JPH044038B2 - - Google Patents

Info

Publication number
JPH044038B2
JPH044038B2 JP21004982A JP21004982A JPH044038B2 JP H044038 B2 JPH044038 B2 JP H044038B2 JP 21004982 A JP21004982 A JP 21004982A JP 21004982 A JP21004982 A JP 21004982A JP H044038 B2 JPH044038 B2 JP H044038B2
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
seawater
ppm
ferrous
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21004982A
Other languages
Japanese (ja)
Other versions
JPS5998791A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP21004982A priority Critical patent/JPS5998791A/en
Publication of JPS5998791A publication Critical patent/JPS5998791A/en
Publication of JPH044038B2 publication Critical patent/JPH044038B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、海息付着生物の付着抑制法に関す
る。更に詳しくは、過酸化水素水を用いて海息付
着生物の付着を抑制するに当り、過酸化水素水の
海息付着生物付着抑制効果を増大せしめる改良さ
れた方法を提供しようとするものである。 海水を冷却に用いる工場では、海水の流路に海
水生物、例えばムラサキガイ、フジツボ、ヒドロ
ムシ、コケムシ等が付着し、これらの付着生物が
成長すると水路を狭め、或は付着生物が脱落して
復水器や熱交換器に流入して冷却効果を低下させ
る等、種種の障害をひき起す。 このような障害を防止するために、従来、有効
塩素発生剤、有機スズ化合物、有機イオウ化合
物、第4級アンモニウム塩等が用いられてきた
が、これらの薬剤には残留毒性や蓄積毒性の懸念
が皆無とはいえない。 一方、特開昭54−161592号公報には、残留毒性
や蓄積毒性の懸念のない「海水生物付着抑制方
法」として、過酸化水素または過酸化水素発生剤
を使用する方法が提案されている。この方法で
は、海水中の過酸化水素濃度を0.01〜500ppmに
保つと過酸化水素の効果が現われるとしている
が、その具体例をみると、10日前後海水を流通さ
せるだけで、35W/W%過酸化水素水を5ppm(従
つてH2O2として1.75ppm)連続注入しても、試
験片表面積1m2当り、フジツボの場合1.88×104
個〜約2.48×104個付着しており、ムラサキイガ
イの場合約1.69×104個〜約1.55×104個付着する
ことが示されている。最も大きな障害をひき起す
ムラサキイガイの場合、付着幼生が平均径1cmに
成長したとすると、付着したムラサキイガイの投
影面積合計は、試験片表面積1m2当り1.2m2以上
に達する。実際には海水の流通日数は10日前後で
なく、もつと長期にわたるし、ムラサキイガイの
大きさも平均径1cmよりは大きくなる。フジツボ
についても、ムラサキイガイ程ではないにせよ同
様の傾向が認められる。従つて、35W/W%過酸
化水素水を海水に対して5ppm連続注入する程度
では、付着抑制効果が認められるにしても実用に
は耐え得ない。実用に耐え得るような付着抑制効
果を得るには、35W/W%過酸化水素水を海水中
に10ppm(純H2O2として3.5ppm)以上連続注入
する必要があり、このような高濃度で過酸化水素
を注入することは経済的に耐え難い。 本発明者は、このような問題点を解決すべく鋭
意研究の結果、海水に対してH2O2を0.05〜3ppm
という低濃度に保つても、第1鉄イオンを海水に
対して0.01ppm以上添加するならば、海息付着生
物の付着を実用上充分な程度にまで抑制できるこ
とを見出し、本発明に到達した。 即ち、本発明は、海水に対して過酸化水素を
0.05〜3ppmの割合で注入して海水生物の付着を
抑制するに際し、これと同時に第1鉄イオンを海
水に対し0.01ppm以上の割合で注入することを特
徴とする海息付着生物の付着抑制法である。 本発明に用いる過酸化水素としては、過酸化水
素水を使用すればよい。市販されている過酸化水
素水の過酸化水素濃度は通常3〜35W/W%であ
り、いずれも使用可能であるが、過酸化水素濃度
が低いと、使用する過酸化水素水の体積が大きく
なるので、高濃度の方が好ましく、特に30〜
35W/W%の濃度のものが好ましい。 本発明方法における、海水に対する過酸化水素
の割合は前述のように0.05〜3ppm(重量比)であ
る。過酸化水素の割合が海水に対して0.05ppm
(重量比)未満であると、本発明の付着抑制効果
が顕著でなくなるので好ましくない。また過酸化
水素の割合が3ppm(重量比)よりも多いと、第1
鉄塩を併用しなくても、かなりの付着抑制効果が
得られるのでやはり本発明の効果が顕著でなくな
り、好ましくない。特に過酸化水素の海水に対す
る割合が0.1ppm〜2.5ppm(重量比)のところで、
本発明の効果が顕著である。 本発明に用いる第1鉄イオンは海水に対して
0.01ppm(重量比)以上の割合であればいくらで
もよいが、余り多くしても意味がないのみなら
ず、海水を用いる冷却装置に対して悪影響を与え
ることもあるので、第1鉄イオンの海水に対する
比率は10ppm(重量比)以下にするのが好ましい。
一方、第1鉄イオンが海水に対して0.01ppm(重
量比)未満であると本発明の効果が顕著でないの
で好ましくない。第1鉄イオンの海水に対する特
に好ましい添加割合は0.1〜5ppm(重量比)であ
る。 本発明方法において第1鉄イオンを海水中に供
給するには第1鉄塩水溶液を海水に注入する方法
を採るのが好ましい。好ましく用いられる第1鉄
塩として、硫酸第1鉄、塩化第1鉄、硫酸第1鉄
アンモニウム等が例示される。また鉄の酸洗廃液
を用いてもよい。 第1鉄塩水溶液を海水に注入するに際しては、
過酸化水素と第1鉄イオンとを海水に注入する前
に混合することを避ければ、他の任意の方法を採
用できる。しかし、注入された過酸化水素を海息
付着生物に対して効果的に作用させるには、過酸
化水素と第1鉄イオンを互いに接近した位置で添
加するのがよく、特に両者の添加位置の間隔は20
m以下、特に10m以下とすることが好ましい。 過酸化水素水や第1鉄イオンの添加場所として
は、海水冷却系統であれば特に限定はないが、取
水口もしくは導水口から、該取水口もしくは導水
口から入る水を吸引しているポンプのサクシヨン
前部までの区間の何れかの位置で添加するのが好
ましく、又過酸化水素水と第1鉄イオンは同一箇
所に添加しても良く、あるいは過酸化水素水を先
きに入れ、すこしずらした後側の箇所に第1鉄イ
オンを添加しても良い。 この様にこの発明は、ムラサキイガイの付着を
防止するのに、過酸化水素水と2価の鉄塩を併用
することにより、過酸化水素水の低濃度でムラサ
キイガイの付着が防止出来、経済的な観点からし
ても非常に有効な方法である。 なお、この発明の方法を実施するにあたり、従
来より知られている海息付着生物の防止作用を有
する化合物との併用してもさしつかえない。例え
ば、水溶性ジアルキルジチオカルバミン酸塩、第
4級アンモニウム塩、次亜塩素酸塩、有機アミン
塩等との併用が可能である。 次にこの発明を実施例によつて説明するが、こ
の発明はこれに限定されるものではない。 実施例 テストプラント(各3トン/時)を用いてムラ
サキイガイの付着繁殖期に過酸化水素水と硫酸第
一鉄を各々の濃度及び各時間添加した所、ムラサ
キイガイの付着個数もその成長速度も、過酸化水
素水単独あるいはヒドラジンとの併用に比較し
て、著しく付着個数の減少と成長抑制が見られ
た。表1はテスト開始後、約2ケ月後の結果であ
る。 なお、表1中“添加量”は海水に対する35%過
酸化水素水の添加濃度(ppm)で示される。又
( )はその場所の過酸化水素、ヒドラジン、2
価の鉄イオン量を(ppm)で示す。
TECHNICAL FIELD The present invention relates to a method for suppressing the adhesion of sea breath organisms. More specifically, the present invention aims to provide an improved method for increasing the effect of hydrogen peroxide water on suppressing the adhesion of sea breath organisms when using a hydrogen peroxide solution to suppress the attachment of sea breath organisms. . In factories that use seawater for cooling, seawater organisms, such as mussels, barnacles, water bugs, and bryozoans, adhere to the seawater channels, and as these organisms grow, they narrow the waterways, or they fall off and cause recovery. It flows into water containers and heat exchangers and causes various problems, such as reducing the cooling effect. To prevent such problems, effective chlorine generators, organic tin compounds, organic sulfur compounds, quaternary ammonium salts, etc. have been used in the past, but these agents have concerns about residual toxicity and cumulative toxicity. It cannot be said that there are no such cases. On the other hand, JP-A-54-161592 proposes a method of using hydrogen peroxide or a hydrogen peroxide generator as a "method for suppressing the adhesion of seawater organisms" without concerns about residual toxicity or cumulative toxicity. In this method, the effect of hydrogen peroxide appears when the concentration of hydrogen peroxide in seawater is maintained at 0.01 to 500 ppm, but looking at a specific example, just by circulating seawater for about 10 days, 35W/W% Even if 5 ppm of hydrogen peroxide solution (therefore 1.75 ppm as H 2 O 2 ) is continuously injected, the amount of barnacles per 1 m 2 of surface area of the specimen is 1.88 × 10 4
It has been shown that about 2.48 x 10 4 pieces to about 2.48 x 10 4 pieces are attached, and in the case of purple mussels, about 1.69 x 10 4 pieces to about 1.55 x 10 4 pieces are attached. In the case of mussels, which cause the most damage, if the attached larvae grow to an average diameter of 1 cm, the total projected area of the attached mussels will reach more than 1.2 m 2 per 1 m 2 of the surface area of the specimen. In reality, seawater circulates for a long time, not around 10 days, and the average size of mussels is larger than 1 cm. A similar tendency is observed for barnacles, although not to the same extent as for mussels. Therefore, continuous injection of 5 ppm of 35 W/W% hydrogen peroxide into seawater is not practical for practical use, even if the effect of suppressing adhesion is observed. In order to obtain a practical adhesion suppression effect, it is necessary to continuously inject 35 W/W% hydrogen peroxide into seawater at 10 ppm or more (3.5 ppm as pure H 2 O 2 ). It is economically untenable to inject hydrogen peroxide. As a result of intensive research in order to solve these problems, the present inventor has determined that H 2 O 2 should be added to seawater at a concentration of 0.05 to 3 ppm.
We have discovered that even if the concentration is maintained at such a low concentration, if 0.01 ppm or more of ferrous ion is added to seawater, the adhesion of sea-breath organisms can be suppressed to a practically sufficient level, and the present invention has been achieved based on this finding. That is, the present invention provides hydrogen peroxide to seawater.
A method for suppressing the adhesion of sea-breath organisms, which is characterized in that when ferrous ions are injected at a rate of 0.05 to 3 ppm to suppress the adhesion of seawater organisms, ferrous ions are simultaneously injected into the seawater at a rate of 0.01 ppm or more. It is. As the hydrogen peroxide used in the present invention, a hydrogen peroxide solution may be used. The hydrogen peroxide concentration of commercially available hydrogen peroxide solutions is usually 3 to 35 W/W%, and any of them can be used, but if the hydrogen peroxide concentration is low, the volume of hydrogen peroxide solution used will be large. Therefore, higher concentrations are preferable, especially 30~
A concentration of 35 W/W% is preferred. In the method of the present invention, the ratio of hydrogen peroxide to seawater is 0.05 to 3 ppm (weight ratio) as described above. Hydrogen peroxide ratio is 0.05ppm to seawater
If it is less than (weight ratio), the adhesion suppressing effect of the present invention will not be significant, which is not preferable. Also, if the proportion of hydrogen peroxide is more than 3ppm (weight ratio),
Even if an iron salt is not used in combination, a considerable adhesion suppressing effect can be obtained, so the effect of the present invention will not be as noticeable, which is not preferable. Especially when the ratio of hydrogen peroxide to seawater is 0.1ppm to 2.5ppm (weight ratio),
The effects of the present invention are remarkable. The ferrous ion used in the present invention is
Any amount is fine as long as the proportion is 0.01ppm (weight ratio) or more, but if the proportion is too high, it is not only meaningless but also may have an adverse effect on cooling equipment that uses seawater, so ferrous ion seawater It is preferable that the ratio is 10 ppm (weight ratio) or less.
On the other hand, if the amount of ferrous ion is less than 0.01 ppm (weight ratio) relative to seawater, the effect of the present invention will not be significant, which is not preferable. A particularly preferable addition ratio of ferrous ions to seawater is 0.1 to 5 ppm (weight ratio). In order to supply ferrous ions into seawater in the method of the present invention, it is preferable to adopt a method of injecting an aqueous ferrous salt solution into seawater. Examples of preferably used ferrous salts include ferrous sulfate, ferrous chloride, and ferrous ammonium sulfate. Alternatively, iron pickling waste liquid may be used. When injecting ferrous salt aqueous solution into seawater,
Any other method can be used, provided that mixing the hydrogen peroxide and ferrous ions before injection into the seawater is avoided. However, in order for the injected hydrogen peroxide to act effectively against sea breath organisms, it is best to add hydrogen peroxide and ferrous ions at positions close to each other, especially at the positions where both are added. The interval is 20
The length is preferably 10 m or less, particularly 10 m or less. There are no particular restrictions on where hydrogen peroxide or ferrous ions can be added, as long as it is a seawater cooling system, but it can be added to a pump that sucks water from a water intake or water inlet. It is preferable to add the hydrogen peroxide solution and the ferrous ion at any position in the section up to the front of the suction. Also, the hydrogen peroxide solution and the ferrous ion may be added at the same location, or the hydrogen peroxide solution may be added first and then a little Ferrous ions may be added to a position on the shifted rear side. As described above, this invention uses a hydrogen peroxide solution and a divalent iron salt together to prevent the attachment of mussels at a low concentration of hydrogen peroxide, and is therefore economical. This is a very effective method from this point of view. In carrying out the method of the present invention, it may be used in combination with conventionally known compounds that have the effect of preventing sea breath-fouling organisms. For example, it can be used in combination with water-soluble dialkyldithiocarbamates, quaternary ammonium salts, hypochlorites, organic amine salts, and the like. Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto. Example Using a test plant (3 tons/hour each), when hydrogen peroxide and ferrous sulfate were added at different concentrations and for different times during the attached breeding period of mussels, the number of attached mussels and their growth rate were Compared to hydrogen peroxide solution alone or in combination with hydrazine, a significant decrease in the number of attached particles and growth inhibition were observed. Table 1 shows the results approximately two months after the start of the test. In Table 1, the "addition amount" is expressed as the concentration (ppm) of 35% hydrogen peroxide in seawater. Also, ( ) indicates hydrogen peroxide, hydrazine, 2
The amount of valent iron ions is shown in (ppm).

【表】【table】

【表】 参考例 1 海水中に過酸化水素と第1鉄イオンが共存した
場合の魚に対する影響を検討した。 コンクリート製U字溝(幅30cm、深さ30cm、長
さ60cm)の水の出入口に魚が逃げ出さないように
網を張つて、海水馴化ヒメダカ20尾を該U字溝に
入れ、海水を1時間当り4トンの割合で一過式に
連続して流すと共に、U字溝の海水導入口に過酸
化水素水及び/または硫酸第1鉄(FeSO4
7H2O)所定の割合(表2参照)で連続的に注入
し、海水馴化ヒメダカの生死を観察した。結果を
表2に示す。表2の添加量の欄で( )内はその
場合の過酸化水素、ヒドラジン、或は2価鉄イオ
ンの量を(ppm)で示す。テスト時の水温は約27
℃である。テストは10日間継続した。
[Table] Reference example 1 The effect on fish when hydrogen peroxide and ferrous ions coexist in seawater was investigated. A net was placed at the entrance and exit of a concrete U-shaped groove (width 30 cm, depth 30 cm, length 60 cm) to prevent fish from escaping, and 20 seawater-acclimatized Japanese medaka were placed in the U-shaped groove and seawater was soaked for 1 hour. Hydrogen peroxide and/or ferrous sulfate ( FeSO4 .
7H 2 O) was continuously injected at a predetermined ratio (see Table 2), and the life and death of seawater-acclimated Japanese medaka were observed. The results are shown in Table 2. In the addition amount column of Table 2, the amount in parentheses () indicates the amount of hydrogen peroxide, hydrazine, or divalent iron ion in that case (ppm). The water temperature at the time of the test was approximately 27
It is ℃. The test lasted for 10 days.

【表】【table】

【表】 表2の結果から過酸化水素を併用すると硫酸第
1鉄を魚に対し無毒化させ得ることが判る。 参考例 2 内径10cm、長さ90cmのポリ塩化ビニル製パイプ
に海水を1時間当り5トンの割合で一過式に連続
して流すと共に、U字溝の海水導入口に処理薬剤
を所定の割合(表3参照)で連続的に注入した。
70日間通水した後、樋の水を切つて樋の湿重量を
測定し、更に樋を軽く水洗して水を切つた後の樋
の重量を測定し、両者の差をスラツジ量とみなし
た。表3の薬剤添加量の欄で( )内はその場合
の過酸化水素或は2価鉄イオンの量を(ppm)で
示す。
[Table] From the results in Table 2, it can be seen that ferrous sulfate can be made non-toxic to fish when used in combination with hydrogen peroxide. Reference example 2 Seawater is continuously flowed through a polyvinyl chloride pipe with an inner diameter of 10cm and a length of 90cm at a rate of 5 tons per hour, and a treatment agent is poured into the seawater inlet of the U-shaped groove at a predetermined rate. (See Table 3).
After running water for 70 days, the water in the gutter was drained and the wet weight of the gutter was measured.The gutter was then lightly washed with water and the weight of the gutter was measured after draining the water, and the difference between the two was regarded as the amount of sludge. . In the column of drug addition amount in Table 3, the number in parentheses indicates the amount of hydrogen peroxide or divalent iron ion in (ppm).

【表】【table】

【表】 表3の結果から、過酸化水素の使用によりスラ
ツジの生成は減少し、第1鉄塩を過酸化水素と併
用しても過酸化水素のみを使用したときとくらべ
スラツジの生成は増加しないことが判る。
[Table] From the results in Table 3, the use of hydrogen peroxide reduces sludge formation, and even when ferrous salt is used in combination with hydrogen peroxide, sludge formation increases compared to when hydrogen peroxide alone is used. It turns out that it doesn't.

Claims (1)

【特許請求の範囲】 1 海水に対して過酸化水素を0.05〜3ppmの割
合で注入して海水生物の付着を抑制するに際し、
これと同時に第1鉄イオンを海水に対し0.01ppm
以上の割合で注入することを特徴とする海息付着
生物の付着抑制法。 2 第1鉄イオンを海水に対して0.01〜10ppmの
割合で注入することを特徴とする特許請求の範囲
第1項に記載の方法。
[Claims] 1. When hydrogen peroxide is injected into seawater at a rate of 0.05 to 3 ppm to suppress the adhesion of seawater organisms,
At the same time, 0.01ppm of ferrous ion was added to seawater.
A method for suppressing the adhesion of sea breath-fouling organisms, characterized by injection at the above ratio. 2. The method according to claim 1, characterized in that ferrous ions are injected into seawater at a rate of 0.01 to 10 ppm.
JP21004982A 1982-11-30 1982-11-30 Suppression of adhesion of marine living aufwuch Granted JPS5998791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21004982A JPS5998791A (en) 1982-11-30 1982-11-30 Suppression of adhesion of marine living aufwuch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21004982A JPS5998791A (en) 1982-11-30 1982-11-30 Suppression of adhesion of marine living aufwuch

Publications (2)

Publication Number Publication Date
JPS5998791A JPS5998791A (en) 1984-06-07
JPH044038B2 true JPH044038B2 (en) 1992-01-27

Family

ID=16582953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21004982A Granted JPS5998791A (en) 1982-11-30 1982-11-30 Suppression of adhesion of marine living aufwuch

Country Status (1)

Country Link
JP (1) JPS5998791A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106584A (en) * 1983-11-16 1985-06-12 Katayama Chem Works Co Ltd Method for preventing deposition of adhesive sea organism
JP4856811B2 (en) * 2001-02-26 2012-01-18 三菱瓦斯化学株式会社 Oberias adhesion control method
CN100393633C (en) * 2006-07-21 2008-06-11 中山大学 Aquatic raising waste water sterilizing method

Also Published As

Publication number Publication date
JPS5998791A (en) 1984-06-07

Similar Documents

Publication Publication Date Title
US2734028A (en) Killing algae in water with copper
US4098602A (en) Algaecidal composition
US20080237149A1 (en) Algaecidal compositions for water treatment and method of use thereof
US4614595A (en) Method of water treatment
CA2373130A1 (en) Method of stimulating growth in aquatic animals using growth hormones
JPS6377590A (en) Water treatment method and product for water treatment
JPH044038B2 (en)
JPH0247277B2 (en)
JPH06212459A (en) Method for suppressing corrosion and living organism in cooling water system containing copper and copper alloy
Rajendran et al. Synergistic effect of Zn exp 2+ and phenyl phosphonic acid in corrosion inhibition of mild steel in neutral environment
JP3873534B2 (en) Slime control method and slime control agent
JPH0194997A (en) Method for preventing fouling by marine organisms
JPS6323840B2 (en)
US3948632A (en) Control of algae, aquatic plants, and the like
US8491812B2 (en) Compositions for cleaning contained bodies of water with metal hydrates
JP2572571B2 (en) Method for controlling the growth of bacteria and / or algae in a water system
Eisler Accumulation of Zinc by Marine Biota.
JPH04178310A (en) Method for preventing adhesion of adhesive marine life
KR100650213B1 (en) Jellyfish Eliminating Agent
JPS6038198B2 (en) Stabilization method for residual chlorine
EP0706974B1 (en) Control of oilfield biofouling
JPH06212460A (en) Method for preventing corrosion of yellow metal surface being brought into contact with water from occurring
US1960627A (en) Method for retarding the decay of fishing twine, nets, and allied equipment
JPH03181391A (en) Water treating device for decomposition ammoniacal nitrogen
JPH0538490A (en) Preventing method for sticking of marine sticking organism