JPH0440056B2 - - Google Patents

Info

Publication number
JPH0440056B2
JPH0440056B2 JP58240055A JP24005583A JPH0440056B2 JP H0440056 B2 JPH0440056 B2 JP H0440056B2 JP 58240055 A JP58240055 A JP 58240055A JP 24005583 A JP24005583 A JP 24005583A JP H0440056 B2 JPH0440056 B2 JP H0440056B2
Authority
JP
Japan
Prior art keywords
nozzle
injection
gas
injection pipe
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58240055A
Other languages
Japanese (ja)
Other versions
JPS60132624A (en
Inventor
Yoshimichi Mori
Yoshiro Inatsune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58240055A priority Critical patent/JPS60132624A/en
Publication of JPS60132624A publication Critical patent/JPS60132624A/en
Publication of JPH0440056B2 publication Critical patent/JPH0440056B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/003Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 (発明の利用分野) 本発明はアンモニア注入装置に係り、特に排ガ
ス中のダストが注入ノズルへ付着するのを防止
し、アンモニアを効果的に分配せしめるアンモニ
ア注入装置に関するものである。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to an ammonia injection device, and particularly to an ammonia injection device that prevents dust in exhaust gas from adhering to an injection nozzle and effectively distributes ammonia. It is.

(発明の背景) アンモニア(以下、NH3と記すことがある)
による接触還元法乾式脱硝装置においては、通
常、NH3を注入する部分でのダクト内のNOX
分布は一様でなく、水平方向ないし垂直方向にそ
れぞれNOX量分布が存在する。そこでこのNOX
分布に対応するため、従来から種々の形式の
NH3注入装置が考案されている。以下、その1
例として第1図に示すようなNH3注入装置の場
合について説明する。第1図において、注入管は
矢印に示すガス流方向に垂直に複数本設けられ、
各注入管5にはガス流と平行にノズル6が複数個
設けられている。なお、図中、9は流量測定用の
オリフイスである。このような装置において、ダ
クト1の水平方向のNOX分布に対しては、注入
管5の元部に設けられたバルブ3を調整すること
により、その分布に応じたNH3の注入が可能で
ある。一方、注入管5の長手方向(ダタト垂直方
向)のNOX分布に対しては、ノズル先端のオリ
フイス4の孔径を調整して、その分布に応じた
NH3を注入している。
(Background of the invention) Ammonia (hereinafter sometimes referred to as NH3 )
In the catalytic reduction method dry denitrification equipment, the NO X amount distribution in the duct is usually not uniform at the part where NH 3 is injected, and there are NO X amount distributions in the horizontal and vertical directions. So this NO X
In order to correspond to the distribution, various types of
An NH 3 injection device has been devised. Below, Part 1
As an example, the case of an NH 3 injection device as shown in FIG. 1 will be explained. In FIG. 1, a plurality of injection pipes are provided perpendicularly to the gas flow direction shown by the arrow,
Each injection pipe 5 is provided with a plurality of nozzles 6 in parallel with the gas flow. In addition, in the figure, 9 is an orifice for measuring the flow rate. In such a device, it is possible to inject NH 3 according to the horizontal distribution of NO X in the duct 1 by adjusting the valve 3 provided at the base of the injection pipe 5. be. On the other hand, for the NO
Injecting NH3 .

このように従来から提案されているNH3注入
装置は全てダクト内のNOX量分布に見合うNH3
量を注入調整するものであるが、これらの装置で
使用されている1本の注入管5はどの種の注入装
置においても基本的には同一のものである。この
1本の注入管5からのNH3噴出をフローパター
ン・モデル・テストで再現してみると、第2図に
示すようにノズル6から噴出されるNH3ガスの
方向8は、注入管5の元部に近いほどノズルの方
向からずれ、ある傾きをもつてしまうことが確認
された。なお、図中、12はノズルキヤツプであ
る。これは、注入管の元部に近いほど管内流速が
速く、注入管5からノズル6へ分岐する際、ノズ
ルの一端の壁にぶつかり、そのはねかえりで噴出
部へ向つて噴出されるためであると考えられる。
このことは、実機での注入管の点検結果からも実
証され、例えばノズルへのダスト付着状況はガス
の噴出方向と同じように傾きをもつてノズルから
先へと成長していることがわかつた。このような
ことから、1本の注入管に配列された複数のノズ
ルからNH3を均一に注入することは困難であり、
NOX分布に応じたNH3注入を精度良く行なう装
置が望まれていた。
In this way, all of the NH 3 injection devices that have been proposed so far are capable of producing NH 3 that matches the NOx amount distribution within the duct.
Although the amount of injection is adjusted, the single injection tube 5 used in these devices is basically the same regardless of the type of injection device. When this NH 3 ejection from one injection pipe 5 is reproduced by a flow pattern model test, the direction 8 of the NH 3 gas ejected from the nozzle 6 is as shown in FIG. It was confirmed that the closer to the base of the nozzle, the more it deviates from the direction of the nozzle and has a certain inclination. In addition, in the figure, 12 is a nozzle cap. This is because the flow velocity inside the tube is faster as it is closer to the base of the injection tube, and when it branches from the injection tube 5 to the nozzle 6, it hits the wall at one end of the nozzle, and the rebound causes it to be ejected toward the spouting part. Conceivable.
This was also verified by inspection results of injection pipes in actual equipment, and for example, it was found that dust adhesion to the nozzle grew from the nozzle forward with an inclination similar to the direction of gas ejection. . For this reason, it is difficult to uniformly inject NH 3 from multiple nozzles arranged in one injection pipe.
There was a desire for a device that could accurately perform NH 3 injection according to the NO X distribution.

一方、ダスト濃度の高い石炭焚や高硫黄濃度の
重油焚の燃焼排ガス、いわゆるダーテイーガスを
処理する脱硝装置のNH3注入装置においては、
上記に加え、第3図に示すように注入管5によつ
て排ガスに乱れが生じその乱れによつてダストが
注入管5の方へ巻き込まれ、ダストの付着堆積を
生ずる。また、注入ノズル6から吹き出すNH3
をも巻き込み、このNH3が排ガス中のSO3と反応
し、酸性硫安を生成し、堆積ダストを固化、成長
させることになる。このこととガス乱れによる噴
出部での渦の発生により、ダストがより堆積しや
すくなる。その結果、第4図に示すようにダスト
が堆積成長し、堆積したダスト10が一つのノズ
ル状になり、NH3の噴出方向を変えてしまう結
果となり、均一なNH3の分配は困難となつてく
るという問題があつた。
On the other hand, in the NH 3 injection device of the denitrification equipment that processes combustion exhaust gas from coal-fired combustion with high dust concentration and heavy oil-fired combustion with high sulfur concentration, so-called dirty gas,
In addition to the above, as shown in FIG. 3, the exhaust gas is disturbed by the injection pipe 5, and the disturbance causes dust to be drawn in toward the injection pipe 5, resulting in the accumulation of dust. In addition, NH 3 blown out from the injection nozzle 6
This NH 3 reacts with SO 3 in the exhaust gas, producing acidic ammonium sulfate, which solidifies and grows the deposited dust. This and the generation of vortices at the ejection part due to gas turbulence make it easier for dust to accumulate. As a result, as shown in Fig. 4, the dust accumulates and grows, and the accumulated dust 10 forms a nozzle shape, changing the direction of NH 3 ejection, making it difficult to uniformly distribute NH 3 . I had a problem with it coming.

(発明の目的) 本発明の目的は、前述した従来技術の欠点をな
くし、ダクト内の上下左右のNOX量の分布に応
じ適正なNH3注入を、長期に安定に維持できる
ようにしたNH3注入装置を提供することにある。
(Object of the Invention) The object of the present invention is to eliminate the drawbacks of the prior art described above, and to provide an NH 3.Providing injection equipment.

(発明の概要) 本発明は、排煙脱硝装置で還元剤としてアンモ
ニアを注入するために、ガス流れと並行に数個の
注入ノズルが設置されている注入管をダクト内に
配置したアンモニア注入装置において、前記注入
管に設置されているノズルの長さを該注入管によ
つて生じる被処理ガスの滞留部よりも先方に延長
し、該ノズル先端部を先細としたことを特徴とす
る。
(Summary of the Invention) The present invention provides an ammonia injection device in which an injection pipe in which several injection nozzles are installed in parallel with the gas flow is arranged in a duct in order to inject ammonia as a reducing agent in a flue gas denitrification device. In this method, the length of the nozzle installed in the injection pipe is extended beyond the retention area of the gas to be treated generated by the injection pipe, and the tip of the nozzle is tapered.

本発明においては、前記ノズルの長さを、注入
管径の2〜3倍(特に2.3倍前後)以上にするこ
とが好ましい。
In the present invention, it is preferable that the length of the nozzle is at least 2 to 3 times (especially around 2.3 times) the diameter of the injection tube.

本発明によれば、ノズルの長さを前記所定の長
さとすることにより、NH3噴出部を注入管によ
つて生じる乱れが回復する部分に置くことがで
き、しかもその先端部を先細としたことにより、
ノズルへのダストの付着を防止し、NH3の噴出
方向を正しく整えることができる。
According to the present invention, by setting the length of the nozzle to the predetermined length, the NH 3 jetting part can be placed in a part where the turbulence caused by the injection pipe is recovered, and the tip part is tapered. By this,
This prevents dust from adhering to the nozzle and allows the correct direction of NH 3 ejection.

(発明の実施例) 第3図に示したように、ガス流れは、注入管5
により乱れ、注入管5の後ろ側にガスの滞留部を
生じる。これをモデルテストにて再現してみたと
ころ、注入管5により乱された流れは、注入管5
を通過した後、注入管中心から注入管径の2〜3
倍以上の位置で回復することが確認された。ま
た、種々の実験で、乱された流れが回復していく
角度θが約12°であることもわかつた。これらの
ことから、第5図(キヤツプ付きノズルの場合)
に示すように、流れの回復する位置以上、つま
り、ノズル6の長さを注入管中心から注入管径D
の2〜3倍(望ましくは2.3倍)以上の長さにす
れば、噴出されたNH3はガス流れに乗り、後流
の触媒層へと均一に流れ、その結果、酸性硫安の
生成によるダストの固化成長が防止され、噴出部
に付着し、閉塞させることもなくなることがわか
つた。
(Embodiment of the invention) As shown in FIG.
This causes turbulence and causes a gas stagnation part on the back side of the injection pipe 5. When we reproduced this in a model test, we found that the flow disturbed by the injection pipe 5 was
After passing through, 2 to 3 of the diameter of the injection pipe from the center of the injection pipe.
It was confirmed that recovery occurred at more than twice the position. In addition, various experiments have revealed that the angle θ at which the disturbed flow recovers is approximately 12°. From these facts, Fig. 5 (in the case of a nozzle with a cap)
As shown in FIG.
If the length is 2 to 3 times (preferably 2.3 times) or more than It was found that the solidification and growth of the liquid was prevented, and that it did not adhere to the ejection part and cause it to become clogged.

なお、キヤツプ12の位置を先端におくと、第
6図のように、キヤツプ12の先端で渦を発生さ
せ、ガス滞留部を生じることになるため、第5図
に示すようにキヤツプ12の先に直管を設け、該
キヤツプ12までの位置はノズル長さの半分以下
の位置とすると好ましいことがわかつた。なお、
キヤツプ無しの短管のみのノズル型式の場合も注
入管中心から注入管径の2〜3倍の長さとするこ
とが好ましい。
If the cap 12 is placed at the tip, as shown in FIG. 6, a vortex will be generated at the tip of the cap 12, creating a gas retention area. It has been found that it is preferable to provide a straight pipe in the nozzle and to set the position up to the cap 12 at a position less than half the length of the nozzle. In addition,
Even in the case of a nozzle type with only a short tube without a cap, the length from the center of the injection tube is preferably 2 to 3 times the diameter of the injection tube.

なお、この長くしたノズル(直管)7が肉厚で
ある場合、先端では、第8図に示すように、ノズ
ル(直管)7の厚みにより渦が発生し、ノズル部
先端に第9図のようにダスト10が付着成長して
行く恐れがある。そこで、第10図に示すよう
に、ノズル(直管)7の先を細くし、渦流を発生
させないようにすれば、より一層の効果が得られ
る。なお、ノズルを先細にする際の角度θ2(第1
0図)は特に規定する訳ではないが、一般に言わ
れている流体のはく離が発生し始める角度θ2
2.5°と、先に述べた乱された流れが回復する角度
に沿つたθ2=12°との両者を考え、2°〜12°の角度
をつけることが好ましい。
If the elongated nozzle (straight pipe) 7 has a thick wall, a vortex will be generated at the tip due to the thickness of the nozzle (straight pipe) 7, as shown in FIG. There is a possibility that the dust 10 will adhere and grow as shown in FIG. Therefore, as shown in FIG. 10, if the tip of the nozzle (straight pipe) 7 is tapered to prevent the generation of eddy currents, even more effects can be obtained. Note that the angle θ 2 (first
0) is not specifically defined, but it is generally said that the angle at which fluid separation begins to occur θ 2 =
Considering both 2.5° and θ 2 =12° along the angle at which the disturbed flow recovers as described above, it is preferable to set the angle between 2° and 12°.

このように、ノズルの長さを被処理ガスの滞留
部よりも先方に延長したことにより、NH3注入
を排ガスの整流位置で行うことができる他、もう
一つの欠点であつたNH3噴出の方向性も、第7
図に示すようにノズルの壁にぶつかつた流れは、
ノズル管内で整流されて平行流に近くなり、この
ガス流れに沿つてNH3を平行に噴出させること
ができる。また、ノズルの先端部を先細にしたこ
とにより、ダスト付着によるNH3噴出部の閉塞
を生じることなく、均一にNH3を噴出分布させ
ることができる。
In this way, by extending the length of the nozzle beyond the retention area of the gas to be treated, NH 3 injection can be performed at the exhaust gas rectification position, and the NH 3 jetting, which was another drawback, can be performed. The direction is also the seventh
As shown in the figure, the flow that hits the nozzle wall is
The gas flow is rectified in the nozzle pipe, resulting in a nearly parallel flow, and NH 3 can be ejected in parallel along this gas flow. Furthermore, by tapering the tip of the nozzle, it is possible to uniformly eject and distribute NH 3 without clogging the NH 3 ejecting part due to dust adhesion.

なお、第7図においては、NH3注入管5に配
置されたノズル6の全部に直管7が設けられた例
が示されているが、これは必ずしも全部に設ける
必要はなく、全てのノズルの先端部が被処理ガス
の滞留部よりも先方の位置にある場合は、例えば
NH3ガス噴出方向の偏流が著しい注入管5の元
部に近いノズルに重点的に設けてもよい。
In addition, although FIG. 7 shows an example in which straight pipes 7 are provided in all of the nozzles 6 arranged in the NH 3 injection pipe 5, it is not necessarily necessary to provide them in all, and all nozzles are provided with straight pipes 7. If the tip of the is located ahead of the retention area of the gas to be treated, for example,
It may be preferentially provided in the nozzle near the base of the injection pipe 5 where the NH 3 gas is significantly biased in the direction of ejection.

(発明の効果) 以上、本発明のNH3注入装置によれば、ダス
トの付着による注入ノズルの閉塞を防止すること
ができ、ノズル閉塞によるNH3注入量低下によ
る脱硝性能低下を防止することができる。また
NH3注入分布をなくし、NOX量分布に沿つた適
切なNH3注入が可能となり、脱硝性能の向上、
NH3消費量節減に多大の効果が得られる。
(Effects of the Invention) As described above, according to the NH 3 injection device of the present invention, it is possible to prevent the injection nozzle from being blocked due to adhesion of dust, and it is possible to prevent the denitrification performance from decreasing due to a decrease in the NH 3 injection amount due to the nozzle blockage. can. Also
Eliminates the NH 3 injection distribution and enables appropriate NH 3 injection along the NO X amount distribution, improving denitrification performance.
A great effect can be obtained in reducing NH 3 consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、排ガス脱硝に用いるNH3注入装置
の全体を示す説明図、第2図は、従来技術での1
本当りから噴出するNH3の流れを模式化した側
面図、第3図は、NH3注入管廻りのガスの流れ
を模式化した断面図、第4図は、従来技術でのノ
ズル部へのダスト付着状況を示す図、第5図は、
本発明の一実施例を示すNH3注入管のノズル取
付状態を示す断面図、第6図は、ノズルを長く
し、その先端にキヤツプを付けた場合のキヤツプ
先端のガス流れを模式化した図、第7図は、本発
明の一実施例におけるNH3注入管のノズル内の
NH3の流れを模式化して示す図、第8図は、短
管を取り付けた場合のNH3噴出部のガス流を示
す図、第9図は、ダストの付着状況を示す図、第
10図は、本発明に用いる短管の先端の形状例を
示す拡大断面図である。 1……ダクト、2……ヘツダー、3……バル
ブ、4……オリフイス、5……注入管、6……ノ
ズル、7……直管、8……噴出NH3、9……オ
リフイス、10……堆積ダスト、11……渦流、
12……キヤツプ。
Fig. 1 is an explanatory diagram showing the entire NH 3 injection device used for exhaust gas denitrification, and Fig. 2 is an explanatory diagram showing the entire NH 3 injection device used for exhaust gas denitrification.
Fig. 3 is a side view schematically showing the flow of NH 3 ejected from the nozzle, Fig. 3 is a cross-sectional view schematically showing the flow of gas around the NH 3 injection pipe, and Fig. 4 is a diagram showing the flow of gas into the nozzle section using the conventional technology. Figure 5 shows the dust adhesion situation.
FIG. 6 is a cross-sectional view showing the nozzle installation state of an NH 3 injection pipe according to an embodiment of the present invention, and is a schematic diagram of the gas flow at the tip of the cap when the nozzle is lengthened and a cap is attached to the tip. , FIG. 7 shows the inside of the nozzle of the NH 3 injection pipe in one embodiment of the present invention.
Figure 8 is a diagram schematically showing the flow of NH 3. Figure 8 is a diagram showing the gas flow at the NH 3 jetting part when a short pipe is installed. Figure 9 is a diagram showing the state of dust adhesion. Figure 10. FIG. 2 is an enlarged sectional view showing an example of the shape of the tip of the short tube used in the present invention. 1... Duct, 2... Header, 3... Valve, 4... Orifice, 5... Injection pipe, 6... Nozzle, 7... Straight pipe, 8... Output NH 3 , 9... Orifice, 10 ...accumulated dust, 11...vortex,
12...cap.

Claims (1)

【特許請求の範囲】 1 排煙脱硝装置で還元剤としてアンモニアを注
入するために、ガス流れと並行に数個の注入ノズ
ルが設置されている注入管をダクト内に配置した
アンモニア注入装置において、前記注入管に設置
されているノズルの長さを該注入管によつて生じ
る被処理ガスの滞留部よりも先方に延長し、該ノ
ズル先端部を先細としたことを特徴とするアンモ
ニア注入装置。 2 特許請求の範囲第1項において、ノズルをキ
ヤツプ付きノズルにした場合、キヤツプの位置を
ノズルの半分以下の位置に取付けたことを特徴と
するアンモニア注入装置。
[Scope of Claims] 1. In an ammonia injection device in which an injection pipe in which several injection nozzles are installed in parallel with the gas flow is arranged in a duct to inject ammonia as a reducing agent in a flue gas denitrification device, An ammonia injection device, characterized in that the length of the nozzle installed in the injection pipe is extended beyond the retention area of the gas to be treated generated by the injection pipe, and the tip of the nozzle is tapered. 2. The ammonia injection device according to claim 1, characterized in that when the nozzle is a nozzle with a cap, the cap is installed at a position less than half of the nozzle.
JP58240055A 1983-12-20 1983-12-20 Ammonia injection apparatus Granted JPS60132624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240055A JPS60132624A (en) 1983-12-20 1983-12-20 Ammonia injection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240055A JPS60132624A (en) 1983-12-20 1983-12-20 Ammonia injection apparatus

Publications (2)

Publication Number Publication Date
JPS60132624A JPS60132624A (en) 1985-07-15
JPH0440056B2 true JPH0440056B2 (en) 1992-07-01

Family

ID=17053806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240055A Granted JPS60132624A (en) 1983-12-20 1983-12-20 Ammonia injection apparatus

Country Status (1)

Country Link
JP (1) JPS60132624A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122625U (en) * 1987-02-03 1988-08-09
JP3862134B2 (en) * 1999-12-01 2006-12-27 株式会社日立プラントテクノロジー Ammonia gas injection device
US8317390B2 (en) * 2010-02-03 2012-11-27 Babcock & Wilcox Power Generation Group, Inc. Stepped down gas mixing device
US9518734B2 (en) 2013-01-28 2016-12-13 General Electric Technology Gmbh Fluid distribution and mixing grid for mixing gases
US20150064083A1 (en) * 2013-08-28 2015-03-05 Alstom Technology Ltd Injector grid for high and low dust environment selective catalytic reduction systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118727A (en) * 1980-02-26 1981-09-17 Kawasaki Heavy Ind Ltd Fluid mixer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118727A (en) * 1980-02-26 1981-09-17 Kawasaki Heavy Ind Ltd Fluid mixer

Also Published As

Publication number Publication date
JPS60132624A (en) 1985-07-15

Similar Documents

Publication Publication Date Title
CN102159810A (en) Mixing device in exhaust gas pipe
WO2003004839A1 (en) Mixing device for an exhaust gas purification system
CN209501369U (en) A kind of flue gas SCR denitration device with mixed fume and dust effect
JP4141006B2 (en) High pressure cleaning spray nozzle
JPH0440056B2 (en)
JPS6141602B2 (en)
CA2160084A1 (en) High flow weld-in nozzle sleeve for rock bits
CN205796965U (en) A kind of coal-fired plant flue gas SCR denitration ammonia-spraying grid structure
KR101662408B1 (en) Reducing agent supplying apparatus
JP3735409B2 (en) Ammonia injection device for exhaust gas denitration equipment
CN103446852A (en) Radiation conical tube type liquid distributor
CN101879401B (en) Reducing agent injection mechanism suitable for SCR reactor
JP3207684B2 (en) Ammonia gas injection device
JPH0211734B2 (en)
CN211988032U (en) A prevent stifled type ammonia injection grid and SCR denitrification facility for SCR denitration
JP3862134B2 (en) Ammonia gas injection device
JPH0924246A (en) Ammonia injection device in denitration device
CN211927423U (en) A flue gas sampling device that is used for SCR denitration to draw from penetrating multiple spot sampling system
JP3987751B2 (en) Injection nozzle and injection method
CN100336605C (en) Device for spraying gas-liquid mixed fluid
JP2000167347A (en) Flow rectifying apparatus for bent duct and flue gas desulfurization equipment provided with this flow rectifying apparatus
JP2023514502A (en) Pulse nozzle for filter cleaning system
CN208244455U (en) The anti-blocking throttle type nozzle matrix of ammonia-spraying grid inside SCR denitration system
CN206621995U (en) A kind of new ammonia-spraying grid
JPH08206544A (en) Ejection nozzle

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term