JPS62214105A - Production of ni-base spherical amorphous metal grain - Google Patents

Production of ni-base spherical amorphous metal grain

Info

Publication number
JPS62214105A
JPS62214105A JP61054692A JP5469286A JPS62214105A JP S62214105 A JPS62214105 A JP S62214105A JP 61054692 A JP61054692 A JP 61054692A JP 5469286 A JP5469286 A JP 5469286A JP S62214105 A JPS62214105 A JP S62214105A
Authority
JP
Japan
Prior art keywords
cooling water
amorphous metal
spherical amorphous
molten metal
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61054692A
Other languages
Japanese (ja)
Other versions
JPH0457723B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hisamichi Kimura
久道 木村
Yasuhiro Masumoto
康洋 増本
Takao Yokumoto
貴生 浴本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sailor Pen Co Ltd
Original Assignee
Sailor Pen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sailor Pen Co Ltd filed Critical Sailor Pen Co Ltd
Priority to JP61054692A priority Critical patent/JPS62214105A/en
Publication of JPS62214105A publication Critical patent/JPS62214105A/en
Publication of JPH0457723B2 publication Critical patent/JPH0457723B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To make mass production of Ni-base spherical amorphous metal grains of large grain sizes which are extremely industrially advantageous by continuously pouring a specifically composed Ni alloy from a molten state into cooling water which is kept rotated in a specified direction by a stirrer. CONSTITUTION:The melt of the alloy consisting, by atom%, 12-25% P, 0.1-76% >=1 kinds among platinum group elements Pd, Pt, Ir, Rh, Ru, and Os and the balance Ni is filled into a furnace body 1. A nozzle 2 is attached to the base of the furnace body 1 and the molten metal is pressurized by gase ous Ar from the top surface. A cooling tank 3 contains the cooling water which is kept stirred by the stirrer 4 so as to rotate at a prescribed flow rate. A stopper of the nozzle 2 is opened in this state to pour the molten metal into the cooling water at a prescribed gushing flow rate. The Ni-base spherical amorphous metal grains are easily produced in a large quantity by the above- mentioned method. The resulted metal grains have good sphericity, large grain sizes and grain size distribution of small variance are thus obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はNi基の球状非晶質金属粒の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing Ni-based spherical amorphous metal particles.

〔従来技術とその問題点〕[Prior art and its problems]

従来よりNiは耐食性、耐酸化性、高温特性などに優れ
、一般用構造材料から特殊構造材料、航空材、ミサイル
等に至まで広く使用されている。
Conventionally, Ni has excellent corrosion resistance, oxidation resistance, high temperature properties, etc., and has been widely used in everything from general structural materials to special structural materials, aircraft materials, missiles, etc.

また、その特性を利用して各種磁性材料としても多く使
用され、更には触媒材料としても広く用いられており、
工業的に極めて重要な金属元素である。しかも、Niを
含む組成の合金を用いて、液体急冷法により非晶質状態
を有する合金がNi −P、N1−B、N1−P−B%
Ni−8i−B、  N1−Pd−P、Ni−Pd−8
i%N1−Pt−P% Ni−Pt−8i、N1−Cr
−P、Ni−Mo−C,N1Al−B、Ni−Zr、N
i−Hf、Ni−Nbなどの合金系でえられており、ま
た、これらの場合の試料のほとんどは全て厚さが10〜
30μm程度の薄帯であり、液体急冷法の中でも最も試
料の作成が容易な片ロール法、ピストンアンビル法等に
よるものであった。
It is also widely used as a variety of magnetic materials due to its properties, and is also widely used as a catalyst material.
It is an extremely important metal element industrially. Moreover, using an alloy with a composition containing Ni, alloys having an amorphous state by liquid quenching can be produced by Ni-P, N1-B, N1-P-B%.
Ni-8i-B, N1-Pd-P, Ni-Pd-8
i%N1-Pt-P% Ni-Pt-8i, N1-Cr
-P, Ni-Mo-C, N1Al-B, Ni-Zr, N
It is obtained from alloy systems such as i-Hf and Ni-Nb, and most of the samples in these cases have a thickness of 10 to 10 mm.
The thin strip was about 30 μm, and among the liquid quenching methods, the one-roll method, piston anvil method, etc., which were the easiest to prepare the sample, were used.

一方、最近では工業的に極めて有用な非晶質の細線材料
が超高速直接製造法により低コストで製造され、更には
、省エネルギーにもなる液体急冷法である回転液中紡糸
法(特開昭56−165016号公報参照)により製造
されつつあり、そして、Ni−Pd  Si、N1−P
d−Pの合金系によって断面の真円度が90%以上で、
線径斑が4%以下の非常に均一な形状を有している高品
質の金属細線が連続的に製造される。(特開昭60−5
9032号公報参照) しかしながら、このようにして得られる薄帯状材料や細
線状材料はこれらの有する形状からして用途に制約があ
り、バルク材への加工が難しく、また、工業的に有用な
球状金属粒への加工も難しい。
On the other hand, recently, industrially extremely useful amorphous thin wire materials have been produced at low cost using an ultra-high-speed direct production method, and furthermore, the rotating liquid spinning method (Japanese Patent Application Laid-open No. 56-165016), and Ni-Pd Si, N1-P
The circularity of the cross section is 90% or more due to the d-P alloy system,
High-quality thin metal wires having a very uniform shape with wire diameter unevenness of 4% or less are continuously produced. (Unexamined Japanese Patent Publication No. 60-5
(Refer to Publication No. 9032) However, the ribbon-shaped materials and thin wire-shaped materials obtained in this way have restrictions on their uses due to their shape, and are difficult to process into bulk materials. Processing into metal grains is also difficult.

また、非晶質の球状金属粒を得る方法として、溶融金属
を冷却水の中に滴下したり、溶融金属をフィルターや網
、回転板、ジェット流などにより分断して液中にて冷却
したり、溶融金属を冷却水中に設けた網や回転板などに
より分断して球状化することなどが行われている。さら
に、アトマイズ法、ディスク急冷法、回転液中噴出法な
どにより得られている。
In addition, methods for obtaining amorphous spherical metal particles include dropping molten metal into cooling water, dividing the molten metal using a filter, mesh, rotating plate, jet stream, etc., and cooling it in the liquid. , molten metal is divided into spheres by using a net or rotating plate placed in cooling water. Furthermore, it has been obtained by the atomization method, the disk quenching method, the rotating liquid injection method, and the like.

しかし、溶融金属を冷却水中に滴下する方法では量産性
に乏しく、また、その他の方法では機械的に複雑になり
やすいなどの欠点がある。そして、これらの方法により
得られるものの粒径は小さくて粉末状に近いものであり
、大きな粒径のものは得られていない。
However, the method of dropping molten metal into cooling water has poor mass productivity, and other methods have drawbacks such as being mechanically complex. The particles obtained by these methods have small particle sizes and are almost powder-like, and large particle sizes have not been obtained.

〔発明の目的〕[Purpose of the invention]

そこで本発明はこれらの事情に鑑みて、工業的に極めて
有用な大きな粒径のNi基非球状非晶質金属粒簡単で量
産性よく製造できる方法を提供することを目的とするも
のである。
In view of these circumstances, it is an object of the present invention to provide a method for producing industrially extremely useful large-diameter Ni-based non-spherical amorphous metal particles easily and with good mass productivity.

〔発明の構成〕[Structure of the invention]

本発明者らは、特定の組成からなるNi基合金を溶融状
態から攪拌機により一定方向に回転している冷却水中に
連続的に注入すると、粒径が大きくて真球度が高く、シ
かも粒径分布のバラツキが小さいNi基非球状非晶質金
属粒量産性よく得られることを見い出し、本発明を完成
した。
The present inventors have discovered that when a Ni-based alloy with a specific composition is continuously injected from a molten state into cooling water that is rotated in a fixed direction by a stirrer, the particle size is large and the sphericity is high. It was discovered that Ni-based non-spherical amorphous metal particles with small variations in diameter distribution can be obtained with good mass productivity, and the present invention was completed.

すなわち、組成範囲はPが12〜25原子%、白金族元
素Pd、Pt、Ir、Rh、Ru、Osの単独もしくは
二以上の元素が0.1〜76原子%で、残部が実質的に
Niの合金からなる。また、これらの組成において1例
えば、ノズル径が約0.06〜2.0IIII11、溶
融金属の流速が約3〜22m/s 、冷却水の流速が0
.01〜約22m/sの条件下で、溶融金属を攪拌機に
より一定方向に回転している冷却水中に連続的に注入す
ることにより、粒径が約0.06〜2.0IIII11
の真球度の高い球状非晶質金属粒が得られる。
That is, the composition range is 12 to 25 atomic percent of P, 0.1 to 76 atomic percent of one or more of the platinum group elements Pd, Pt, Ir, Rh, Ru, and Os, and the balance is substantially Ni. It consists of an alloy of In addition, in these compositions 1, for example, the nozzle diameter is about 0.06 to 2.0III11, the flow rate of the molten metal is about 3 to 22 m/s, and the flow rate of the cooling water is 0.
.. By continuously injecting the molten metal into cooling water rotating in a fixed direction by a stirrer under conditions of 0.01 to about 22 m/s, the particle size is reduced to about 0.06 to 2.0 III11.
Spherical amorphous metal particles with high sphericity are obtained.

特に真球度が高く粒径分布のバラツキの小さい球状非晶
質金属粒を得るには、ノズル孔の形状は円形あるいは多
角形であることが望ましく、楕円の場合は長径と短径と
の比が約2=1以内であることが必要であり、約3=二
以上になると真球度が低下する。平ノズルにおいても同
様である。また、冷却水の流速をノズルより注入される
溶融金属の流速と同速にするか、またはそれ以下にする
ことが望まれる。溶融金属流の連続性はノズル径や溶融
金属の流速などの影響を受けるが、少なくとも約0.5
G以上の長さであることが望まれる。
In particular, in order to obtain spherical amorphous metal particles with high sphericity and small variation in particle size distribution, it is desirable that the shape of the nozzle hole be circular or polygonal, and in the case of an ellipse, the ratio of the major axis to the minor axis It is necessary that the value is within about 2=1, and when it becomes about 3=2 or more, the sphericity decreases. The same applies to flat nozzles. Further, it is desirable that the flow rate of the cooling water be equal to or lower than the flow rate of the molten metal injected from the nozzle. The continuity of the molten metal flow is affected by the nozzle diameter and the flow rate of the molten metal, but it is at least about 0.5
It is desired that the length is G or more.

溶融金属流の長さが約0.5G以下になると、粒径分布
のバラツキが大きくなり、好ましくない。さらに、ノズ
ルより注入される溶融金属流と冷却水面との角度は15
度以上が好ましい。
If the length of the molten metal flow is less than about 0.5G, the variation in particle size distribution will increase, which is not preferable. Furthermore, the angle between the molten metal flow injected from the nozzle and the cooling water surface is 15
degree or more is preferable.

このように、溶融金属を冷却水中に連続的に注入するの
みでよいので、簡単かつ大量に製造することができる。
In this way, since it is only necessary to continuously inject the molten metal into the cooling water, it is possible to manufacture the molten metal easily and in large quantities.

次に、組成範囲の限定理由について説明すると、Pの含
有量は、前述のとおり12〜25原子%であることが必
要であるが、更には16〜22原子%が好ましい。P量
が12〜25原子%の範囲を逸脱すると、非晶質形成能
が著しく低下する。また、Pdやptなとの白金族元素
が0.1〜76[子%であることが必要であるが、更に
は12〜7G以下%が好ましい、この量が7G以下%を
超えると非晶質状態ではあるものの、球状化しにくくな
り真球度や硬度が低下する。逆に、12原子%以下では
非晶質形成能が著しく低下する。そして、残部は実質的
にNiよりなるが、通常の工業材料中に存在する程度の
不純物などが含まれていてもよく、更には、機械的性質
を向上させるために、W’、 Go、 Cr%Fe、 
Mn、 V、 NblMo、Ti。
Next, the reason for limiting the composition range will be explained. As mentioned above, the content of P needs to be 12 to 25 atomic %, and more preferably 16 to 22 atomic %. When the amount of P is outside the range of 12 to 25 at %, the ability to form an amorphous state is significantly reduced. In addition, it is necessary that the platinum group elements such as Pd and pt be in an amount of 0.1 to 76%, more preferably 12 to 7%. If this amount exceeds 7%, it becomes amorphous. Although it is in a good quality state, it becomes difficult to form into spherical shapes, and its sphericity and hardness decrease. On the other hand, if the content is less than 12 at %, the ability to form an amorphous state is significantly reduced. The remainder consists essentially of Ni, but may contain impurities to the extent that they exist in ordinary industrial materials.Furthermore, in order to improve mechanical properties, W', Go, Cr, etc. %Fe,
Mn, V, NblMo, Ti.

Taなどを添加したり、WC,TiCなどを分散させる
ことを妨げない。
It does not prevent the addition of Ta or the like or the dispersion of WC, TiC, etc.

本発明により得られる球状粒の真球度は非常に優れ、少
なくとも95%以上の真球度を有する。
The spherical particles obtained according to the present invention have very good sphericity, and have a sphericity of at least 95% or more.

そして、この球状粒は、冷間加工を連続して行うことが
でき、寸法精度および機械的性質をより向上させるため
には、ラッピングなどの加工を施せば良く、必要に応じ
て焼き鈍しなどの熱処理をも行うことができる。
These spherical particles can be subjected to continuous cold working, and in order to further improve dimensional accuracy and mechanical properties, they can be subjected to processing such as lapping, and if necessary, heat treatment such as annealing. can also be done.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに具体的に説明する6 第1表に示す各種組成よりなる合金の溶湯を炉体1内に
充填する。炉体1の底面には内径が0.3mmのノズル
2が取付けられており、上面より2kg/dのアルゴン
ガスで加圧する。冷却槽3内には例えば4℃の冷却水が
入っており、攪拌機4によって攪拌されて、冷却水は1
.3m/s程度の流速で回転する。しかして、ノズル2
のストッパーを開けると溶湯は約820 m/winの
噴出速度で冷却水内に注入され、第1表に示す通りの金
属粒が得られた。
Next, the present invention will be explained in more detail with reference to Examples 6. The furnace body 1 is filled with molten metals of alloys having various compositions shown in Table 1. A nozzle 2 with an inner diameter of 0.3 mm is attached to the bottom of the furnace body 1, and is pressurized with 2 kg/d of argon gas from the top. The cooling tank 3 contains cooling water at a temperature of, for example, 4°C, and is stirred by the stirrer 4 so that the cooling water reaches 1
.. It rotates at a flow rate of about 3 m/s. However, nozzle 2
When the stopper was opened, the molten metal was injected into the cooling water at a jetting speed of about 820 m/win, and metal particles as shown in Table 1 were obtained.

第1表 第1表から明らかなごとく、実施例1〜6は合金組成が
適正範囲内にあり、真球度が高く、粒径分布のバラツキ
が小さい非晶質金属粒が得られた。
As is clear from Table 1, in Examples 1 to 6, the alloy composition was within the appropriate range, and amorphous metal particles with high sphericity and small variation in particle size distribution were obtained.

これに対して、比較例1は、Pd量が多量のため非晶質
ではあるが真球度が低く、粒径分布のバラツキも大きく
なっている。また、比較例2は、Pの量が適正組成範囲
を逸脱しており、結晶質となり真球度が低く、粒径分布
のバラツキも大きくなっている。
On the other hand, Comparative Example 1 has a large amount of Pd, so although it is amorphous, the sphericity is low and the particle size distribution is highly uneven. In addition, in Comparative Example 2, the amount of P is outside the appropriate composition range, the material becomes crystalline, has low sphericity, and has large variations in particle size distribution.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、Ni基球状非晶
質金属粒を簡単かつ大量に製造でき、これによって得ら
れる球状非晶質金属粒は、良好な真球度と大きな粒径お
よびバラツキの小さな粒径分布をもち、工業的に極めて
有用であり、ベアリング、ボールペンチップ、充填材、
ブラスト材、成形材料、焼結材料などに幅広く使用する
ことができる。
As explained above, according to the present invention, Ni-based spherical amorphous metal particles can be easily produced in large quantities, and the spherical amorphous metal particles obtained thereby have good sphericity, large particle size, and variation. It has a small particle size distribution and is extremely useful industrially, such as bearings, ballpoint pen tips, fillers,
It can be widely used for blasting materials, molding materials, sintered materials, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例に使用される装置の一例を示す断
面図である。 1・・・炉体  2・・・ノズル  、3・・・冷却槽
4・・・攪拌機
FIG. 1 is a sectional view showing an example of a device used in an embodiment of the present invention. 1... Furnace body 2... Nozzle, 3... Cooling tank 4... Stirrer

Claims (1)

【特許請求の範囲】[Claims] Pが12〜25原子%、白金族元素Pd、Pt、Ir、
Rh、Ru、Osの単独もしくは二以上の元素が0.1
〜76原子%、残部が実質的にNiの合金よりなる溶融
金属を攪拌機により一定方向に回転している冷却水中に
連続的に注入することを特徴とするNi基球状非晶質金
属粒の製造方法。
P is 12 to 25 at%, platinum group elements Pd, Pt, Ir,
Rh, Ru, Os alone or two or more elements are 0.1
Production of Ni-based spherical amorphous metal particles characterized by continuously injecting molten metal consisting of an alloy of ~76 atomic % and the remainder being substantially Ni into cooling water rotating in a fixed direction by a stirrer. Method.
JP61054692A 1986-03-14 1986-03-14 Production of ni-base spherical amorphous metal grain Granted JPS62214105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054692A JPS62214105A (en) 1986-03-14 1986-03-14 Production of ni-base spherical amorphous metal grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054692A JPS62214105A (en) 1986-03-14 1986-03-14 Production of ni-base spherical amorphous metal grain

Publications (2)

Publication Number Publication Date
JPS62214105A true JPS62214105A (en) 1987-09-19
JPH0457723B2 JPH0457723B2 (en) 1992-09-14

Family

ID=12977847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054692A Granted JPS62214105A (en) 1986-03-14 1986-03-14 Production of ni-base spherical amorphous metal grain

Country Status (1)

Country Link
JP (1) JPS62214105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290209A (en) * 1987-05-20 1988-11-28 Uchihashi Estec Co Ltd Production of metal powder
CN113881882A (en) * 2020-07-03 2022-01-04 中国科学院物理研究所 Glacier alloy and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290209A (en) * 1987-05-20 1988-11-28 Uchihashi Estec Co Ltd Production of metal powder
CN113881882A (en) * 2020-07-03 2022-01-04 中国科学院物理研究所 Glacier alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0457723B2 (en) 1992-09-14

Similar Documents

Publication Publication Date Title
JP2629152B2 (en) Manufacturing method of compressed metal articles
EP0345921B1 (en) Powder additives for coating materials or for plastics
JPS5935417B2 (en) Method for manufacturing amorphous metal wire
JPH03257133A (en) High strength heat resistant aluminum-based alloy
KR20070084209A (en) Sputtering target for production of metallic glass film and process for producing the same
US3671228A (en) Method of making high-density sintered metal
GB2606652A (en) Method for preparing aluminum-containing alloy powder, use thereof and alloy strip
TW201604289A (en) Soft magnetic alloy for magnetic recording, sputtering target material and magnetic recording medium
JPS62214107A (en) Production of ni-base spherical amorphous metal grain
JPS62214105A (en) Production of ni-base spherical amorphous metal grain
JPS62214106A (en) Production of ni-base spherical amorphous metal grain
JPS5887266A (en) Flame spray powder agent and spraying method
JP2926397B2 (en) Impact-resistant iron-based alloy spherical particles
JP3281019B2 (en) Method and apparatus for producing zinc particles
JP4317930B2 (en) Amorphous alloy particles
JPH01287201A (en) Amorphous alloy powder for corrosion resistant coating and corrosion resistant coating
JP2583718B2 (en) High strength corrosion resistant aluminum base alloy
JPS5913610A (en) Spherical granule of nitride ceramics and its manufacture
KR900006612B1 (en) Highly corrosion resistant and high strength aluminium alloys
US4404028A (en) Nickel base alloys which contain boron and have been processed by rapid solidification process
Duszczyk et al. Properties of particles produced by different rapid solidification techniques
JPH024906A (en) Manufacture of flaky rapidly cooling solidified metal powder
JPH0693394A (en) Aluminum-base alloy with high strength and corrosion resistance
JPH0747792B2 (en) Shape memory alloy
JPS61113741A (en) High strength corrosion resistant nickel base alloy and its production