JPH04397A - Formation of thin film due to micelle electrolyzing method - Google Patents

Formation of thin film due to micelle electrolyzing method

Info

Publication number
JPH04397A
JPH04397A JP2099528A JP9952890A JPH04397A JP H04397 A JPH04397 A JP H04397A JP 2099528 A JP2099528 A JP 2099528A JP 9952890 A JP9952890 A JP 9952890A JP H04397 A JPH04397 A JP H04397A
Authority
JP
Japan
Prior art keywords
electrolysis
micelle
organic
film
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2099528A
Other languages
Japanese (ja)
Other versions
JP2906568B2 (en
Inventor
Yoshihiro Ono
大野 好弘
Fumiaki Matsushima
文明 松島
Nariyuki Ogino
荻野 成幸
Kuniyasu Matsui
松井 邦容
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9952890A priority Critical patent/JP2906568B2/en
Priority to EP19900113106 priority patent/EP0407947A3/en
Priority to KR1019900010544A priority patent/KR910003426A/en
Publication of JPH04397A publication Critical patent/JPH04397A/en
Priority to US08/183,204 priority patent/US5399450A/en
Priority to US08/406,263 priority patent/US5554466A/en
Priority to US08/468,479 priority patent/US5705302A/en
Application granted granted Critical
Publication of JP2906568B2 publication Critical patent/JP2906568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To form a uniform organic or inorganic thin film excellent in smoothness by dispersing the nonaqueous organic or inorganic substance in a micelle soln. and making it colloidal and performing electrolysis at puncture potential or more of micelle and electrodeposition potential or below and then performing electrolysis at electrodeposition potential or more. CONSTITUTION:The nonaqueous or hardly water-soluble organic or inorganic substance is dispersed in the micelle soln. of a surfactant which has the characteristics charged by electrolysis and made colloidal. Furthermore a supporting electrolyte and electrodeposition liquid are dissolved in this micelle soln. A resin prepolymer and a cross-linking agent are made copresent and utilized as the component of this electrodeposition liquid. An organic or inorganic film is formed on a formed color pigment film by performing a first electrolysis at puncture potential or more of micelle and electrodeposition potential or below. Polymers are formed between fine particles of the organic or inorganic film by performing a second electrolysis at electrodeposition potential or more for a short time. Furthermore the operation is repeatedly performed in accordance with necessity. Thereby the particulate film formed of organic or inorganic substance is uniformly formed which is good in adhesive property and excellent in smoothness.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気化学的方法により、電極上に非水溶性ある
いはni@性の有機あるいは無機物の薄膜を形成するも
のであり、利用分野としては、例えば上記物質に有機頷
料を用いれば、電極をRlG、Bに着色することにより
、液晶デイスプレーに用いられるカラーフィルターへの
応用が考えられる。又、上記物質の特性により、有機半
導体、太陽電池、電子写真感光体、PHBメモリー、光
電変換素子、ガスセンサー、バイオセンサー、圧電素子
、誘電体、超電導体等への製造など様々な分野への応用
展開が考えられる。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is for forming a thin film of water-insoluble or ni@-based organic or inorganic material on an electrode by an electrochemical method. For example, if an organic dye is used as the above-mentioned substance, the electrodes can be colored with RlG or B, and the electrodes can be applied to color filters used in liquid crystal displays. In addition, due to the properties of the above substances, they can be used in various fields such as manufacturing organic semiconductors, solar cells, electrophotographic photoreceptors, PHB memories, photoelectric conversion elements, gas sensors, biosensors, piezoelectric elements, dielectrics, superconductors, etc. Application development is possible.

[従来の技術] 非水溶性あるいは水に難溶性の有機物あるいは無機物粒
子を水系の溶液中で電極上で形成する方法は皆無であっ
た。
[Prior Art] There has been no method of forming water-insoluble or poorly water-soluble organic or inorganic particles on an electrode in an aqueous solution.

湿式法での有機膜の成膜方法としては、LB膜、電解重
合法が知られている。LB膜は、水の表面に親木基と疎
水基を含む分子を展開し、これを基板の上に採取する方
法であり、成膜分子が限定されるものであり、無機物粒
子等の成膜はできない。
As a wet method for forming an organic film, an LB film and an electrolytic polymerization method are known. LB film is a method in which molecules containing parent wood groups and hydrophobic groups are spread on the surface of water and collected onto a substrate. I can't.

電解重合法は、有機物を水系あるいは有機系の溶媒に溶
解し、電解することで電極上に高分子化した膜を析出さ
せる方法である。これも有機物としては、現在までのと
ころ不飽和結合を持つ分子に限定され、無機物の成膜は
できなかった。
The electrolytic polymerization method is a method in which an organic substance is dissolved in an aqueous or organic solvent and electrolyzed to deposit a polymerized film on an electrode. Until now, organic materials have been limited to molecules with unsaturated bonds, and it has not been possible to form films of inorganic materials.

最近になり、湿式法で有機物顔料の成膜を行なう方法と
して佐治等(J、Am、Cj2emSoc、、109.
5881 (1987)。
Recently, Saji et al. (J, Am, Cj2emSoc, 109.
5881 (1987).

Chem、Leff  893  (1988))がミ
セルの電解法を報告している。
Chem, Leff 893 (1988)) reported a method for electrolyzing micelles.

我々はすでにこのミセル電解法を用い、他の非水溶性の
有機物粒子及び非水溶性の無機物粒子の成膜が可能であ
ることを見い出している。
We have already found that it is possible to form films of other water-insoluble organic particles and water-insoluble inorganic particles using this micelle electrolysis method.

これらのミセル電解法は、電解により荷電する特性を持
つ界面活性剤のミセル中に、非水溶性あるいは水に難溶
性の有機物、無機物を分散あるいは可渚化させた後、ミ
セルを電解により破壊し、有機物、無機物を電極上に析
出させるものである。
These micelle electrolysis methods involve dispersing or softening water-insoluble or poorly water-soluble organic or inorganic substances in surfactant micelles that have the characteristic of being charged by electrolysis, and then destroying the micelles by electrolysis. , organic substances, and inorganic substances are deposited on electrodes.

[発明が解決しようとする課題] ミセル電解法による薄膜形成は、溶液中の微粒子(ミセ
ル中の微粒子)を電極上に析出させるもので、極めて低
エネルギーの成膜方法である。このため、溶液中に分散
していた微粒子が電極上に付着しているだけで、その密
着力は非常に弱く、ミセル溶液中から電極を引き上げる
際にすら、成膜部分が剥離してしまうという問題があっ
た。
[Problems to be Solved by the Invention] Thin film formation by micelle electrolysis involves depositing fine particles in a solution (fine particles in micelles) on an electrode, and is an extremely low energy film forming method. For this reason, the fine particles dispersed in the solution simply adhere to the electrode, and the adhesion is very weak, causing the film-formed part to peel off even when the electrode is pulled out of the micelle solution. There was a problem.

又、膜が剥離する場合は、膜の上層部のみ剥離する場合
もあり、成膜されたミセル膜の平滑性に問題があった。
Furthermore, when the film peels off, there are cases where only the upper layer of the film peels off, which poses a problem in the smoothness of the formed micelle film.

ミセル膜が平滑てないと利用分野に制限ができる。例え
ば、この膜を用いて、液晶パネルのカラーフィルターを
製造する場合、膜の凹凸が大きいと配向不良等の問題を
起しやすく、カラーフィルターとしての応力が不可能と
なる。
If the micelle membrane is not smooth, there will be restrictions on the fields of application. For example, when manufacturing a color filter for a liquid crystal panel using this film, if the film has large irregularities, problems such as poor alignment are likely to occur, making it impossible to apply stress as a color filter.

本発明の目的は、この成膜部の密着力をアップさせるこ
とにより、平滑性の優れた、均一な膜を得ることにある
An object of the present invention is to obtain a uniform film with excellent smoothness by increasing the adhesion of this film forming part.

[課題を解決するための手段1 電解により荷電する特性を持つ界面活性剤のミセル溶液
中に、非水性あるいは水に難溶性の有機あるいは無機物
を分散コロイド化し、該ミセル溶液中に支持電解質及び
カチオン性の電着液を溶解した中で、成膜した色素顔料
膜上に第1の電解としてミセル破壊電位以上電着電位以
下で電解を行ない、第2の電解として電着電位以上で電
解を行なうことにより非水溶性あるいは水に難溶性の有
機あるいは無機物の微粒子膜を成膜することを特徴とす
る。
[Means for Solving the Problem 1] A non-aqueous or poorly water-soluble organic or inorganic substance is dispersed into a colloid in a micelle solution of a surfactant that has the property of being charged by electrolysis, and a supporting electrolyte and a cation are added to the micelle solution. Electrolysis is carried out on the formed dye pigment film in a solution of a liquid electrodeposition solution, as the first electrolysis at a temperature above the micelle breakdown potential and below the electrodeposition potential, and as a second electrolysis, electrolysis is carried out at a potential above the electrodeposition potential. This method is characterized by forming a film of fine particles of an organic or inorganic substance that is insoluble or poorly soluble in water.

次に各工程を順に説明する。Next, each process will be explained in order.

本発明のミセル溶液は、少なくとも界面活性剤、支持電
解質、非水溶性あるいは水に難溶性の有機あるいは無機
物及び電着液の成分が含まれている。
The micelle solution of the present invention contains at least a surfactant, a supporting electrolyte, a water-insoluble or poorly water-soluble organic or inorganic substance, and components of an electrodeposition solution.

界面活性剤としては、該界面活性剤のミセルを電解酸化
により破壊することができるものならなんでも良いが、
例えば、界面活性剤の末端基としてメタロセン基[M 
(ci Hs ) 2 : M=T 1、V+ 、Cr
、Fe、Co、Ni、Ru、Os。
Any surfactant may be used as long as it can destroy the micelles of the surfactant by electrolytic oxidation.
For example, a metallocene group [M
(ci Hs) 2: M=T 1, V+, Cr
, Fe, Co, Ni, Ru, Os.

Pdなど]を持つ界面活性剤がこれに当る。Such surfactants include Pd, etc.].

この界面活性剤を1種あるいは2種以上を水溶液中に溶
解しミセルを形成し、この中に非水溶性あるいは水に難
溶性の有機あるいは無機物を分散、懸濁させる。
One or more of these surfactants are dissolved in an aqueous solution to form micelles, into which water-insoluble or poorly water-soluble organic or inorganic substances are dispersed or suspended.

界面活性剤濃度としては、臨7毎ミセル濃度以上であれ
ば良く、上限は時に限定されない。
The surfactant concentration may be at least the micelle concentration, and the upper limit is not limited.

支持電解質としては、限定はなく、又溶液抵抗によるI
Rドロップが無視できる範囲内の濃度であれば良い。
There are no limitations on the supporting electrolyte, and I
It is sufficient if the concentration is within a range where the R drop can be ignored.

電着液の成分としては、カルボキシル基を持っていて、
アンモニアあるいは有機アミン等により中和された樹脂
プレポリマーと、架橋剤として水溶性のメラミン樹脂や
フェノール樹脂等を共存させたものである。
As a component of the electrodeposition liquid, it has a carboxyl group,
A resin prepolymer neutralized with ammonia or an organic amine, etc. coexists with a water-soluble melamine resin, phenol resin, etc. as a crosslinking agent.

以上の組成から成るミセル溶液に、テスト極、対極、参
照極を浸漬し、ミセル破壊電位以上、プレポリマーの電
着電位以下の電位をテスト極に印加することで、テスト
極上に有機あるいは無機の膜を形成し、しかる後に、1
i@電位以上の電位を短時間かけることで有機あるいは
無機膜の微粒子間にポリマーを形成した。
A test electrode, a counter electrode, and a reference electrode are immersed in a micelle solution having the above composition, and a potential of more than the micelle breakdown potential and less than the prepolymer electrodeposition potential is applied to the test electrode. After forming a film, 1
By applying a potential higher than the i@ potential for a short time, a polymer was formed between the fine particles of the organic or inorganic film.

このプロセスを繰り返すことで、電極上に有機あるいは
無機の微粒子からなる平滑な密着性の良い膜が形成する
ことができた。
By repeating this process, it was possible to form a smooth, highly adhesive film made of organic or inorganic fine particles on the electrode.

尚、この成膜方法が電着液中に顔料等を分散させて電着
ポリマーと顔料等を共析させる方法と根本的に異なるの
は、電着ポリマーと顔料等の割合である。即ち、本発明
は有機あるいは無機の微粒子はすき間に1i着ポリマー
が、いわば「浸み込む」ことにより膜の密着性を確保す
るところが異なっている。
Note that this film forming method is fundamentally different from a method in which a pigment or the like is dispersed in an electrodeposition solution to co-deposit the electrodeposition polymer and the pigment or the like in the ratio of the electrodeposition polymer to the pigment or the like. That is, the present invention is different in that the organic or inorganic fine particles ensure the adhesion of the film by allowing the 1i-adhered polymer to "infiltrate" the gaps, so to speak.

このため、単位面積当りの顔料等の量を一定とすると本
発明の膜厚は電着膜と比較して常に薄くなる。
Therefore, if the amount of pigment, etc. per unit area is constant, the film thickness of the present invention is always thinner than that of an electrodeposited film.

以下実施例を用いて詳細に説明する。This will be explained in detail below using examples.

[実 施 例] 対角5インチのガラス基板上に透明電極としてITOを
スパッタリングにより形成し、さらにフォトリソ法を用
い幅100μmで本数300本のストライプ状の電極と
して形成した。
[Example] ITO was formed as a transparent electrode on a glass substrate with a diagonal size of 5 inches by sputtering, and was further formed as a striped electrode of 300 stripes with a width of 100 μm using a photolithography method.

次に第1表に示す組成の赤、緑、青の色素(有機顔料)
のミセルコロイド水溶液をそれぞれ作成した。
Next, red, green, and blue pigments (organic pigments) with the composition shown in Table 1.
A micellar colloid aqueous solution was prepared.

第1表 * l * 2 * 3 * 4 フェロセニルPEG (同口化学製) (電解で酸化、還元できる) 臭化リチウム アントラキノン系扉枳 臭素化塩素化銅フタロシアニン *5 α型銅フタロシアニン 更に、この3種類のミセルコロイド溶液に、アクリル酸
とメラミンを7:3て調合したものを、前記溶液中で0
.5wt%含まれるように添加した。
Table 1 * l * 2 * 3 * 4 Ferrocenyl PEG (manufactured by Dokuchikagaku) (can be oxidized and reduced by electrolysis) Lithium bromide anthraquinone-based door brominated chlorinated copper phthalocyanine *5 α-type copper phthalocyanine In addition, these 3 A 7:3 mixture of acrylic acid and melamine was added to a 7:3 micellar colloid solution.
.. It was added so that it contained 5wt%.

色素薄膜は、青、緑、赤の繰り返しのストライブパター
ンになるように、電解時に電極を選択的に通電した。こ
の電解時に、まず電解電位を0 、4 V (us、 
S、C,E、)とし、電解時間は色素膜がそれぞれ0,
3μmとなるように調整した。次に電解電位を2 、 
OV (us、 S、C,E、)として、ボッマーが0
.3μmの色素膜のすき間に「しみ込む」時間だけ電解
した。これを3回くり返すことで、色素膜がそれぞれ1
0μmとなったストライブパターンのカラーフィルター
を得た。即ち、電着により01μmの膜厚増加しかなか
った。
During electrolysis, the electrodes were selectively energized so that the dye thin film formed a repeating striped pattern of blue, green, and red. During this electrolysis, first the electrolytic potential was set to 0.4 V (us,
S, C, E, ), and the electrolysis time is 0,
The thickness was adjusted to 3 μm. Next, the electrolytic potential is 2,
As OV (us, S, C, E,), Bommer is 0
.. Electrolysis was carried out only for the time required to "seep into" the 3 μm gap in the pigment film. By repeating this three times, each pigment film becomes 1
A color filter with a stripe pattern of 0 μm was obtained. That is, the film thickness increased by only 0.1 μm due to electrodeposition.

この後、180°CX30分焼成することにより密着性
の良いカラーフィルターを得た。
Thereafter, a color filter with good adhesion was obtained by baking at 180° C. for 30 minutes.

即ち、完成したカラーフィルターのスコッチテブによる
引きはがし試験でも色素膜はまったく剥離することはな
かった。
That is, even when the completed color filter was subjected to a peel test using Scotch tape, the dye film did not peel off at all.

又、カラーフィルター面は極めて平滑であり、ミセルコ
ロイド溶液中で色素膜が剥離するという問題も起らなか
った。
Furthermore, the color filter surface was extremely smooth, and there was no problem of the dye film peeling off in the micellar colloid solution.

このカラーフィルターを液晶パネルのプロセスを流動し
て、パネル化を行ったが膜の密着性にはまったく問題が
なく、ラビング処理でダメージを受けることもなかった
This color filter was passed through the liquid crystal panel process to form a panel, but there were no problems with the adhesion of the film, and there was no damage caused by the rubbing process.

このパネルを用いて、液晶の駆動特性を調査したが、従
来の色素薄膜単体の場合に比べて何ら差異は認められな
かった。又、60°C×90%の環境下での耐久信頼性
を評価したが、配向不良等の問題が生しることはなかっ
た。
Using this panel, we investigated the driving characteristics of the liquid crystal, but no differences were observed compared to the case of a conventional dye thin film alone. Furthermore, durability and reliability under an environment of 60°C x 90% were evaluated, and no problems such as poor orientation occurred.

[発明の効果] 以上、実施例かられかるように本発明を用いるとミセル
電解法による膜の密着性をアップさせることができ、ま
た平坦な膜が得ることができた。
[Effects of the Invention] As can be seen from the Examples above, when the present invention was used, it was possible to improve the adhesion of a film formed by micelle electrolysis, and to obtain a flat film.

この結果、例えば液晶パネルのカラーフィルタに本発明
を応用した場合、従来の色素膜単体の場合と比べて何ら
差異がなく、かつ配向不良等の問題が生しることもなか
った。
As a result, when the present invention was applied to a color filter for a liquid crystal panel, for example, there was no difference compared to the case of a conventional dye film alone, and no problems such as poor alignment occurred.

以 上Below Up

Claims (1)

【特許請求の範囲】 1、電解により荷電する特性を持つ界面活性剤のミセル
溶液中に、非水性あるいは水に難溶性の有機あるいは無
機物を分散コロイド化し、該ミセル溶液中に支持電解質
及び電着液を溶解した中で、成膜した色素顔料膜上に第
1の電解としてミセル破壊電位以上電着電位以下で電解
を行ない、第2の電解として電着電位以上で電解を行な
うことにより非水溶性あるいは水に難溶性の有機あるい
は無機物の微粒子膜を成膜することを特徴とするミセル
電解法による薄膜成膜法。 2、第1の電解と第2の電解を2回以上繰り返すことで
、非水溶性あるいは水に難溶性の有機あるいは無機物の
微粒子膜を成膜することを特徴とする請求項1記載のミ
セル電解法による薄膜成膜法。
[Claims] 1. A non-aqueous or poorly water-soluble organic or inorganic substance is dispersed and colloided in a micelle solution of a surfactant that has the property of being charged by electrolysis, and a supporting electrolyte and electrodeposited in the micelle solution. In the dissolved solution, electrolysis is performed on the formed dye pigment film as a first electrolysis at a voltage higher than the micelle breakdown potential and lower than the electrodeposition potential, and as a second electrolysis, electrolysis is performed at a voltage higher than the electrodeposition potential. A thin film deposition method using micelle electrolysis, which is characterized by depositing a film of fine particles of an organic or inorganic substance that is poorly soluble in water or water. 2. The micelle electrolysis according to claim 1, wherein the first electrolysis and the second electrolysis are repeated two or more times to form a film of fine particles of an organic or inorganic substance that is insoluble or poorly soluble in water. Thin film deposition method by method.
JP9952890A 1989-04-28 1990-04-16 Thin film deposition by micellar electrolysis Expired - Fee Related JP2906568B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP9952890A JP2906568B2 (en) 1990-04-16 1990-04-16 Thin film deposition by micellar electrolysis
EP19900113106 EP0407947A3 (en) 1989-07-12 1990-07-09 Color filter and process for preparing the same
KR1019900010544A KR910003426A (en) 1989-07-12 1990-07-12 Color filter and its manufacturing method
US08/183,204 US5399450A (en) 1989-04-28 1994-01-18 Method of preparation of a color filter by electrolytic deposition of a polymer material on a previously deposited pigment
US08/406,263 US5554466A (en) 1989-04-28 1995-03-17 Color filter and method of preparation
US08/468,479 US5705302A (en) 1989-04-28 1995-06-06 Color filter for liquid crystal display device and method for producing the color filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9952890A JP2906568B2 (en) 1990-04-16 1990-04-16 Thin film deposition by micellar electrolysis

Publications (2)

Publication Number Publication Date
JPH04397A true JPH04397A (en) 1992-01-06
JP2906568B2 JP2906568B2 (en) 1999-06-21

Family

ID=14249728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9952890A Expired - Fee Related JP2906568B2 (en) 1989-04-28 1990-04-16 Thin film deposition by micellar electrolysis

Country Status (1)

Country Link
JP (1) JP2906568B2 (en)

Also Published As

Publication number Publication date
JP2906568B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
EP0132068B1 (en) Multi-colour display device and process of fabricating same
EP0113237B1 (en) Method for manufacturing a multicolour filter and a multicolour display device
US4670188A (en) Electrically conductive high molecular resin composition for electrodeposition coating
JPH04397A (en) Formation of thin film due to micelle electrolyzing method
JP2707746B2 (en) Color filter, method of manufacturing the same, and liquid crystal device
JPH03606B2 (en)
JP2707787B2 (en) Method of forming thin film and method of manufacturing color filter for liquid crystal device
JPH0259966B2 (en)
JP2893840B2 (en) Color filter manufacturing method and color liquid crystal panel
JPH0345804B2 (en)
JPH10311913A (en) Device for manufacturing color filter
JPS62164730A (en) Production of polyaniline film
JPH0345803B2 (en)
JP2674272B2 (en) Color filter manufacturing method
JPH09278487A (en) Production of conductive particle, production of color filter using the particle, and color filter, display panel and electronic device using the particle
JPS6023806A (en) Preparation of multicolor polarizing plate
JP2707793B2 (en) Method for forming thin film, color filter for liquid crystal device, and liquid crystal device
JPS61210330A (en) Production of polychromatic display device
JPH08220332A (en) Production of transparent electric conductive particle, production of color filter using the same and color filter using the same
JPS61209272A (en) Highly dielectric high polymer electrodeposition composition
JPH0468301A (en) Production of color filter
JP2762541B2 (en) Thin film formation method
JPS61210329A (en) Production of polychromatic surface colored body
JPH03293634A (en) Production of color filter
JPS62218932A (en) Production of multi-color liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees