JPH0440438B2 - - Google Patents

Info

Publication number
JPH0440438B2
JPH0440438B2 JP59239413A JP23941384A JPH0440438B2 JP H0440438 B2 JPH0440438 B2 JP H0440438B2 JP 59239413 A JP59239413 A JP 59239413A JP 23941384 A JP23941384 A JP 23941384A JP H0440438 B2 JPH0440438 B2 JP H0440438B2
Authority
JP
Japan
Prior art keywords
titanium
plating
nickel
nickel plating
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59239413A
Other languages
Japanese (ja)
Other versions
JPS61119695A (en
Inventor
Kyoshi Kita
Yasumasa Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP23941384A priority Critical patent/JPS61119695A/en
Publication of JPS61119695A publication Critical patent/JPS61119695A/en
Publication of JPH0440438B2 publication Critical patent/JPH0440438B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明はチタン及びチタン合金の表面にめつき
を施す方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for plating the surfaces of titanium and titanium alloys.

〈従来の技術〉 チタン及びチタン合金は軽量であり、また強
度、破壊靭性を有していて、更に各種の酸、アル
カリその他の薬品に対して優れた耐蝕性を有する
為に近年急速に利用される様になつてきた。しか
しチタン及びチタン合金の表面は空気又は水が接
触すると、薄い酸化皮膜が生成され、通常の方法
ではめつきすることは困難であつた。
<Prior art> Titanium and titanium alloys are lightweight, have strength and fracture toughness, and have been rapidly used in recent years because they have excellent corrosion resistance against various acids, alkalis, and other chemicals. It's starting to look like this. However, when the surfaces of titanium and titanium alloys come into contact with air or water, a thin oxide film is formed, making it difficult to plate them using conventional methods.

これまでチタン及びチタン合金へのめつき方法
については多くの研究がなされ、かつ発表されて
いるが密着が不充分であること、製造方法に再現
性がないこと、高い処理温度が必要なこと、物性
が変化すること等の問題があり、各種工業への利
用の道が開かれていなかつた。
Many studies have been conducted and published on plating methods for titanium and titanium alloys, but there are problems such as insufficient adhesion, lack of reproducibility in manufacturing methods, and the need for high processing temperatures. Due to problems such as changes in physical properties, it has not been possible to use it in various industries.

従つてチタン及びチタン合金の表面に物理的な
物質を損なうことなく強い密着性を有するめつき
を施すことは困難とされていた。今日までに弗酸
を含む鉱酸浴や弗酸を含むクローム酸浴への浸漬
によるエツチングを前処理として電気めつきし、
更に高温熱処理が発表されているが、しかしその
いずれもが工業的な機械加工に耐える密着性及び
再現性において欠点を有しており満足すべきめつ
き方法は開発されていなかつた。
Therefore, it has been difficult to apply plating with strong adhesion to the surfaces of titanium and titanium alloys without damaging the physical properties. To date, electroplating has been performed by immersion in a mineral acid bath containing hydrofluoric acid or a chromic acid bath containing hydrofluoric acid as a pretreatment.
Furthermore, high-temperature heat treatments have been announced, but all of them have drawbacks in adhesion and reproducibility that can withstand industrial machining, and no satisfactory plating method has been developed.

過去のチタン及びチタン合金のめつき方法の総
説としてはプラテングサーフエイス フイニツシ
ング70、5、96〜98(1983)のマルテイン トー
マ(Martin Thoma)の記述があり、又最近に
なつては特公昭55−48586号公報に示されるチタ
ン又はチタン合金の表面処理方法が公開されてい
る。
A review of past plating methods for titanium and titanium alloys is provided by Martin Thoma in Plating Surf Ace Finishing 70, 5, 96-98 (1983), and more recently, A method for surface treatment of titanium or titanium alloy is disclosed in Japanese Patent No. -48586.

しかし、これ等のいずれの公知技術も最低450
℃又は880〜1023℃と言うチタン及びチタン合金
の物理的性質を変える長時間の高温度熱処理を必
要とするので、実用化は極めて困難であると考え
られた。
However, all of these known techniques have a minimum of 450
℃ or 880-1023℃, which requires long-term high-temperature heat treatment that changes the physical properties of titanium and titanium alloys, so it was considered extremely difficult to put it into practical use.

〈発明が解決しようとする問題点〉 本発明は従来のこれ等の欠点に鑑み開発された
ものであつて特に極めて簡単かつ確実にしかも低
温で短時間の加熱処理で実施することを可能とし
たチタン及びチタン合金のめつき方法に関するも
のである。
<Problems to be Solved by the Invention> The present invention was developed in view of these conventional drawbacks, and is particularly capable of being carried out extremely simply and reliably, and with heat treatment at low temperatures and in a short time. The present invention relates to a method for plating titanium and titanium alloys.

〈問題点を解決するための手段〉 本発明に於けるめつき工程での素材処理方法は
従来の概念にとらわれず、酸性溶液中で直流陽極
電解にてエツチング及び活性な酸化皮膜を生成処
理させ、チタン及びチタン合金上にニツケルめつ
きを行い、低温加熱処理によつて密着性を極度に
向上させためつき方法で、この方法の特徴とする
処は、その工業的利用の度合、密着の必要性に応
じて低温加熱処理を省略出来、工程を短縮させる
ことにある。
<Means for Solving the Problems> The material processing method in the plating process in the present invention is not limited to conventional concepts, but involves etching and forming an active oxide film using direct current anodic electrolysis in an acidic solution. , a plating method in which nickel plating is applied to titanium and titanium alloys, and the adhesion is extremely improved through low-temperature heat treatment.The characteristics of this method are its degree of industrial use and the need for adhesion. Depending on the nature of the process, low-temperature heat treatment can be omitted, shortening the process.

又150℃〜200℃の範囲の加熱処理は短時間で充
分であり素材の物理的性質を何等損なうことがな
く、従つて従来利用出来なかつためつき物を再度
機械加工することが可能となつた。チタン及びチ
タン合金線上に本発明の方法でニツケルめつきを
行つた素材は伸線加工が容易となり伸線された細
線上に各種金属皮膜をめつきすること、及び各種
表面加工を行うことが極めて容易となり実用化さ
れ、他の工業的分野への応用範囲も広いものがあ
る。又チタン合金はa合金、α−β合金のいずれ
も熱処理により相変態を起こし、これを利用して
強度、靭性の改良を行い、加工に際していずれも
その目的に相当した熱処理を予め行う物が多く、
再度相分解を起こす様な高温で処理することは著
しく物理的性質を損なう恐れがあり、本発明の方
法はこの解決に極めて有効であると考えられる。
In addition, heat treatment in the range of 150°C to 200°C is sufficient for a short time and does not damage the physical properties of the material in any way, making it possible to re-machine materials that were previously unavailable and sticky. . Materials obtained by nickel plating titanium and titanium alloy wires using the method of the present invention can be easily drawn, making it extremely easy to plate various metal films on the drawn thin wires and to perform various surface treatments. It has become easy to use, has been put into practical use, and has a wide range of applications in other industrial fields. In addition, titanium alloys, both a-alloy and α-β alloy, undergo phase transformation when heat treated, and this is used to improve strength and toughness, and many of them undergo heat treatment corresponding to the purpose before processing. ,
Processing at such high temperatures as to cause phase decomposition again may significantly impair physical properties, and the method of the present invention is considered to be extremely effective in solving this problem.

次に本発明に係るめつき方法について具体的に
述べると次のとおりである。
Next, the plating method according to the present invention will be specifically described as follows.

即ち本発明は98%の濃硫酸5〜50ωt%の溶液
に47%の弗酸5〜100ml/を添加した電解液を
用いて鉛、カーボン等の不溶性極板を陰極とし
て、チタン及びチタン合金を直流陽極電解するこ
とによつて前処理を施したチタン及びチタン合金
の表面に更にニツケルめつきを施す方法と、更に
上述の如く処理されたチタン及びチタン合金上の
ニツケルめつき皮膜を150〜200℃に於いて低温加
熱処理することによつて素材の物理的性質を損な
わないでめつき皮膜の密着性を更に向上せしめた
方法である。
That is, the present invention uses an electrolytic solution prepared by adding 5 to 100 ml of 47% hydrofluoric acid to a solution of 5 to 50 ωt% of 98% concentrated sulfuric acid, and uses an insoluble electrode plate such as lead or carbon as a cathode to produce titanium and titanium alloys. A method of further applying nickel plating to the surface of titanium and titanium alloys that have been pretreated by direct current anodic electrolysis, and further applying a nickel plating film on titanium and titanium alloys treated as described above to 150 to 200 This method further improves the adhesion of the plating film without impairing the physical properties of the material by performing a low-temperature heat treatment at ℃.

従つて本発明の方法は弗酸を含有する硫酸電解
溶液中で、チタン及びチタン合金を直流陽極電解
し、活性な微細孔を有する陽極酸化皮膜を生成さ
せ、その上にニツケルめつきを行い、150〜200℃
の比較的低温加熱処理を施すことにより、チタン
及びチタン合金上に極めて密着性の良いニツケル
めつきを行う方法でる。更にそのニツケルめつき
皮膜を下地として多くの金属皮膜及び加工処理が
可能なめつきの下地処理の方法でありその使用す
るニツケルめつき方法は電解浴、無電解浴と限定
されるものではない。
Therefore, the method of the present invention involves direct current anodic electrolysis of titanium and titanium alloys in a sulfuric acid electrolytic solution containing hydrofluoric acid to form an anodized film having active micropores, and then nickel plating is performed on the anodic oxide film having active micropores. 150~200℃
This is a method of producing nickel plating with extremely good adhesion on titanium and titanium alloys by subjecting it to a relatively low temperature heat treatment. Furthermore, it is a method of surface treatment for plating that allows many metal coatings and processing treatments to be performed using the nickel plating film as a base, and the nickel plating method used is not limited to an electrolytic bath or an electroless bath.

〈作用〉 本発明に係る前述のチタン及びチタン合金のめ
つき方法は次に詳述するような種々の作用があ
る。
<Function> The above-described method for plating titanium and titanium alloy according to the present invention has various functions as detailed below.

チタン及びチタン合金は一般的な性質は大いに
異なる処があるが表面の不動態化領域が広い共通
の特徴を持つている。従つて両者は表面の金属チ
タニウムが容易に酸化され、酸化皮膜を形成す
る。チタンは885℃で同素変態を起こしてCr、
Ni、Co、Cu、Si等の元素が含まれ、更にV、
Mn等が添加され合金化される。又その合金の多
くは数%のAlを含有する。いずれもその表面の
チタン及びチタン合金と各金属は硫酸+弗酸の電
解液虫で電解すると当初の酸化皮膜は溶解し、新
しく障壁形皮膜が形成される。この障壁形皮膜は
弗酸により皮膜が選択的に溶解し、微孔を生じ、
多孔性構造の非常に活性な淡茶色酸化皮膜が形成
される。次いで多孔質構造の陽極酸化皮膜上にニ
ツケルめつきを行うとニツケル粒子が多孔構造と
その活性化に左右されて密着性あるめつきを得る
ことが出来る。更に加熱処理を行うと、多孔性酸
化皮膜と金属ニツケル間に拡散が起こりアンカー
効果が発生して密着性の良いめつき皮膜が形成さ
れる。この理由は電解初期に生成した酸化皮膜に
電解液中に弗酸が作用し再溶解し、微孔を作る際
に微量な弗酸が微孔中に残留し、最後の低温加熱
処理によりチタンと反応し、フツ化チタン
(TiF4)が生成し、更にアンカー効果を向上させ
ているものと推定される。このフツ化チタンの生
成温度は150℃以上とされているので、前記工程
中で確実にフツ化チタンが生成されたものと考え
られる。
Although titanium and titanium alloys have very different general properties, they share a common feature of large passivated areas. Therefore, the metallic titanium on the surface of both is easily oxidized to form an oxide film. Titanium undergoes allotropic transformation at 885℃ to form Cr,
Contains elements such as Ni, Co, Cu, and Si, as well as V,
Mn etc. are added and alloyed. Also, many of these alloys contain several percent Al. When titanium, titanium alloys, and each metal on the surface are electrolyzed with an electrolytic solution of sulfuric acid and hydrofluoric acid, the original oxide film is dissolved and a new barrier type film is formed. This barrier type film is selectively dissolved by hydrofluoric acid, creating micropores.
A highly active light brown oxide film with a porous structure is formed. Next, when nickel plating is performed on the porous anodic oxide film, adhesive plating can be obtained because the nickel particles are influenced by the porous structure and its activation. Further heat treatment causes diffusion between the porous oxide film and the metal nickel, creating an anchor effect and forming a plating film with good adhesion. The reason for this is that hydrofluoric acid acts on the oxide film formed in the early stage of electrolysis and redissolves it in the electrolyte, leaving a small amount of hydrofluoric acid in the micropores when creating micropores, and the final low-temperature heat treatment removes the titanium. It is presumed that the reaction occurs and titanium fluoride (TiF 4 ) is produced, further improving the anchoring effect. Since the generation temperature of this titanium fluoride is said to be 150°C or higher, it is considered that titanium fluoride was definitely generated during the above process.

〈実施例〉 実施例 1 濃硫酸100ml/溶液に弗酸(47%)10ml/
を加えた液を電解液として、鉛板を使用し、常温
で電圧5ボルトでJIS H2151、TW35チタン線2
種を1分間陽極電解したチタン線上にNi
(NH2SO324H2O350〜450g/、NiCl、
6H2O5g/、H3BO330〜40g/、温度40〜
60℃、陰極電流密度1〜10A/dm2、PH4.0〜4.5、
陽極デポラライズドニツケルアノードを使用して
電解ニツケルめつきを10分間行いチタン上のニツ
ケルめつき線を低温加熱処理した物としない物と
の比較を行つた。加熱処理は150℃10分、200℃5
分、250℃1分、300℃、400℃1分と夫々同様の
密着テストの対象とした。
<Example> Example 1 100ml of concentrated sulfuric acid/10ml of hydrofluoric acid (47%)/
JIS H2151, TW35 titanium wire 2 using a lead plate as an electrolyte and a voltage of 5 volts at room temperature.
Ni is deposited on a titanium wire that has been anodically electrolyzed for 1 minute.
( NH2SO3 ) 24H2O350 ~ 450g/, NiCl ,
6H 2 O 5g/, H 3 BO 3 30~40g/, temperature 40~
60℃, cathode current density 1~10A/ dm2 , PH4.0~4.5,
Electrolytic nickel plating was performed for 10 minutes using a depolarized nickel anode, and nickel plated wires on titanium were compared with and without low-temperature heat treatment. Heat treatment: 150℃ for 10 minutes, 200℃ for 5 minutes
They were subjected to the same adhesion test at 250°C for 1 minute, 300°C, and 400°C for 1 minute.

又上記熱処理は同一として、又ニツケルめつき
の同一化し、硫酸濃度を一定とした中へ弗酸(47
%)を5〜100ml/と変化させ、試片を作成し
た。評価の方法としては実用的な方法を採用、
JIS H2151、TW35チタンの5mmφ線上に10μの
割合でニツケルを電着し、ダイスにて伸線し1mm
φとしそのニツケル皮膜が0.5〜2.5μまで均一に
皮膜されているか、外観及びクラツクを測定評価
した。密着不良の物は伸線出来ず、粉末状に剥離
することで明確に判定することが出来る。
The heat treatment was the same as above, the nickel plating was the same, and the sulfuric acid concentration was kept constant.
%) was varied from 5 to 100 ml/piece to prepare specimens. Adopting practical methods for evaluation,
JIS H2151, TW35 titanium 5mmφ wire is electrodeposited with nickel at a rate of 10μ, and drawn with a die to 1mm
Appearance and cracks were measured and evaluated to see if the nickel coating on the φ was uniformly coated to a thickness of 0.5 to 2.5μ. Items with poor adhesion cannot be drawn, and can be clearly determined by peeling off into powder.

実施例 2 活性化電解浴の条件を実施例1と同様に変化さ
せ、又加熱条件を同実施例1と同様に変化させ、
ニツケル電解浴をNiSO47H2O250g/、
NiCl26H2O40g/、H3BO330g/、PH4.0〜
4.5、温度40〜60℃、陰極電流密度1〜10A/d
m2、めつき時間を10分間行いニツケルめつきの密
着性を判定したが、いずれも良好な結果が得られ
た。
Example 2 The conditions of the activation electrolytic bath were changed in the same manner as in Example 1, and the heating conditions were changed in the same manner as in Example 1,
NiSO 4 7H 2 O 250g/,
NiCl 2 6H 2 O 40g/, H 3 BO 3 30g/, PH4.0~
4.5, temperature 40~60℃, cathode current density 1~10A/d
m 2 and plating time was performed for 10 minutes to determine the adhesion of nickel plating, and good results were obtained in all cases.

実施例 3 活性化電解浴の条件を実施例1と同様に変化さ
せ、又加熱条件を同実施例1と同様に変化させ、
SnCl25H2O30g/、PdCl20.1g/、HCl100
ml/にて活性化を行い硫酸10%溶液にて増感処
理を行いNiCl26H2O30g/、NaPH2O2
H2O10g/、クエン酸10g/の無電解ニツ
ケルめつき液を用いPH4〜6、温度80℃でニツケ
ルめつきを行い密着性を判定したがいずれも良好
な結果が得られた。
Example 3 The conditions of the activation electrolytic bath were changed in the same manner as in Example 1, and the heating conditions were changed in the same manner as in Example 1,
SnCl 2 5H 2 O30g/, PdCl 2 0.1g/, HCl100
Activated with 10% sulfuric acid solution and sensitized with 30g of NiCl 2 6H 2 O, NaPH 2 O 2 ,
Nickel plating was performed using an electroless nickel plating solution containing 10 g of H 2 O and 10 g of citric acid at a pH of 4 to 6 and a temperature of 80° C. to determine adhesion, and good results were obtained in all cases.

実施例 4 活性化電解浴の条件を実施例1と同様に変化さ
せ、又加熱条件を同実施例1と同様に変化させ、
ニツケル電解浴をNiCl26H2O100〜150g/、
H3BO330g/、PH3.5〜4.0、温度40℃〜60℃、
陰極電流密度1〜10A/dm2、めつき時間を5〜
10分間行いニツケルめつきの密着性を判定した
が、いずれも良好な結果が得られた。
Example 4 The conditions of the activation electrolytic bath were changed in the same manner as in Example 1, and the heating conditions were changed in the same manner as in Example 1.
NiCl 2 6H 2 O 100-150g/,
H 3 BO 3 30g/, PH3.5~4.0, temperature 40℃~60℃,
Cathode current density 1~10A/ dm2 , plating time 5~
The adhesion of the nickel plating was evaluated after 10 minutes, and good results were obtained in all cases.

実施例 5 活性化電解浴の条件を実施例1と同様に変化さ
せ、加熱条件を同実施例1と同様に変化させ、チ
タン素材をJIS H2151、TW28、TW49の1種及
び3種線についても同様にスルフアミン酸ニツケ
ルめつき浴を用いた電解ニツケルめつき皮膜の密
着性をテストしたがいずれも良好な結果が得られ
た。
Example 5 The conditions of the activation electrolytic bath were changed in the same manner as in Example 1, the heating conditions were changed in the same manner as in Example 1, and the titanium material was also used for type 1 and type 3 wires of JIS H2151, TW28, and TW49. Similarly, we tested the adhesion of electrolytic nickel plating films using a nickel sulfamic acid plating bath, and good results were obtained in all cases.

実施例 6 活性化電解浴の条件を実施例1と同様に変化さ
せ、又加熱条件を同実施例1と同様に変化させ、
チタン素材をα合金Ti−5Al−2.5Sn、及び最も
代表的なα−β合金、Ti−6Al−4Vの板材を用
いスルフアミン酸ニツケルめつき浴を用い電解ニ
ツケルめつき皮膜の密着性をテストした。
Example 6 The conditions of the activation electrolytic bath were changed in the same manner as in Example 1, and the heating conditions were changed in the same manner as in Example 1,
The adhesion of the electrolytic nickel plating film was tested using a nickel sulfamic acid plating bath using titanium plates of α alloy Ti-5Al-2.5Sn and the most representative α-β alloy, Ti-6Al-4V. .

板材の評価、判定の方法として、180度の折り
曲げテスト、エリクセンテスト及び熱サイクルテ
ストを行つた。熱サイクルテストは同試片を電気
炉にて300〜400℃に加熱し20℃の水で冷却するサ
イクルを10回繰り返して膨れの状態を観察した。
A 180 degree bending test, an Erichsen test, and a thermal cycle test were performed as methods for evaluating and judging the plate materials. In the thermal cycle test, the specimen was heated to 300-400°C in an electric furnace and cooled with 20°C water, repeated 10 times, and the state of swelling was observed.

又ニツケルめつき状に光沢ニツケル、クローム
めつき又硫酸銅めつき、光沢ニツケル、クローム
めつき等行い上記熱サイクルテストを行つたが、
150℃〜200℃で10分感加熱処理したものは上部に
いかなる金属をめつきしても充分に実用に耐える
ことが証明された。
In addition, the heat cycle test described above was carried out by applying glossy nickel, chrome plating, copper sulfate plating, bright nickel, chrome plating, etc.
It was proven that the material that was heat-treated at 150°C to 200°C for 10 minutes can withstand practical use even if any metal is plated on the top.

〈発明の効果〉 本発明に係るめつき方法は上述の構成を有する
ので、本発明の方法を実施した場合には従来極め
て困難とされていたチタン及びチタン合金のめつ
きを簡単かつ大量で安価に実施することが出来、
しかも密着性の極めて良いめつきを施すことが出
来る等の特徴を有するものである。
<Effects of the Invention> Since the plating method according to the present invention has the above-mentioned configuration, when the method of the present invention is carried out, titanium and titanium alloys, which were conventionally considered extremely difficult, can be plated easily, in large quantities, and at low cost. can be carried out,
Moreover, it has features such as being able to provide plating with extremely good adhesion.

従つてここに本発明の方法を採用することによ
り、航空機用構造材料、化学装置用部品、海水利
用産業、電解電極材料、通信機、工学機器、医療
機器等に使用される多種他用なチタニウム及びチ
タニウム合金製品を極めて大量に安価に製造する
ことが出来、従来一般的に使用されていたステン
レス、アルミニユーム、合金製品に代わつてチタ
ニウム製品を益々利用することが出来るようにな
る等の特徴を有するものである。
Therefore, by employing the method of the present invention, titanium can be used in a wide variety of other applications such as aircraft structural materials, chemical equipment parts, seawater utilization industries, electrolytic electrode materials, communication equipment, engineering equipment, medical equipment, etc. It has the characteristics that titanium alloy products can be manufactured in extremely large quantities at low cost, and titanium products can increasingly be used in place of conventionally commonly used stainless steel, aluminum, and alloy products. It is something.

Claims (1)

【特許請求の範囲】[Claims] 1 98%の濃硫酸5〜50wt%溶液に47%の弗酸
5〜100ml/を添加した電解液を用いて、鉛、
カーボン等の不溶性極板を陰極としてチタン及び
チタン合金を直流陽極電解することによつて前処
理を施したチタン及びチタン合金に、ニツケルめ
つきを施すことによつてニツケルめつき皮膜を形
成し、更に該ニツケルめつき皮膜を150〜200℃で
低温加熱処理することを特徴としたチタン及びチ
タン合金のめつき方法。
1. Lead,
Forming a nickel plating film by applying nickel plating to titanium and titanium alloys that have been pretreated by subjecting titanium and titanium alloys to direct current anodic electrolysis using an insoluble electrode plate such as carbon as a cathode, A method for plating titanium and titanium alloys, further comprising subjecting the nickel plating film to a low-temperature heat treatment at 150 to 200°C.
JP23941384A 1984-11-15 1984-11-15 Plating method of titanium and titanium alloy Granted JPS61119695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23941384A JPS61119695A (en) 1984-11-15 1984-11-15 Plating method of titanium and titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23941384A JPS61119695A (en) 1984-11-15 1984-11-15 Plating method of titanium and titanium alloy

Publications (2)

Publication Number Publication Date
JPS61119695A JPS61119695A (en) 1986-06-06
JPH0440438B2 true JPH0440438B2 (en) 1992-07-02

Family

ID=17044402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23941384A Granted JPS61119695A (en) 1984-11-15 1984-11-15 Plating method of titanium and titanium alloy

Country Status (1)

Country Link
JP (1) JPS61119695A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314893A (en) * 1986-07-04 1988-01-22 Nippon Kagaku Sangyo Kk Method for plating titanium and titanium alloy
JPH0715156B2 (en) * 1986-10-13 1995-02-22 日本化学産業株式会社 Plating method on titanium and titanium alloys
US20200032411A1 (en) * 2018-07-25 2020-01-30 The Boeing Company Compositions and Methods for Activating Titanium Substrates

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318436A (en) * 1976-08-05 1978-02-20 Doryokuro Kakunenryo Method of softening surface of titanium or titanium alloy
JPS59162296A (en) * 1983-03-05 1984-09-13 Kimura Kinzoku Kogyo Kk Method for plating titanium material with noble metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318436A (en) * 1976-08-05 1978-02-20 Doryokuro Kakunenryo Method of softening surface of titanium or titanium alloy
JPS59162296A (en) * 1983-03-05 1984-09-13 Kimura Kinzoku Kogyo Kk Method for plating titanium material with noble metal

Also Published As

Publication number Publication date
JPS61119695A (en) 1986-06-06

Similar Documents

Publication Publication Date Title
US4017368A (en) Process for electroplating zirconium alloys
US3213004A (en) Surface preparation of platinum group metals for electrodeposition
US5534358A (en) Iron-plated aluminum alloy parts
US4904352A (en) Electrodeposited multilayer coating for titanium
US4115211A (en) Process for metal plating on aluminum and aluminum alloys
US6913791B2 (en) Method of surface treating titanium-containing metals followed by plating in the same electrolyte bath and parts made in accordance therewith
JPH0440438B2 (en)
US6932897B2 (en) Titanium-containing metals with adherent coatings and methods for producing same
JPS6187894A (en) Method for plating titanium blank
JPS60211097A (en) Electrochemical and chemical coating method of niobium
US2546150A (en) Method for securing adhesion of electroplated coatings to a metal base
Belt et al. Nickel-Cobalt Alloy Deposits from a Concentrated Sulphamate Electrolyte
JPS61204393A (en) Production of nickel coated stainless steel strip
JPS62297492A (en) Method for plating aluminum by electrolytic activation
JPS641557B2 (en)
US4035247A (en) Method of manufacturing a reflecting mirror
JPH06192888A (en) High-corrosion-resistance surface treatment of aluminum alloy
JP3074369B2 (en) Gold alloy plating solution
JPH0631167A (en) Oxidation catalyst and its production
US2755242A (en) Treatment for chromium plated aluminum
JPH02149695A (en) Surface treatment of magnesium material
JPH03126884A (en) Electrolytic electrode and its production
JPS6338437B2 (en)
JPS6137997A (en) Surface treatment of aluminum or aluminum alloy
RU2096533C1 (en) Method of treating objects of aluminum and its alloys (versions)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term