JPH0440300B2 - - Google Patents
Info
- Publication number
- JPH0440300B2 JPH0440300B2 JP548888A JP548888A JPH0440300B2 JP H0440300 B2 JPH0440300 B2 JP H0440300B2 JP 548888 A JP548888 A JP 548888A JP 548888 A JP548888 A JP 548888A JP H0440300 B2 JPH0440300 B2 JP H0440300B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- composition
- coating
- mol
- alkali resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 63
- 238000000576 coating method Methods 0.000 claims description 18
- 239000011248 coating agent Substances 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052593 corundum Inorganic materials 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000000843 powder Substances 0.000 description 16
- 239000003513 alkali Substances 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 230000009477 glass transition Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000005354 aluminosilicate glass Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007572 expansion measurement Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/111—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing nitrogen
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は金属製機器類を耐食性にする金属表面
へのコーテイング用ガラスに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a glass for coating metal surfaces to make metal equipment corrosion resistant.
従来技術
従来、科学工業、医薬品工業、食品工業等にお
いて使用する金属製機器類の耐食性が要求される
場合、それに用いる金属製機器の表面に耐食性ガ
ラスをコーテイングすることは一般に行われてい
る。Prior Art Conventionally, when corrosion resistance is required for metal equipment used in the scientific industry, pharmaceutical industry, food industry, etc., it has been common practice to coat the surface of the metal equipment used with corrosion-resistant glass.
そのコーテイングはガラス粉末をスプレー等に
よつて金属表面へ塗付し、そのガラス粉末を高温
軟化流動化させた後、冷却する方法が一般に行わ
れている。 The coating is generally performed by applying glass powder to the metal surface by spraying or the like, softening and fluidizing the glass powder at a high temperature, and then cooling it.
一般にコーテイングガラスが長時間の苛酷な腐
食条件に耐えるようにするにはガラス層の厚さは
約1mm程度にすることが必要であり、そのために
は複数回のコーテイングを行うことが必要であ
る。この場合、金属表面に既にコーテイングされ
たガラス層は、再加熱時に引張り応力を受ける。
この引張り応力の値がガラス自体の抗張力を越え
る温度ではクラツクが生じる。 Generally, in order for coated glass to withstand severe corrosive conditions for a long period of time, the thickness of the glass layer must be approximately 1 mm, and for this purpose it is necessary to perform coating multiple times. In this case, the glass layer already coated on the metal surface is subjected to tensile stress during reheating.
Cracks occur at temperatures where the value of this tensile stress exceeds the tensile strength of the glass itself.
このクラツクを防ぐためには、室温からガラス
転移温度までの熱膨張係数がα1とガラス転移温度
からガラス屈伏温度までの熱膨張係数α2の差、す
なわち、α2−α1(以下Δαと記載する)が小さく、
しかもα1が金属素地の熱膨張係数の値に近いこと
が必要となる。 In order to prevent this crack, the difference between the coefficient of thermal expansion from room temperature to the glass transition temperature α 1 and the coefficient of thermal expansion α 2 from the glass transition temperature to the glass yielding temperature, that is, α 2 − α 1 (hereinafter referred to as Δα), must be determined. ) is small,
Moreover, α 1 needs to be close to the value of the thermal expansion coefficient of the metal base.
従来のコーテイング用ガラスはΔαがΔα>130
×10-7℃-1程度であり、クラツクが生じ易い欠点
があつた。 For conventional coating glass, Δα is Δα>130
The temperature was about ×10 -7 °C -1 , and it had the disadvantage of being prone to cracks.
発明が解決しようとする課題
本発明は従来のコーテイング用ガラスの欠点を
解決しようとするものであり、その目的はΔαの
値より小さくし、複数のコーテイングに際して
も、クラツクが生じ難い金属表面へのコーテイン
グ用ガラスを提供しようとするにある。Problems to be Solved by the Invention The present invention attempts to solve the drawbacks of conventional coating glasses, and its purpose is to reduce the value of Δα to a metal surface that is less prone to cracking even when multiple coatings are applied. We are trying to provide coating glass.
課題を解決するための手段
本発明者らはさきに高弾性率、高硬度で耐食性
も高いY2O3含有アルミノけい酸塩ガラスを開発
した(J.American Ceramic Society.61.P247
(1978))。更に研究を重ねた結果、このガラスに
Na2OとNを含有させると、ΔαがΔα<100×10-7
℃-1以下と小さくなり、また、さらにZrO2ある
いはCaOまたはMgOを含有させると、耐アルカ
リ性が向上したコーテイング用ガラスが得られる
ことを知見し得た。この知見に基づいて本発明を
完成した。Means for Solving the Problems The present inventors have previously developed an aluminosilicate glass containing Y 2 O 3 that has a high modulus of elasticity, high hardness, and high corrosion resistance (J. American Ceramic Society. 61. P247
(1978)). As a result of further research, this glass
When Na 2 O and N are included, Δα becomes Δα<100×10 -7
It has been found that coating glass with improved alkali resistance can be obtained by reducing the temperature to -1 or less and further containing ZrO 2 , CaO, or MgO. The present invention was completed based on this knowledge.
本発明の要旨は、
1 モル%でSiO259〜71%、Na2O16〜28%、Y2
O34〜11%、Al2O34〜9%、N0.5〜11%の組
成からなるコーテイング用ガラス。 The gist of the invention is: 1 mol% SiO 2 59-71%, Na 2 O 16-28%, Y 2
A coating glass having a composition of 4 to 11% O 3 , 4 to 9% Al 2 O 3 , and 0.5 to 11% N.
2 前記1の組成にモル%でZrO2を1〜3.5%含
有させた組成からなるコーテイング用ガラス。2. A coating glass having a composition in which 1 to 3.5% by mole of ZrO 2 is added to the composition of 1 above.
3 前記1の組成にモル%でCaOまたはMgOを
2〜7.5%含有させた組成からなるコーテイン
グ用ガラスにある。3. A coating glass having a composition in which 2 to 7.5% by mole of CaO or MgO is added to the composition of 1 above.
このコーテイングガラスにおいて、SiO2は59
〜71モル%(以下%はモル%を表わす)の範囲で
あることが必要である。59%より少ないとΔαが
100×10-7℃-1以上と大きくなり、71%を越える
とガラス化し難くなり良質のガラスが得られな
い。 In this coated glass, SiO 2 is 59
It is necessary that the content be in the range of ~71 mol% (hereinafter % represents mol%). If it is less than 59%, Δα
If it exceeds 100×10 -7 °C -1 and exceeds 71%, it becomes difficult to vitrify and high quality glass cannot be obtained.
Na2Oは16〜28%の範囲であることが必要であ
る。Na2Oが16%より少ないとガラス化の温度が
高くなり良質のガラスが得られなく、28%を越え
るとΔαが前記数値より大きくなる。Y2O3は4〜
11%の範囲であることが必要である。Y2O3が4
%より少ないとΔαが大きくなり、11%を越えて
もΔαが大きくなる。 Na 2 O should be in the range of 16-28%. If the Na 2 O content is less than 16%, the vitrification temperature will be high and high quality glass cannot be obtained, and if it exceeds 28%, Δα will be larger than the above value. Y 2 O 3 is 4~
Must be within 11%. Y 2 O 3 is 4
If it is less than 11%, Δα becomes large, and even if it exceeds 11%, Δα becomes large.
Al2O3は4〜9%の範囲であることが必要であ
る。Al2O3が4.0%より少なく、また9%を越えて
もΔαが大きくなる。Nは0.5〜11%の範囲であ
る。Nが0.5%より少ないとΔαが大きくなり、11
%を越える量はこのガラスには含有させることが
できない。 Al 2 O 3 needs to be in the range of 4-9%. Even if Al 2 O 3 is less than 4.0% and exceeds 9%, Δα becomes large. N ranges from 0.5 to 11%. When N is less than 0.5%, Δα becomes large, and 11
% cannot be contained in this glass.
このガラスに耐アルカリ性を付与させるために
含有させるZrO2、CaOまたはMgOは、それぞれ
1〜3.5%、2〜7.5%の範囲である。ZrO2が1%
より少ないときはΔαは小さいが耐アルカリ性が
十分でなく、3.5%を越えるとコーテイングする
ために必要な温度が高くなる。CaOまたはMgO
が2%より少ないと耐アルカリ性が十分でなく、
7.5%を越えるとコーテイングするために必要な
温度が高くなる。 The amount of ZrO 2 , CaO or MgO contained in this glass to impart alkali resistance is in the range of 1 to 3.5% and 2 to 7.5%, respectively. 1% ZrO2
When the amount is less, Δα is small, but the alkali resistance is insufficient, and when it exceeds 3.5%, the temperature required for coating becomes high. CaO or MgO
If it is less than 2%, the alkali resistance will not be sufficient,
If it exceeds 7.5%, the temperature required for coating becomes high.
このコーテイング用ガラスは次の方法によつて
製造することができる。 This coating glass can be manufactured by the following method.
原料としてNa2O成分にはNa2CO3を使用し、
N成分以外の成分には酸化物を使用し、これら原
料粉末を所定比に充分混合した後、アルミナルツ
ボに入れ1550℃以下で溶融してガラスとする。得
られたガラスを粉砕し、これにN成分用のSi3N4
またはAlNを添加し、窒素雰囲気中で再溶融す
ることによつて窒素含有のものが得られる。 As a raw material, Na 2 CO 3 is used as the Na 2 O component,
Oxides are used for components other than the N component, and after these raw material powders are thoroughly mixed in a predetermined ratio, they are placed in an alumina crucible and melted at 1550° C. or lower to form glass. The obtained glass is crushed and Si 3 N 4 for the N component is added to it.
Alternatively, a nitrogen-containing material can be obtained by adding AlN and remelting in a nitrogen atmosphere.
実施例 1
Na2CO3、Al2O3、Y2O3、SiO2の粉末原料を使
用して1250℃で2時間溶融することによつて、モ
ル比で27Na2O−8Al2O3−5Y2O3−36SiO2組成の
ガラスを作つた。このガラスを粉砕し、モル比で
8Si3N4の割合にSi3N4粉末を混合し、窒素気流中
で1450℃で30分間再溶融してガラスを得た。Example 1 By melting powder raw materials of Na 2 CO 3 , Al 2 O 3 , Y 2 O 3 , and SiO 2 at 1250°C for 2 hours, a molar ratio of 27Na 2 O−8Al 2 O 3 was obtained. -5Y 2 O 3 -36SiO 2 glass was made. This glass is crushed and the molar ratio is
Si 3 N 4 powder was mixed in a proportion of 8 Si 3 N 4 and remelted at 1450° C. for 30 minutes in a nitrogen stream to obtain a glass.
このガラスを3φmmの丸棒に成形し、徐冷して
熱膨張測定用試料とした。熱膨張特性は差動トラ
ンス型装置を用い、5℃/分の昇温速度で測定し
た。 This glass was formed into a round bar of 3φmm and slowly cooled to prepare a sample for thermal expansion measurement. Thermal expansion characteristics were measured using a differential transformer type device at a heating rate of 5° C./min.
このガラス中のNの含有量は科学分析法のケル
ダール法に分析した結果、6.3モル%であつた。 The N content in this glass was 6.3 mol% as a result of analysis using the Kjeldahl method of scientific analysis.
このガラスの密度は2.84g/cm3、室温からガラ
ス転移温度までの熱膨張係数α1は81×10-7℃-1
で、この値とガラス転移温度から屈伏温度までの
熱膨張係数α2との差であるΔαの値は12×10-7℃-
1であつた。 The density of this glass is 2.84 g/cm 3 , and the coefficient of thermal expansion α 1 from room temperature to glass transition temperature is 81×10 -7 ℃ -1
The value of Δα, which is the difference between this value and the coefficient of thermal expansion α 2 from the glass transition temperature to the yielding temperature, is 12×10 -7 ℃ -
It was 1 .
また、ビツカース硬度は720Kg/mm2であり、1N
−NaOH水溶液(80℃)を使用し、試料の重量
変化を測定することにより耐アルカリ性を評価し
たところ、約3.8wt%/dayであつた。 In addition, the Bitkers hardness is 720Kg/ mm2 , 1N
The alkali resistance was evaluated by measuring the change in weight of the sample using a -NaOH aqueous solution (80°C) and found to be about 3.8 wt%/day.
比較例 1
Na2CO3、Al2O3、Y2O3、SiO2の粉末を原料と
し、実施例1と同様にして、モル比で27Na2O−
8Al2O3−5Y2O3−60SiO2の組成でガラスを作つ
た。Comparative Example 1 Using powders of Na 2 CO 3 , Al 2 O 3 , Y 2 O 3 , and SiO 2 as raw materials, the molar ratio of 27Na 2 O− was carried out in the same manner as in Example 1.
A glass was made with the composition 8Al 2 O 3 −5Y 2 O 3 −60SiO 2 .
このガラスの密度は2.760g/cm3、室温からガ
ラス転移温度までの熱膨張係数α1は101×10-7℃-
1、Δαは80×10-7℃-1であつた。ビツカース硬度
は557Kg/mm2で、実施例1と同様な方法での耐ア
ルカリ性は4.0wt%/dayであつた。 The density of this glass is 2.760 g/cm 3 , and the coefficient of thermal expansion α 1 from room temperature to glass transition temperature is 101×10 -7 ℃ -
1 , Δα was 80×10 -7 °C -1 . The Vickers hardness was 557 Kg/mm 2 , and the alkali resistance measured in the same manner as in Example 1 was 4.0 wt%/day.
実施例 2
ZrO2、Na2CO3、Al2O3、Y2O3、SiO2の粉末原
料を使用し、実施例1と同様にして、モル比で、
3ZrO2−27Na2O−6Al2O3−4Y2O3−36SiO2組成
のガラスを得た。このガラスを粉砕し、これにモ
ル比で8Si3N4のSi3N4粉末を混合し、実施例1と
同じように再溶融してガラスを得た。Example 2 Using powder raw materials of ZrO 2 , Na 2 CO 3 , Al 2 O 3 , Y 2 O 3 , and SiO 2 , in the same manner as in Example 1, the molar ratio:
A glass having a composition of 3ZrO2-27Na2O - 6Al2O3-4Y2O3-36SiO2 was obtained. This glass was crushed, Si 3 N 4 powder with a molar ratio of 8Si 3 N 4 was mixed therein, and the mixture was remelted in the same manner as in Example 1 to obtain a glass.
ガラス中のN含有量は2.6モル%であつた。 The N content in the glass was 2.6 mol%.
このガラスの密度は2.803g/cm3、室温からガ
ラス転移温度までの熱膨張係数α1は86×10-7℃-
1、Δαは26×10-7℃-1であつた。 The density of this glass is 2.803g/cm 3 , and the coefficient of thermal expansion α 1 from room temperature to glass transition temperature is 86×10 -7 ℃ -
1 , Δα was 26×10 -7 °C -1 .
1N−NaOH水溶液(80℃)を使用し、試料の
重量変化を測定することにより耐アルカリ性を評
価した。その結果は1.8wt%/dayであつた。実
施例1のそれと比較すると耐アルカリ性が向上し
ていることが分かる。 Alkali resistance was evaluated by measuring the weight change of the sample using a 1N-NaOH aqueous solution (80°C). The result was 1.8wt%/day. When compared with that of Example 1, it can be seen that the alkali resistance is improved.
実施例 3
MgO、Na2CO3、Al2O3、Y2O3、SiO2の粉末
を原料として使用し、実施例1と同じ方法で、モ
ル比で、5MgO−27Na2O−5Al2O3−3Y2O3−
36SiO2組成のガラスを作つた。このガラスを粉
砕しこれにモル比で8Si3N4のSi3N4を混合し、実
施例1と同じように再溶融してガラスを得た。こ
のガラスのN含有量は5.2モル%であつた。Example 3 Using the powders of MgO, Na 2 CO 3 , Al 2 O 3 , Y 2 O 3 , and SiO 2 as raw materials, the molar ratio of 5MgO−27Na 2 O−5Al 2 was prepared in the same manner as in Example 1. O 3 −3Y 2 O 3 −
A glass with a composition of 36SiO 2 was made. This glass was crushed, mixed with Si 3 N 4 in a molar ratio of 8Si 3 N 4 , and remelted in the same manner as in Example 1 to obtain a glass. The N content of this glass was 5.2 mol%.
このガラスの密度は2.724g/cm3、室温からガ
ラス転移温度までの熱膨張係数α1は84×10-7℃-
1、Δαは51×10-7℃-1であつた。実施例1と同様
の方法で評価した耐アルカリ性は2.8wt%/day
であつた。 The density of this glass is 2.724g/cm 3 , and the coefficient of thermal expansion α 1 from room temperature to glass transition temperature is 84×10 -7 ℃ -
1 , Δα was 51×10 -7 °C -1 . Alkali resistance evaluated using the same method as Example 1 was 2.8wt%/day
It was hot.
実施例 4
実施例3におけるMgOに代えCaOを使用し、
同じ方法で同モル比組成のガラスを作つた。この
ガラス中のNの含有量は3.8モル%であつた。Example 4 Using CaO instead of MgO in Example 3,
Glasses with the same molar composition were made using the same method. The N content in this glass was 3.8 mol%.
このガラスの密度は2.803g/cm3、α1は96×
10-7℃-1、Δαは56×10-7℃-1、耐アルカリ性は
2.4wt%/dayであつた。 The density of this glass is 2.803g/cm 3 and α 1 is 96×
10 -7 ℃ -1 , Δα is 56×10 -7 ℃ -1 , alkali resistance is
It was 2.4wt%/day.
実施例 5
Na2CO3、Al2O3、Y2O3、SiO2の粉末を原料と
して使用し、モル比で、27Na2O、8Al2O3−5Y2
O3−48SiO2組成のガラスを実施例1と同様にし
て作つた。このガラス粉末にモル比で4Si3N4の
Si3N4粉末を混合し、実施例1と同じように再溶
融してガラスを得た。このガラスのN含有量は
2.3モル%であつた。Example 5 Using powders of Na 2 CO 3 , Al 2 O 3 , Y 2 O 3 and SiO 2 as raw materials, the molar ratio was 27Na 2 O, 8Al 2 O 3 -5Y 2
A glass having a composition of O 3 -48SiO 2 was produced in the same manner as in Example 1. This glass powder has a molar ratio of 4Si 3 N 4
Si 3 N 4 powder was mixed and remelted in the same manner as in Example 1 to obtain glass. The N content of this glass is
It was 2.3 mol%.
このガラスの密度は2.769g/cm3、ビツカース
硬度は640Kg/mm2、α1は93×10-7℃-1、Δαは59×
10-7℃-1、耐アルカリ性は4.0wt%/dayであつ
た。 The density of this glass is 2.769g/cm 3 , the Bitkers hardness is 640Kg/mm 2 , α 1 is 93×10 -7 ℃ -1 , and Δα is 59×
The temperature was 10 -7 °C -1 and the alkali resistance was 4.0 wt%/day.
実施例 6
Na2CO3、Al2O3、Y2O3、SiO2の粉末を原料
として使用し、モル比で、22Na2O−5Al2O3−
8Y2O3−50SiO2組成のガラスを実施例1と同様に
して作つた。このガラス粉末にモル比で5Si3N4
のSi3N4粉末を混合し、実施例1と同じように再
溶融してガラスを得た。このガラスのN含有量は
3.2モル%であつた。Example 6 Using powders of Na 2 CO 3 , Al 2 O 3 , Y 2 O 3 , and SiO 2 as raw materials, the molar ratio was 22Na 2 O−5Al 2 O 3 −
A glass having a composition of 8Y 2 O 3 -50SiO 2 was produced in the same manner as in Example 1. 5Si 3 N 4 in molar ratio to this glass powder
Si 3 N 4 powder was mixed and remelted in the same manner as in Example 1 to obtain glass. The N content of this glass is
It was 3.2 mol%.
このガラスの密度は2.814g/cm3、α1は98×
10-7℃-1、Δαは63×10-7℃-1であつた。 The density of this glass is 2.814g/cm 3 and α 1 is 98×
10 -7 °C -1 and Δα was 63×10 -7 °C -1 .
このガラス粉末をステンレス板にスプレーで付
着させ、900℃で溶融することを3回繰り返して
ガラスコーテイングを行つたが、クラツクは生じ
なかつた。 Glass coating was performed by spraying this glass powder onto a stainless steel plate and melting it at 900°C three times, but no cracks occurred.
発明の効果
本発明は高弾性率、高硬度のY2O3含有アルミ
ノケイ酸塩ガラスににNa2O及びNを含有させる
ことによりΔαの値を100×10-7℃-1以下と小さく
なし得、ガラスコーテイングを繰り返してもクラ
ツクの発生のないものとなし得たものであり、ま
た更にZrO2、CaO、MgOの添加により、耐アル
カリ性も高め得たものである。Effects of the Invention The present invention reduces the value of Δα to 100 × 10 -7 °C -1 or less by incorporating Na 2 O and N into a high elastic modulus, high hardness Y 2 O 3 -containing aluminosilicate glass. Furthermore, by adding ZrO 2 , CaO, and MgO, the alkali resistance was improved.
Claims (1)
Y2O34〜11%、Al2O34〜9%、N0.5〜11%の
組成からなる窒素含有のコーテイング用ガラス。 2 請求項1記載のガラスにモル%でZrO2を1
〜3.5%含有させた組成からなる窒素含有のコー
テイング用ガラス。 3 請求項1記載のガラスにモル%でCaOまたは
MgOを2〜7.5%含有させた組成からなる窒素含
有のコーテイング用ガラス。[Claims] 1 mol%, SiO 2 59-71%, Na 2 O 16-28%,
A nitrogen-containing coating glass having a composition of 4 to 11% Y2O3 , 4 to 9% Al2O3 , and 0.5 to 11 % N. 2 ZrO 2 is added to the glass according to claim 1 in a mol% of 1
Nitrogen-containing coating glass with a composition containing ~3.5%. 3. The glass according to claim 1 contains CaO or
Nitrogen-containing coating glass with a composition containing 2 to 7.5% MgO.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP548888A JPH01183442A (en) | 1988-01-13 | 1988-01-13 | Nitrogen-containing glass for coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP548888A JPH01183442A (en) | 1988-01-13 | 1988-01-13 | Nitrogen-containing glass for coating |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01183442A JPH01183442A (en) | 1989-07-21 |
JPH0440300B2 true JPH0440300B2 (en) | 1992-07-02 |
Family
ID=11612628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP548888A Granted JPH01183442A (en) | 1988-01-13 | 1988-01-13 | Nitrogen-containing glass for coating |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01183442A (en) |
-
1988
- 1988-01-13 JP JP548888A patent/JPH01183442A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01183442A (en) | 1989-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5153070A (en) | Coated refractory article and method | |
US3804646A (en) | Very high elastic moduli glasses | |
JPH05502432A (en) | glass fiber composition | |
EP0509792A2 (en) | Glaze compositions | |
GB1590890A (en) | Ceramic glazes | |
US4256497A (en) | Lead-free glaze for alumina bodies | |
CA1097696A (en) | Lead-free glaze for alumina bodies | |
EP0222478A1 (en) | Glass-ceramics containing cristobalite and potassium fluorrichterite | |
US5198393A (en) | Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance | |
AU739847B2 (en) | Refractory material consisting of beta alumina | |
EP0565880A2 (en) | Transparent lead-free glazes | |
PL180722B1 (en) | Method of obtaining a siliceous refractory | |
JPH0440300B2 (en) | ||
CA1239654A (en) | Glazes for glass-ceramic articles | |
CA2492744C (en) | Water-resistant porcelain enamel coatings and method of manufacturing same | |
JPH0433746B2 (en) | ||
US5264287A (en) | Rare earth-containing frits having a high glass transition temperature and their use for the production of enamels having improved heat resistance | |
US3473937A (en) | Method of strengthening na2o-al2o3-sio2 glass-ceramics with leaded glazes and product | |
CA2387242C (en) | Water-resistant porcelain enamel coatings and method of manufacturing same | |
EP0671366B1 (en) | Fluorine-containing, lead- and cadmium-free glazes | |
JPH01145347A (en) | Aluminum enamel article having high brightness | |
JPH0429737B2 (en) | ||
JPS6238297B2 (en) | ||
SU948918A1 (en) | Low-melting glass | |
GB2093007A (en) | Cordierite ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |