燃料供給管を連結したことを特徴とする
パルス燃焼装置。1 A cylindrical mixing chamber is provided upstream of the combustion chamber, and an air supply pipe and a fuel supply pipe are connected to this mixing chamber, respectively, and air and fuel are supplied through these air supply pipes and fuel supply pipes. In the pulse combustion device in which the air is intermittently introduced into the mixing chamber and mixed, and is intermittently combusted within the combustion chamber, the air supply pipe is connected along a tangential direction of a cylindrical inner wall surface of the mixing chamber. and the fuel supply pipe is connected in a tangential direction of a wall surface of the mixing chamber, which is opposite to a swirling direction of a vortex formed in the mixing chamber by air introduced into the mixing chamber from the air supply pipe. A pulse combustion device featuring:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17739383A JPS6069414A (en) | 1983-09-26 | 1983-09-26 | Pulse combustion device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17739383A JPS6069414A (en) | 1983-09-26 | 1983-09-26 | Pulse combustion device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6069414A JPS6069414A (en) | 1985-04-20 |
JPH0440602B2 true JPH0440602B2 (en) | 1992-07-03 |
Family
ID=16030147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17739383A Granted JPS6069414A (en) | 1983-09-26 | 1983-09-26 | Pulse combustion device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6069414A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5800153A (en) * | 1995-07-07 | 1998-09-01 | Mark DeRoche | Repetitive detonation generator |
JP5106967B2 (en) * | 2007-09-28 | 2012-12-26 | 三菱重工業株式会社 | Combustion ash accumulation prevention device and duct equipped with the same |
-
1983
- 1983-09-26 JP JP17739383A patent/JPS6069414A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6069414A (en) | 1985-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5555867A (en) | Swirl flow precombustion chamber | |
US2829731A (en) | Combination muffler and exhaust gas after-burner and method of burning exhaust gases | |
US3093962A (en) | Valveless jet engine with inertia tube | |
JPH01306705A (en) | Pulse burner | |
JPS6355350A (en) | Pulse-jet-nozzle | |
JPS6093211A (en) | Pulse burning device | |
US4568264A (en) | Combustion chamber construction | |
US3813879A (en) | After-burner for an internal combustion engine | |
JPH0440602B2 (en) | ||
JPS6159108A (en) | Pulsating burner | |
US2492947A (en) | Incinerator for products of combustion engines, furnaces, and the like | |
JPS6215736B2 (en) | ||
US3744250A (en) | After-burner for an internal combustion engine | |
JP2667844B2 (en) | High speed injection burner | |
JPS59167621A (en) | Catalyst burner | |
JP2653521B2 (en) | Pulse burner | |
CN214198697U (en) | Direct-fired tail gas treatment system | |
CA1211698A (en) | Pulse combustor | |
JPS6314170Y2 (en) | ||
JPS599153Y2 (en) | Pipe gas burner | |
KR200282813Y1 (en) | Spark plug for ultra lean mixture | |
JPH0159484B2 (en) | ||
JPS6093210A (en) | Pulse burning type heating device | |
JP2559204Y2 (en) | Combustor | |
JPH0324966Y2 (en) |