JPH0439766B2 - - Google Patents

Info

Publication number
JPH0439766B2
JPH0439766B2 JP1303185A JP1303185A JPH0439766B2 JP H0439766 B2 JPH0439766 B2 JP H0439766B2 JP 1303185 A JP1303185 A JP 1303185A JP 1303185 A JP1303185 A JP 1303185A JP H0439766 B2 JPH0439766 B2 JP H0439766B2
Authority
JP
Japan
Prior art keywords
tap
voltage
selector
voltage tap
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1303185A
Other languages
Japanese (ja)
Other versions
JPS61172319A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1303185A priority Critical patent/JPS61172319A/en
Publication of JPS61172319A publication Critical patent/JPS61172319A/en
Publication of JPH0439766B2 publication Critical patent/JPH0439766B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は負荷時タツプ切換器の主回路構成に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a main circuit configuration of an on-load tap changer.

〔従来の技術〕[Conventional technology]

第6図に従来の負荷時タツプ切換装置の回路の
第1の例を示す。この従来例は村上、嶋共著「負
荷時タツプ切換器とその回路」(電気書院発行)
に示される。図においてタツプ巻線1は電圧タツ
プ2,3,4および5を有し、図示を省略した共
通の駆動軸によつて駆動されるタツプ選択器6,
7によつて電圧タツプを選択する。切換開閉器
8′は固定接触子9,10,11および12と可
動接触子13により構成されている。タツプ選択
器6は固定接触子9に、タツプ選択器7は固定接
触子12にそれぞれ結線されており、固定接触子
10および11はそれぞれタツプ間橋絡電流を限
流する限流抵抗14および15を介してタツプ選
択器6および7にそれぞれ結線されている。出力
端子16は負荷(図示省略)を可動接触子13に
接続するためのものである。第6図(a)は電圧タツ
プ4が出力端子16に接続されている状態を示
す。このとき負荷電流は電圧タツプ4、タツプ選
択器7、固定接触子12、可動接触子13を経て
流れる。負荷を電圧タツプ4から電圧タツプ5に
切換える場合には可動接触子13を反時計回りに
回転される。タツプ切換操作が始まると、可動接
触子13は一時的に固定接触子12および11の
両方に接触し、第6図bに示すように固定接触子
11に切換えられる。このとき固定接触子11と
12の間にアーク17が発生する。可動接触子1
3がされに回転すると第6図cに示すように一時
的に固定接触子11および10の両方に接触し、
第6図dに示すように固定接触子10に切換えら
れる。可動接触子13が固定接触子10,11の
両方に接触している間、電圧タツプ4と5の間の
電位差によつてタツプ間橋絡電流が電圧タツプ
4、タツプ選択器7、限流抵抗15、固定接触子
11、可動接触子13、固定接触子10、限流抵
抗14、タツプ選択器6、電圧タツプ5の経路で
流れる。このタツプ間橋絡電流は限流抵抗14,
15によつて制限されるが、可動接触子13が固
定接触子10に切換れるとき可動接触子13と固
定接触子11との間にアーク18を発生させる。
同様の操作によつて可動接触子13は最終的に第
6図eに示すように固定接触子9に切換えられ
る。第7図に第2の従来例を示す。図において番
号1〜7および14〜16によつて指示された部
分は第1の従来例と共通である。この従来例にお
いて切換開閉器8″は切換開閉器19,20,2
1,22により構成されている。第8図にタツプ
切換時における半導体開閉器の切換シーケンスを
示す。図に示すように半導体開閉器19,20,
21,22は相互に所定のオーバラツプ状態を有
して切換えられるようになされている。
FIG. 6 shows a first example of a circuit of a conventional on-load tap switching device. This conventional example is co-authored by Murakami and Shima, "On-load tap changer and its circuit" (published by Denkishoin)
is shown. In the figure, a tap winding 1 has voltage taps 2, 3, 4, and 5, and a tap selector 6, which is driven by a common drive shaft (not shown).
7 selects the voltage tap. The switching switch 8' is composed of fixed contacts 9, 10, 11 and 12 and a movable contact 13. Tap selector 6 is connected to fixed contact 9, tap selector 7 is connected to fixed contact 12, and fixed contacts 10 and 11 are connected to current limiting resistors 14 and 15, respectively, which limit the bridging current between the taps. are connected to tap selectors 6 and 7, respectively. The output terminal 16 is for connecting a load (not shown) to the movable contact 13. FIG. 6(a) shows a state in which the voltage tap 4 is connected to the output terminal 16. At this time, the load current flows through the voltage tap 4, the tap selector 7, the fixed contact 12, and the movable contact 13. When switching the load from voltage tap 4 to voltage tap 5, movable contact 13 is rotated counterclockwise. When the tap switching operation begins, movable contact 13 temporarily contacts both fixed contacts 12 and 11 and is switched to fixed contact 11 as shown in FIG. 6b. At this time, an arc 17 is generated between the fixed contacts 11 and 12. Movable contact 1
3 rotates, it temporarily contacts both fixed contacts 11 and 10, as shown in FIG. 6c,
The contact is switched to a fixed contact 10 as shown in FIG. 6d. While the movable contact 13 is in contact with both the fixed contacts 10 and 11, the potential difference between the voltage taps 4 and 5 causes a bridging current between the taps to flow through the voltage tap 4, the tap selector 7, and the current limiting resistor. 15, the fixed contact 11, the movable contact 13, the fixed contact 10, the current limiting resistor 14, the tap selector 6, and the voltage tap 5. This inter-tap bridging current is caused by the current limiting resistor 14,
15, an arc 18 is generated between the movable contact 13 and the fixed contact 11 when the movable contact 13 switches to the fixed contact 10.
By a similar operation, the movable contact 13 is finally switched to the fixed contact 9 as shown in FIG. 6e. FIG. 7 shows a second conventional example. Portions designated by numbers 1 to 7 and 14 to 16 in the figures are common to the first conventional example. In this conventional example, the switching switch 8'' is replaced by switching switches 19, 20, 2.
1 and 22. FIG. 8 shows the switching sequence of the semiconductor switch during tap switching. As shown in the figure, semiconductor switches 19, 20,
21 and 22 are configured to be switched with a predetermined overlap state with each other.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記第1の従来例お負荷時タツプ切換装置は切
換時にアークが生じ、切換開閉器内に充填された
油を汚染する。また接触子の消耗がさけられず定
期的に油及び接触子を交換する必要があり保守に
多大な労力と費用を要する問題があつた。また第
2の従来例の負荷時タツプ切換装置は切換開閉器
が半導体であるためアークを生じることはなく寿
命も長く保守上の問題はないが、高価な半導体開
閉器を4台必要とするため価格が高くなり、また
半導体開閉器を制御する方法も複雑高価となる問
題があつた。
In the first prior art on-load tap switching device, an arc is generated during switching, which contaminates the oil filled in the switching switch. In addition, wear and tear of the contacts is unavoidable, and the oil and contacts must be replaced periodically, resulting in the problem of requiring a great deal of effort and expense for maintenance. In addition, in the second conventional load tap switching device, the switching switch is made of semiconductor, so it does not generate arcs and has a long lifespan, and there are no maintenance problems, but it requires four expensive semiconductor switches. There were problems in that the price was high and the method for controlling the semiconductor switch was complicated and expensive.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る負荷時タツプ切換装置は切換え
ようとする両タツプ間の瞬時最大電圧よりも高い
値の電流阻止電圧範囲を有する電圧制限素子を介
して負荷に接続された2組のタツプ選択器と、半
導体開閉器を介して負荷に接続された1組のタツ
プ選択器とを設け、上記3組のタツプ選択器は所
定の順序でタツプ切換動作をするように構成され
ている。
The on-load tap switching device according to the present invention includes two sets of tap selectors connected to the load via a voltage limiting element having a current blocking voltage range higher than the instantaneous maximum voltage between the two taps to be switched. , and one set of tap selectors connected to a load via a semiconductor switch, and the three sets of tap selectors are configured to perform tap switching operations in a predetermined order.

〔作用〕[Effect]

この発明における負荷時タツプ切換装置は、切
換えようとする両タツプ間の瞬時最大電圧よりも
高い値の電流阻止電圧範囲を有する電圧制限素子
によつて、切換時のタツプ間橋絡電流を無視し得
る値に抑制する。一方電流の切換は半導体開閉器
によつて行うがこの半導体開閉器は1組でよい。
The on-load tap switching device according to the present invention ignores bridging current between taps during switching by using a voltage limiting element having a current blocking voltage range higher than the instantaneous maximum voltage between both taps to be switched. Limit it to the value you get. On the other hand, the current is switched by a semiconductor switch, and only one set of semiconductor switches is required.

〔実施例〕〔Example〕

第1図にこの発明の実施例を示す。図におい
て、タツプ巻線1には電圧タツプ4および5が設
けられている。タツプ巻線23,24はそれぞれ
電圧制限素子26,27を介して出力端子16に
接続されている。タツプ選択器25は切換開閉器
8を介して出力端子16に接続されている。切換
開閉器8は公知の半導体開閉器28で構成されて
いる。電圧制限素子26,27は例えば酸化亜鉛
を主成分とする第3図に示すような電流−電圧特
性を有する素子が望ましく、その電流阻止電圧範
囲(以後制限電圧と称する)は切換えようとする
両タツプ間の瞬時最大電圧よりも大きく、かつ電
圧タツプの出力電圧よりも十分低い値に選定され
ている。
FIG. 1 shows an embodiment of the invention. In the figure, a tap winding 1 is provided with voltage taps 4 and 5. Tap windings 23, 24 are connected to output terminal 16 via voltage limiting elements 26, 27, respectively. The tap selector 25 is connected to the output terminal 16 via the switching switch 8. The switching switch 8 is composed of a known semiconductor switch 28. The voltage limiting elements 26 and 27 are preferably elements containing zinc oxide as a main component and having current-voltage characteristics as shown in FIG. The value is selected to be larger than the instantaneous maximum voltage between the taps and sufficiently lower than the output voltage of the voltage tap.

次にこの実施例の動作について説明する。第1
図aはタツプ選択器23,24,25が電圧タツ
プ4に接触して、電圧タツプ4が出力端子16に
接続されている状態を示している。タツプ選択器
23,24,25および半導体開閉器28の状態
を第2図のタイミングチヤートに示す。図におい
て時刻T1においては、タツプ選択器23,24,
25がすべて電圧タツプ4に接触し、半導体開閉
器28が閉となつており、第1図aの状態を表し
ている。このとき負荷電流は電圧タツプ4、タツ
プ選択器25、半導体開閉器28、出力端子16
を経て負荷(図示省略)へ供給される。タツプ切
換動作が始まると、まずタツプ選択器24が第2
図に示す時刻T2に電圧タツプ4を離れ、時刻T3
に電圧タツプ5に接触する。この状態を第1図b
に示す。半導体開閉器28はまだ閉の状態を保つ
ているので電圧制限素子27には電圧タツプ4と
5の間の電位差に相当するタツプ間電圧が印加さ
れるが、電圧制限素子27の制限電圧はタツプ間
電圧の瞬時最大値よりも高く選定されているので
電圧制限素子27を介してタツプ間橋絡電流が流
れることはない。次に時刻T4で半導体開閉器2
8が「開」となると、半導体開閉器28の両端の
電位差は電圧タツプ4の電圧まで上昇しようとす
るが、電圧制限素子26または27の制限電圧は
タツプ電圧に比べて十分小さいので電圧制限素子
26の制限電圧をこえることはない。このとき負
荷電流は、電圧タツプ4、タツプ選択器23、電
圧制限素子26、出力端子16と電圧タツプ5、
タツプ選択器24、電圧制限素子27、出力端子
16の2経路を経て流れる。この状態を第1図c
に示す。時刻T5でタツプ選択器25が電圧タツ
プ4を離れるが、半導体開閉器28はすでに開と
なつているのでアークを生じることがない。電圧
タツプ4を離れたタツプ選択器25は時刻T6
電圧タツプ5に接触する。第1図dにこのときの
状態を示す。次に時刻T7で半導体開閉器28は
閉となり、負荷電流は電圧タツプ5、タツプ選択
器25、半導体開閉器28、出力端子16を経て
流れる。このときの状態を第1図eに示す。この
とき電圧制限素子26の両端には電圧タツプ4と
電圧タツプ5間の電位差に相当するタツプ間電圧
が印加されるが、前記のとおり電圧制限素子26
の制限電圧はタツプ間電圧の瞬間最大値より高い
ので電圧制限素子26を介してタツプ間橋絡電流
は流れない。最後に時刻T8でタツプ選択器23
が電圧タツプ4を離れ、時刻T9で電圧タツプ5
に接触するが、上記説明のとおりタツプ間橋絡電
流が存在しないのでアークは発生しない。以上の
操作によつて電圧タツプ4から電圧タツプ5への
切換が完了する。このときの状態を第1図fに示
す。
Next, the operation of this embodiment will be explained. 1st
Figure a shows the state in which the tap selectors 23, 24, 25 are in contact with the voltage tap 4, and the voltage tap 4 is connected to the output terminal 16. The states of the tap selectors 23, 24, 25 and the semiconductor switch 28 are shown in the timing chart of FIG. In the figure, at time T1 , tap selectors 23, 24,
25 are all in contact with the voltage tap 4, and the semiconductor switch 28 is closed, representing the state shown in FIG. 1a. At this time, the load current is applied to the voltage tap 4, the tap selector 25, the semiconductor switch 28, and the output terminal 16.
It is supplied to the load (not shown) through the. When the tap switching operation begins, the tap selector 24 first switches to the second tap selector 24.
It leaves the voltage tap 4 at time T 2 shown in the figure, and at time T 3
Then touch voltage tap 5. This state is shown in Figure 1b.
Shown below. Since the semiconductor switch 28 still remains closed, a voltage between the taps corresponding to the potential difference between voltage taps 4 and 5 is applied to the voltage limiting element 27, but the limiting voltage of the voltage limiting element 27 is Since the voltage is selected to be higher than the instantaneous maximum value of the voltage between the taps, no bridging current between the taps flows through the voltage limiting element 27. Next, at time T 4 , semiconductor switch 2
8 becomes "open", the potential difference across the semiconductor switch 28 tries to rise to the voltage of the voltage tap 4, but since the limited voltage of the voltage limiting element 26 or 27 is sufficiently small compared to the tap voltage, the voltage limiting element 26 limit voltage will not be exceeded. At this time, the load current is divided between the voltage tap 4, the tap selector 23, the voltage limiting element 26, the output terminal 16, and the voltage tap 5.
The voltage flows through two paths: the tap selector 24, the voltage limiting element 27, and the output terminal 16. This state is shown in Figure 1c.
Shown below. At time T5 , tap selector 25 leaves voltage tap 4, but since semiconductor switch 28 is already open, no arc occurs. Tap selector 25, which has left voltage tap 4, contacts voltage tap 5 at time T6 . FIG. 1d shows the state at this time. Next, at time T7 , the semiconductor switch 28 is closed, and the load current flows through the voltage tap 5, the tap selector 25, the semiconductor switch 28, and the output terminal 16. The state at this time is shown in FIG. 1e. At this time, an inter-tap voltage corresponding to the potential difference between voltage tap 4 and voltage tap 5 is applied across the voltage limiting element 26, but as described above, the voltage limiting element 26
Since the limiting voltage is higher than the instantaneous maximum value of the inter-tap voltage, no inter-tap bridging current flows through the voltage limiting element 26. Finally, at time T 8 , the tap selector 23
leaves voltage tap 4 and returns to voltage tap 5 at time T9 .
However, as explained above, there is no bridging current between the taps, so no arc occurs. By the above operations, switching from voltage tap 4 to voltage tap 5 is completed. The state at this time is shown in FIG. 1f.

上記実施例ではタツプ切換操作をしていない平
常時には半導体開閉器28を経て負荷電流が流れ
ているが、第4図に示すように半導体開閉器28
に並列に通電開閉器29を接続し、平常時には負
荷電流を上記通電開閉器29を経て流すこともで
きる。一般に半導体開閉器は導通時に数ボルトの
電圧降下を生じるため、大電流領域で使用する場
合には半導体開閉器内で消費される電力も相当大
きくなり、半導体開閉器を冷却するための冷却装
置が必要となるが、このような場合上記説明のと
おり通電開閉器29を用いることにより半導体開
閉器での電力損失を大幅に減らすことができ、小
型の冷却装置を除くこともできる。この実施例に
おける動作のタイミングチヤートを第5図に示
す。通電開閉器29は切換動作が開始される時刻
T2より少し前のT1で開となり、切換動作完了の
時刻T9より少し後のT10で再び閉となるように制
御される。
In the above embodiment, the load current flows through the semiconductor switch 28 during normal times when no tap switching operation is being performed, but as shown in FIG.
It is also possible to connect an energizing switch 29 in parallel with the energizing switch 29, and to allow the load current to flow through the energizing switch 29 during normal times. In general, semiconductor switches produce a voltage drop of several volts when conducting, so when used in a large current area, the power consumed within the semiconductor switch becomes considerably large, and a cooling device is required to cool the semiconductor switch. However, in such a case, by using the energizing switch 29 as described above, the power loss in the semiconductor switch can be significantly reduced, and a small cooling device can also be omitted. A timing chart of the operation in this embodiment is shown in FIG. The energizing switch 29 indicates the time when the switching operation starts.
It is controlled to open at T 1 , which is a little before T 2 , and to close again at T 10 , which is a little after the switching operation completion time T 9 .

〔発明の効果〕〔Effect of the invention〕

この発明の負荷時タツプ切換装置は切換えよう
とする両タツプ間の瞬時最大電圧よりも高い値の
電流阻止電圧範囲を有する電圧制限素子を介して
タツプ間橋絡電流を抑制するのでタツプ切換時に
アークが発生せず、切換開閉器内に充填された油
は汚染されず接触子の接点の消耗も極めて少な
い。また開閉器は1台のみでよいので高価な半導
体開閉器を採用しても装置全体の価格は比較的安
価となる。
The on-load tap switching device of the present invention suppresses bridging current between taps through a voltage limiting element having a current blocking voltage range higher than the instantaneous maximum voltage between both taps to be switched, so arcs occur when switching taps. There is no occurrence of oil, the oil filled in the switching switch is not contaminated, and the wear of the contacts is extremely low. Furthermore, since only one switch is required, the cost of the entire device is relatively low even if an expensive semiconductor switch is used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の負荷時タツプ切換装置の実
施例の切換動作を示す図、第2図は第1図に示す
実施例の動作を示すタイミングチヤート、第3図
はこの発明に使用される電圧制限素子の特性を示
す図、第4図はこの発明の他の実施例の構成を示
す図、第5図は第4図に示す実施例の動作を示す
タイミングチヤート、第6図は従来の負荷時タツ
プ切換装置の第1の例の動作を示す図、第7図は
従来の負荷時タツプ切換装置の第2の例の構成を
示す図、第8図は第7図に示す第2の従来の例の
動作を示すタイミングチヤートである。 4,5:電圧タツプ、23,24,25:タツ
プ選択器、26,27:電圧制限素子、28:半
導体開閉器、29:通電接点。
FIG. 1 is a diagram showing the switching operation of an embodiment of the load tap switching device of the present invention, FIG. 2 is a timing chart showing the operation of the embodiment shown in FIG. 1, and FIG. 3 is a diagram showing the operation of the embodiment shown in FIG. 1. FIG. 4 is a diagram showing the structure of another embodiment of the present invention. FIG. 5 is a timing chart showing the operation of the embodiment shown in FIG. 4. FIG. A diagram showing the operation of the first example of the tap switching device under load, FIG. 7 is a diagram showing the configuration of the second example of the conventional tap switching device under load, and FIG. 2 is a timing chart showing the operation of a conventional example. 4, 5: Voltage tap, 23, 24, 25: Tap selector, 26, 27: Voltage limiting element, 28: Semiconductor switch, 29: Current-carrying contact.

Claims (1)

【特許請求の範囲】 1 タツプ巻線1の第1の電圧タツプ4と第2の
電圧タツプ5間の瞬時最大電圧より高い値の電流
阻止電圧範囲を有するそれぞれの電圧制限素子2
6,27を介して第1の電圧タツプ4と出力端子
16間に接続した第1のタツプ選択器24及び第
2のタツプ選択器23と、半導体開閉器28を介
して第1の電圧タツプ4と出力端子16間に接続
した第3のタツプ選択器25とを具備し、 第1のタツプ選択器24は第1の電圧タツプ4
から第2の電圧タツプ5へ切換わるように構成
し、 第3のタツプ選択器25は第1のタツプ選択器
24が第1の電圧タツプ4から第2の電圧タツプ
5へ切換わつた後に第1の電圧タツプ4から第2
の電圧タツプ5へ切換わるように構成し、 第2のタツプ選択器23は第3のタツプ選択器
25が第1の電圧タツプ4から第2の電圧タツプ
5に切換わつた後、第1の電圧タツプ4から第2
の電圧タツプ5へ切換わるように構成し、 前記半導体開閉器28は第3のタツプ選択器2
5が電圧タツプ4から電圧タツプ5に切換わる間
開となる以外は閉であるように構成し、 それにより第1のタツプ選択器24を第1の電
圧タツプ4から第2の電圧タツプ5へ切換えた後
半導体開閉器28を開にして、第3のタツプ選択
器25を第1の電圧タツプ4から第2の電圧タツ
プ5へ切換え、その後半導体開閉器28を閉にし
た後、第2のタツプ選択器23を第1の電圧タツ
プ4から第2の電圧タツプ5へ切換えることを特
徴とする負荷時タツプ切換装置。 2 半導体開閉器と並列に通電接点を設けたこと
を特徴とする特許請求の範囲第1項記載の負荷時
タツプ切換装置。
Claims: 1. Each voltage limiting element 2 having a current blocking voltage range of a value higher than the instantaneous maximum voltage between the first voltage tap 4 and the second voltage tap 5 of the tap winding 1.
A first tap selector 24 and a second tap selector 23 are connected between the first voltage tap 4 and the output terminal 16 via terminals 6 and 27, and the first voltage tap 4 is connected via a semiconductor switch 28. and a third tap selector 25 connected between the output terminal 16 and the first voltage tap 4.
The third tap selector 25 is configured to switch from the first voltage tap 4 to the second voltage tap 5 after the first tap selector 24 switches from the first voltage tap 4 to the second voltage tap 5. 1 voltage tap 4 to 2nd
After the third tap selector 25 switches from the first voltage tap 4 to the second voltage tap 5, the second tap selector 23 switches from the first voltage tap 4 to the second voltage tap 5. Voltage tap 4 to 2nd
The semiconductor switch 28 is configured to switch to the third voltage tap 5, and the semiconductor switch 28 is configured to switch to the third voltage tap 5.
5 is configured to be closed except when it is open during switching from voltage tap 4 to voltage tap 5, thereby causing first tap selector 24 to switch from first voltage tap 4 to second voltage tap 5. After switching, open the semiconductor switch 28, switch the third tap selector 25 from the first voltage tap 4 to the second voltage tap 5, then close the semiconductor switch 28, and then switch the third tap selector 25 from the first voltage tap 4 to the second voltage tap 5. A tap switching device under load, characterized in that a tap selector 23 is switched from a first voltage tap 4 to a second voltage tap 5. 2. The on-load tap switching device according to claim 1, characterized in that a current-carrying contact is provided in parallel with the semiconductor switch.
JP1303185A 1985-01-25 1985-01-25 On-load tap changer Granted JPS61172319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303185A JPS61172319A (en) 1985-01-25 1985-01-25 On-load tap changer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303185A JPS61172319A (en) 1985-01-25 1985-01-25 On-load tap changer

Publications (2)

Publication Number Publication Date
JPS61172319A JPS61172319A (en) 1986-08-04
JPH0439766B2 true JPH0439766B2 (en) 1992-06-30

Family

ID=11821758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303185A Granted JPS61172319A (en) 1985-01-25 1985-01-25 On-load tap changer

Country Status (1)

Country Link
JP (1) JPS61172319A (en)

Also Published As

Publication number Publication date
JPS61172319A (en) 1986-08-04

Similar Documents

Publication Publication Date Title
JP2662434B2 (en) Thyristor conversion switch
KR100814514B1 (en) On-load tap changer
US4152634A (en) Power contactor and control circuit
JP2013516051A (en) Tap changer with polarity switch for control transformer
EP0116748A1 (en) On-load tap changer
JPH04251595A (en) Battery driving gear
JPH0439766B2 (en)
JPH07335455A (en) Static on-load tap changer and change of tap thereof
US4520246A (en) On-load tap changer of the type of vacuum switches
CA1086850A (en) Power contactor and control circuit
US6094013A (en) Circuit arrangement for limiting the current at make for a transformer
JPS6115569B2 (en)
JP2687821B2 (en) Tap switching device under load
US3761802A (en) Switching device for transformers having stepwise voltage control under load
JPS6178020A (en) Power switch
JPH0365886B2 (en)
JPS5837684B2 (en) Transformer with on-load tap changer
JPS6193609A (en) Tap switching device
JPH05182844A (en) On-load tap changing device
SU517117A1 (en) Device for regulating AC voltage
JPS6111986Y2 (en)
CN116057658A (en) On-load tap changer and method for operating an on-load tap changer
JPH0528891A (en) Relay circuit
JPS59207613A (en) On-load tap changer
CN116438616A (en) On-load tap changer and method for operating an on-load tap changer