JPH0440403B2 - - Google Patents
Info
- Publication number
- JPH0440403B2 JPH0440403B2 JP61054693A JP5469386A JPH0440403B2 JP H0440403 B2 JPH0440403 B2 JP H0440403B2 JP 61054693 A JP61054693 A JP 61054693A JP 5469386 A JP5469386 A JP 5469386A JP H0440403 B2 JPH0440403 B2 JP H0440403B2
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- cooling water
- atomic
- materials
- spherical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000002245 particle Substances 0.000 claims description 19
- 239000000498 cooling water Substances 0.000 claims description 12
- 239000005300 metallic glass Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 239000000956 alloy Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000009826 distribution Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910021074 Pd—Si Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910017263 Mo—C Inorganic materials 0.000 description 1
- 229910018559 Ni—Nb Inorganic materials 0.000 description 1
- 229910008423 Si—B Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
〔産業上の利用分野〕
本発明はNi基の球状非晶質金属粒の製造方法
に関するものである。
〔従来技術とその問題点〕
従来よりNiは耐食性、耐酸化性、高温特性な
どに優れ、一般用構造材料から特殊構造材料、航
空材、ミサイル等に至まで広く使用されている。
また、その特性を利用して各種磁性材料としても
多く使用され、更には触媒材料としても広く用い
られており、工業的に極めて重要な金属元素であ
る。しかも、Niを含む組成の合金を用いて、液
体急冷法により非晶質状態を有する合金がNi−
P、Ni−B、Ni−P−B、Ni−Si−B、Ni−Pd
−P、Ni−Pd−Si、Ni−Pt−P、Ni−Pt−Si、
Ni−Cr−P、Ni−Mo−C、Ni−Al−B、Ni−
Zr、Ni−Hf、Ni−Nbなどの合金系でえられて
おり、また、これらの場合の試料のほとんどは全
て厚さが10〜30μm程度の薄帯であり、液体急冷
法の中でも最も試料の作成が容易な片ロール法、
ピストンアンビル法等によるものであつた。
一方、最近では工業的に極めて有用な非晶質の
細線材料が超高速直接製造法により低コストで製
造され、更には、省エネルギーにもなる液体急冷
法である回転液中紡糸法(特開昭56−165016号公
報参照)により製造されつつあり、そして、Ni
−Pd−Si、Ni−Pd−Pの合金系によつて断面の
真円度が90%以上で、線径斑が4%以下の非常に
均一な形状を有している高品質の金属細線が連続
的に製造される。(特開昭60−59032号公報参照)。
しかしながら、このようにして得られる薄帯状
材料や細線状材料はこれらの有する形状からして
用途に制約があり、バルク材への加工が難しく、
また、工業的に有用な球状金属粒への加工も難し
い。
また、非晶質の球状金属粒を得る方法として、
溶融金属を冷却水の中に滴下したり、溶融金属を
フイルターや網、回転板、ジエツト流などにより
分断して液中にて冷却したり、溶融金属を冷却水
中に設けた網や回転板などにより分断して球状化
することなどが行われている。さらに、アトマイ
ズ法、デイスク急冷法、回転液中噴出法などによ
り得られている。
しかし、溶融金属を冷却水中に滴下する方法で
は量産性に乏しく、また、その他の方法では機械
的に複雑になりやすいなどの欠点がある。そし
て、これらの方法により得られるものの粒径は小
さくて粉末状に近いものであり、大きな粒系のも
のは得られていない。
〔発明の目的〕
そこで本発明はこれらの事情に鑑みて、工業的
に極めて有用な大きな粒径のNi基球状非晶質金
属粒を簡単で量産性よく製造できる方法を提供す
ることを目的とするものである。
〔発明の構成〕
本発明者らは、特定の組成からなるNi基合金
を溶融状態から撹拌機により一定方向に回転する
冷却水中に連続的に注入すると、粒径が大きくて
真球度が高く、しかも粒径分布のバラツキが小さ
いNi基球状非晶質金属粒が量産性よく得られる
ことを見い出し、本発明を完成した。
すなわち、組成範囲はPが8〜25原子%、Bが
0.1〜12原子%、白金族元素Pd、Pt、Ir、Ru、
Rh、Osの単独もしくは二以上の元素が0.1〜72原
子%で、残部が実質的にNiの合金からなる。ま
た、これらの組成において、ノズル径が0.06〜
2.0mm、溶融金属の流速が3〜22m/s、冷却水
の流速が0.01〜22m/sの条件下で、溶融金属を
冷却水中に連続的に注入することにより、粒径が
約0.06〜2.0mmの真球度の高い球状非晶質金属粒
が得られる。
特に真球度が高く粒径分布のバラツキの小さい
球状非晶質金属粒を得るには、ノズル孔の形状は
円形あるいは多角形であることが望ましく、楕円
の場合は長径と短径との比が約2:1以内である
ことが必要であり、約3:1以上になると真球度
が低下する。平ノズルにおいても同様である。ま
た、冷却水の流速をノズルより注入される溶融金
属の流速と同速にするか、またはそれ以下にする
ことが望まれる。溶融金属流の連続性はノズル径
や溶融金属の流速などの影響を受けるが、少なく
とも0.5cm以上の長さであることが必要である。
溶融金属流の長さが0.5cm以下になると、粒径分
布のバラツキが大きくなり、好ましくない。さら
に、ノズルより注入される溶融金属流と冷却水面
との角度は15度以上が必要である。
このように、溶融金属を冷却水中に連続的に注
入するのみでよいため、簡単かつ大量に製造する
ことができる。
次に、組成範囲の限定理由について説明する
と、Pの含有量は、前述のとおり8〜25原子%で
あることが必要であるが、更には12〜20原子%が
好ましい。P量が8〜25原子%の範囲を逸脱する
と、非晶質形成能が著しく低下する。B量も同様
に0.1〜12原子%の範囲を逸脱すると、非晶質形
成能が著しく低下する。また、PdやPtなどの白
金族元素が0.1〜76原子%であることが必要であ
るが、更には12〜70原子%が好ましい。この量が
70原子%を超えると非晶質状態ではあるものの、
球状化しにくくなり真球度や硬度が低下する。逆
に、0.1原子%以下では非晶質形成能が著しく低
下する。そして、残部は実質的にNiよりなるが、
通常の工業材料中に存在する程度の不純物が含ま
れていてもよく、更には、機械的性質を向上させ
るために、W、Co、Cr、Fe、Mn、Nb、Ta、
V、Mo、Tiなどを添加したり、WC、TiCなど
を分散させることを妨げない。
本発明により得られる球状粒の真球度は非常に
優れ、少なくとも95%以上の真球度を有する。そ
して、この球状粒は、冷間加工を連続して行うこ
とができ、寸法精度および機械的性質をより向上
させるためには、ラツピングなどの加工を施せば
良く、必要に応じて焼き鈍しなどの熱処理をも行
うことができる。
〔実施例〕
次に本発明を実施例によりさらに具体的に説明
する。
第1表に示す各種組成よりなる合金の溶湯を炉
体1内に充填する。炉体1の底面には内径が0.1
mmのノズル2が取付けられており、上面より4
Kg/cm2のアルゴンガスで加圧する。冷却槽3内に
は例えば4℃の冷却水が入つており、撹拌機4に
よつて撹拌されて、冷却水は1.3m/s程度の流
速で回転する。しかして、ノズル2のストツパー
を開けると溶湯は約520m/minの噴出速度で冷
却水内に注入され、第1表に示す通り金属粒が得
られた。
[Industrial Application Field] The present invention relates to a method for producing Ni-based spherical amorphous metal particles. [Prior art and its problems] Ni has traditionally been excellent in corrosion resistance, oxidation resistance, high-temperature properties, etc., and has been widely used in everything from general structural materials to special structural materials, aircraft materials, missiles, etc.
In addition, it is widely used as various magnetic materials due to its properties, and is also widely used as a catalyst material, making it an extremely important metal element industrially. Furthermore, by using an alloy with a composition containing Ni, the alloy having an amorphous state can be produced using a liquid quenching method.
P, Ni-B, Ni-P-B, Ni-Si-B, Ni-Pd
-P, Ni-Pd-Si, Ni-Pt-P, Ni-Pt-Si,
Ni-Cr-P, Ni-Mo-C, Ni-Al-B, Ni-
It is obtained from alloy systems such as Zr, Ni-Hf, and Ni-Nb, and most of the samples in these cases are thin strips with a thickness of about 10 to 30 μm, which is the most difficult sample among liquid quenching methods. One-roll method that makes it easy to make
The method used was the piston anvil method. On the other hand, recently, industrially extremely useful amorphous thin wire materials have been produced at low cost using an ultra-high-speed direct production method, and even more so, the rotating liquid spinning method, which is a liquid quenching method that saves energy, has been developed. 56-165016), and Ni
-High-quality thin metal wire with a cross-sectional circularity of 90% or more and a very uniform shape with wire diameter unevenness of 4% or less due to the alloy system of Pd-Si and Ni-Pd-P. is produced continuously. (Refer to Japanese Patent Application Laid-Open No. 60-59032). However, the ribbon-shaped materials and fine wire-shaped materials obtained in this way have restrictions on their uses due to their shape, and are difficult to process into bulk materials.
Furthermore, it is difficult to process it into industrially useful spherical metal particles. In addition, as a method for obtaining amorphous spherical metal particles,
Dropping molten metal into cooling water, dividing molten metal with a filter, screen, rotating plate, jet flow, etc. and cooling it in the liquid, or placing molten metal in cooling water with a screen or rotating plate, etc. This method involves dividing the material into spheres by dividing the material into spheres. Furthermore, it has been obtained by the atomization method, the disk quenching method, the jetting method in a rotating liquid, and the like. However, the method of dropping molten metal into cooling water has poor mass productivity, and other methods have drawbacks such as being mechanically complex. The particles obtained by these methods are small in particle size and almost powder-like, and large particles have not been obtained. [Object of the Invention] In view of these circumstances, the purpose of the present invention is to provide a method for easily producing Ni-based spherical amorphous metal particles with large particle diameters that are extremely useful industrially and with good mass productivity. It is something to do. [Structure of the Invention] The present inventors discovered that when a Ni-based alloy having a specific composition is continuously injected from a molten state into cooling water that is rotated in a fixed direction by a stirrer, the particle size is large and the sphericity is high. They have discovered that Ni-based spherical amorphous metal particles with small variations in particle size distribution can be obtained with good mass production, and have completed the present invention. In other words, the composition range is 8 to 25 atomic% P, and B
0.1-12 atomic%, platinum group elements Pd, Pt, Ir, Ru,
The alloy contains 0.1 to 72 atomic percent of one or more of Rh and Os, and the remainder is essentially Ni. In addition, in these compositions, the nozzle diameter is 0.06~
2.0 mm, the particle size is approximately 0.06 to 2.0 mm by continuously injecting the molten metal into the cooling water under conditions where the flow rate of the molten metal is 3 to 22 m/s, and the flow rate of the cooling water is 0.01 to 22 m/s. Spherical amorphous metal particles with high sphericity of mm are obtained. In particular, in order to obtain spherical amorphous metal particles with high sphericity and small variation in particle size distribution, it is desirable that the shape of the nozzle hole be circular or polygonal, and in the case of an ellipse, the ratio of the major axis to the minor axis It is necessary that the ratio is within about 2:1, and when it exceeds about 3:1, the sphericity decreases. The same applies to flat nozzles. Further, it is desirable that the flow rate of the cooling water be equal to or lower than the flow rate of the molten metal injected from the nozzle. The continuity of the molten metal flow is affected by the nozzle diameter and the flow rate of the molten metal, but it needs to be at least 0.5 cm long.
If the length of the molten metal flow is less than 0.5 cm, the variation in particle size distribution will increase, which is not preferable. Furthermore, the angle between the molten metal flow injected from the nozzle and the cooling water surface must be 15 degrees or more. In this way, since it is only necessary to continuously inject the molten metal into the cooling water, it is possible to manufacture the molten metal easily and in large quantities. Next, the reason for limiting the composition range will be explained. As mentioned above, the content of P needs to be 8 to 25 at %, and more preferably 12 to 20 at %. When the amount of P is outside the range of 8 to 25 at %, the ability to form an amorphous state is significantly reduced. Similarly, if the amount of B is outside the range of 0.1 to 12 at %, the ability to form an amorphous state will be significantly reduced. Furthermore, the content of platinum group elements such as Pd and Pt is required to be 0.1 to 76 at %, more preferably 12 to 70 at %. This amount
Although it is in an amorphous state when it exceeds 70 atom%,
It becomes difficult to become spherical, and the sphericity and hardness decrease. On the other hand, if the content is less than 0.1 atomic %, the ability to form an amorphous state is significantly reduced. The remainder is essentially made of Ni,
It may contain impurities to the extent present in ordinary industrial materials, and furthermore, in order to improve mechanical properties, W, Co, Cr, Fe, Mn, Nb, Ta,
There is no hindrance to adding V, Mo, Ti, etc., or dispersing WC, TiC, etc. The spherical particles obtained by the present invention have very good sphericity, and have a sphericity of at least 95% or more. These spherical grains can be subjected to continuous cold working, and in order to further improve dimensional accuracy and mechanical properties, processing such as wrapping can be performed, and if necessary, heat treatment such as annealing can be applied. can also be done. [Example] Next, the present invention will be explained in more detail with reference to Examples. The furnace body 1 is filled with molten alloys having various compositions shown in Table 1. The bottom of the furnace body 1 has an inner diameter of 0.1
mm nozzle 2 is installed, and 4 mm from the top.
Pressurize with argon gas of Kg/ cm2 . The cooling tank 3 contains cooling water at, for example, 4° C., and is stirred by the stirrer 4 to rotate at a flow rate of about 1.3 m/s. When the stopper of nozzle 2 was opened, the molten metal was injected into the cooling water at a spouting speed of about 520 m/min, and metal particles were obtained as shown in Table 1.
以上説明したとおり、本発明によれば、Ni基
球状非晶質金属粒を簡単かつ大量に製造でき、こ
れによつて得られる球状非晶質金属粒は、良好な
真球度と大きな粒径およびバラツキの小さな粒径
分布をもち、工業的に極めて有用であり、ベアリ
ング、ボールペンチツプ、充填材、ブラスト材、
成形材料、焼結材料などに幅広く使用することが
できる。
As explained above, according to the present invention, Ni-based spherical amorphous metal particles can be easily produced in large quantities, and the spherical amorphous metal particles obtained thereby have good sphericity and large particle size. It has a particle size distribution with small variations and is extremely useful industrially, such as bearings, ballpoint pen tips, fillers, blasting materials, etc.
It can be widely used in molding materials, sintering materials, etc.
第1図は本発明実施例に使用される装置の一例
を示す断面図である。
1……炉体、2……ノズル、3……冷却槽、4
……撹拌機。
FIG. 1 is a sectional view showing an example of a device used in an embodiment of the present invention. 1...Furnace body, 2...Nozzle, 3...Cooling tank, 4
……mixer.
Claims (1)
金族元素Pd、Pt、Ir、Ru、Rh、Osの単独もしく
は二以上の元素が0.1〜72原子%、残部が実質的
にNiの合金よりなる溶融金属を、ノズル径が0.06
〜2.0mm、溶融金属の流速が3〜22m/s、溶融
金属流の長さが0.5cm以上の条件で、撹拌機によ
り0.01〜22m/sの流速で一定方向に回転する冷
却水中に、溶融金属流と冷却水面との角度が15度
以上になるように連続的に注入することを特徴と
するNi基球状非晶質金属粒の製造方法。1 P is 8 to 25 atomic%, B is 0.1 to 12 atomic%, platinum group elements Pd, Pt, Ir, Ru, Rh, Os, one or more elements are 0.1 to 72 atomic%, the balance is substantially A nozzle diameter of 0.06
~2.0 mm, the flow rate of the molten metal is 3 to 22 m/s, and the length of the molten metal flow is 0.5 cm or more. A method for producing Ni-based spherical amorphous metal particles, characterized by continuous injection so that the angle between the metal flow and the cooling water surface is 15 degrees or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61054693A JPS62214106A (en) | 1986-03-14 | 1986-03-14 | Production of ni-base spherical amorphous metal grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61054693A JPS62214106A (en) | 1986-03-14 | 1986-03-14 | Production of ni-base spherical amorphous metal grain |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62214106A JPS62214106A (en) | 1987-09-19 |
JPH0440403B2 true JPH0440403B2 (en) | 1992-07-02 |
Family
ID=12977877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61054693A Granted JPS62214106A (en) | 1986-03-14 | 1986-03-14 | Production of ni-base spherical amorphous metal grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62214106A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63290209A (en) * | 1987-05-20 | 1988-11-28 | Uchihashi Estec Co Ltd | Production of metal powder |
JP6475478B2 (en) * | 2014-11-27 | 2019-02-27 | 山陽特殊製鋼株式会社 | Metal powder for modeling |
-
1986
- 1986-03-14 JP JP61054693A patent/JPS62214106A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS62214106A (en) | 1987-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109234601B (en) | High-entropy alloy solid wire for arc cladding and preparation method thereof | |
US5134039A (en) | Metal articles having a plurality of ultrafine particles dispersed therein | |
JP4836136B2 (en) | Sputtering target for producing metal glass film and method for producing the same | |
US4891068A (en) | Additive powders for coating materials or plastics | |
JPH06212205A (en) | Production of amorphous metallic product and molded material for production of amorphous metallic product | |
JPS6223063B2 (en) | ||
JPS61210148A (en) | Al base amorphous alloy mainly containing ni and/or fe and si and its production | |
EP0468467B1 (en) | Process for producing precision metal parts by powder moulding | |
JPS5912115A (en) | Catalyst for purifying exhaust gas of automobile | |
JPH0440404B2 (en) | ||
JPS62290857A (en) | Metal half-finished product and its production | |
JPH0440403B2 (en) | ||
US3070440A (en) | Production of dispersion hardened metals | |
JPS62120412A (en) | Production of dispersion hardened metal alloy | |
JPS62214105A (en) | Production of ni-base spherical amorphous metal grain | |
Qureshi et al. | The effect of cobalt addition on sintering and microstructural behaviour of silver–tungsten (Ag–W) composite | |
US4380479A (en) | Foils of brittle alloys | |
Poniatowski et al. | Dispersion hardened gold: A new material of improved strength at high temperatures | |
JPH07109001B2 (en) | Manufacturing method of alloy powder for paint | |
JPS61113741A (en) | High strength corrosion resistant nickel base alloy and its production | |
JPS60116704A (en) | Manufacture of alloy powder | |
JPH024906A (en) | Manufacture of flaky rapidly cooling solidified metal powder | |
CN114643061B (en) | Reduction method of catalyst for preparing carbon nano tube | |
JPH0693394A (en) | Aluminum-base alloy with high strength and corrosion resistance | |
CN112063910B (en) | Method for preparing ODS ferrite-based alloy and application thereof |